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Abstract
One of the main drawbacks of vision-based control that remains unsolved is the poor dynamic performances caused by the
low acquisition frequency of the vision systems and the time latency due to processing. We propose in this paper to face the
challenge of designing a high-performance dynamic visual servo control scheme. Two versatile control laws are developed
in this paper: a position-based dynamic visual servoing and an image-based dynamic visual servoing. Both control laws
are designed to compute the control torques exclusively from a sequential acquisition of regions of interest containing the
visual features to achieve an accurate trajectory tracking. The presented experiments on vision-based dynamic control of
a high-speed parallel robot show that the proposed control schemes can perform better than joint-based computed torque
control.

Keywords
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1. Introduction

1.1. Visual servo control challenges

The integration of vision in the control loop of robotic sys-
tems allows for relative positioning in a dynamic environ-
ment. Therefore, uncertainties in the initial position of the
piece on which the robot has to work or in the robot kine-
matic model do not really affect control performances as it
does in joint-based control. However, even if vision-based
control has many advantages compared with model-based
control, it still has some drawbacks. The first is the poor
control performances which represents a significant obsta-
cle to be an effective industrial solution (Kragic and Vincze
2009). This drawback is closely related to the low acquisi-
tion frequency of standard cameras which is about 50–60
Hz. To adapt visual measures to robot control, the ‘look-
and-move’ control hierarchy was designed (Weiss et al.
1987). Nowadays, this is the most widely used vision-based
control architecture.

The first vision-based control architecture that was devel-
oped is the ‘look-then-move’ (Corke and Good 1996; Zhang
and Pstrowski 1999; Vincze 2000) (originally named ‘static
look-and-move’) (Tani et al. 1977; Birk et al. 1979). In
the late 1970s, the computation time was so long1 that it
was necessary to compute the pose error while the robot is

stopped. Since the robot motion is jerky, the performances
of such a control law are poor.

As the computation performances of calculators
increased, another visual servoing architecture, known
as ‘look-and-move’ (Chaumette et al. 1991; Hutchinson
et al. 1996; Vincze 2000) (originally named ‘dynamic
look-and-move’ (Weiss et al. 1987)), was proposed to
improve the control performances and has become the
classical visual servoing architecture simply called visual
servoing (Hutchinson et al. 1996; Chaumette and Hutchin-
son 2006). It is now the most popular architecture and
it is referred in the literature simply as visual servoing.
The ‘look-and-move’ control hierarchy is composed of
two nested loops running in real-time, usually at different
frequencies. The high-level loop (at camera frequency)
computes the kinematic control vector to drive the robot
to the desired configuration. Since the controller has to
send torques to the actuators and not velocities, the role
of the low-level loop (at least >100 Hz) is to servo the
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robot velocity. This is usually done through a conventional
controller (typically PID or, slightly better, PD + gravity)
exploiting joint sensing.

However, this control architecture does not fit high-
performance control because: (1) the latency on the visual
measures caused by sensor exposure, image transmission
and data processing considerably affects the performance
and the stability of the control law (Vincze et al. 2002;
Zhang et al. 2003); (2) the first-order exponential conver-
gence, usually chosen in this control scheme, is not the
fastest response that can be obtained; (3) the error accu-
mulation of the two nested loops is not the most appropri-
ate control architecture to improve accuracy; (4) choosing
velocities as a control vector does not allow the compensa-
tion of the robot dynamics which is crucial when controlling
high-speed robots. As a consequence, the compensation of
a slow vision system by a fast low-level control loop is not
the best solution for high-performance vision-based control
design.

An alternative control architecture that could improve
performances is the ‘dynamic visual servo’ control (Weiss
et al. 1987). Indeed, in this control hierarchy, the visual
loop delivers directly the joint torques from visual sensing
(i.e. no nested loop) which resolves most of the drawbacks
related to the ‘look-and-move’ control architecture. How-
ever, classical visual systems do not fit the typical dynamic
control requirements in terms of latency and acquisition
frequency (Corke and Good 1996). Moreover, dynamic con-
trol requires not only robot configuration estimation (as
usual) but also the estimation of the configuration deriva-
tive (robot velocity) for system regulation and tracking effi-
ciency improvement. This represents another issue in the
context of dynamic visual servo since usually vision does
not provide velocity estimation.

1.2. Improving vision-based control
performances

To improve the stability and performance of the vision-
based control, two main approaches have been proposed.
The first consists of reducing the effects of low frequency
and latency by designing suitable control laws. The second
approach, which is more suitable, is to effectively improve
the acquisition and processing performances of the vision
system to fulfill dynamic control requirements.

Gangloff and de Mathelin (2003) adopted these two
approaches and proposed a predictive control of a six-
degree-of-freedom (6-d.o.f.) serial robot based on the ‘look-
and-move’ structure. The high-level loop of the proposed
control architecture is about 120 Hz whereas the low-level
loop runs at 500 Hz. The idea of the control law is to
compensate for the latency of the visual system through
prediction. Note that the acquisition frequency (120 Hz) is
obtained by reducing the camera field of view (640 × 240
pixels). Reducing the image size even more (256×256 pix-
els) allowed the frequency to be increased up to 500 Hz

(Cuvillon et al. 2006). However, cutting down the image
size reduces either the camera resolution or field of view
which is not permitted in most vision-based applications.

An image-based dynamic control applied to a blimp was
proposed by Zhang and Pstrowski (1999). The proposed
control scheme is based on a single point in the image. This
allows for the decoupling and the analytical expression of
the dynamics of the blimp in the image. However, this ad
hoc expression does not extend to other systems nor to the
observation of several image points. Moreover, the latency
caused by the measure by vision is not very harmful because
the blimp has much slower dynamics than a manipulator.

For pick-and-place applications, an interesting vision-
based dynamic control law combines vision measures and
joint sensors to compensate for the robot dynamics and
compute the control vector (Kelly et al. 2000). However,
this control law also exploits a single point and assumes
prior knowledge of its depth. In addition, even if the con-
trol hierarchy is of the form ‘direct-feedback’ it remains,
nevertheless, a multi-frequency control scheme. Thus, the
position correction is obtained by vision at a frequency of
50 Hz while the velocity is corrected from joint measure-
ments which are updated at 400 Hz. The local stability of
the control loop and experiments have been demonstrated
only on a 2-d.o.f. servo from a point fixed at a constant and
known depth from the camera.

Although vision sensors are able to acquire images at
very high frequencies (Etoh et al. 2003). The acquisition
frequency of vision systems is typically limited by the
communication interface bandwidth. To avoid this bottle-
neck, several solutions were proposed in the literature. An
interesting one consists of embedding the processing close
to the sensor as proposed by Ishii et al. (1996) where a
1 kHz acquisition system was designed. However, the image
resolution was considerably low (128 × 128). In addition,
embedding the processing close to the sensor may not be
convenient since it requires dedicated hardware and soft-
ware development which makes the system more complex
and less scalable. This is why ‘smart-cameras’ that inte-
grate processing are usually designed to specific applica-
tions. The most appropriate solution to increase the acquisi-
tion frequency is probably to use cameras that dynamically
select and transmit only the regions of interest (ROIs) in the
image that contain the relevant visual information (Ulrich
et al. 2004; Paccot et al. 2008; Dahmouche et al. 2009).

1.3. Vision-based dynamic control of
parallel robots

Vision is particularly relevant to the control of a large
class of robots called ‘parallel kinematic machines’ (PKMs)
(Paccot et al. 2009). PKMs (or parallel robots) are closed
chain mechanisms with a platform (or end-effector) con-
nected to the robot by several kinematic chains (Merlet
2009). One advantage of such mechanical structures is that,
unlike serial robots, the actuators can be rigidly fixed to the
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robot frame. Releasing the robot from the burden of the
actuators can then significantly reduce the carried weight
and thus improve the dynamic performances of the sys-
tem. High accelerations, never achieved by serial robots,
can then be reached (Nabat et al. 2005).

It was shown by Dasgupta and Choudhury (1999), Khalil
and Ibrahim (2004), Callegari et al. (2006), and Paccot
et al. (2009) that the end-effector pose is more appropriate
for parallel robot control than joint configuration. Indeed,
the joint configuration of a PKM does not fully describe
the robot configuration since it was shown that a single
joint configuration of the Gough–Stewart platform (a well-
known parallel robot) may correspond to 40 real configura-
tions (Dietmaier 1998). Owing to this particularity, the for-
ward kinematic model of this class of robots is usually not
trivial to compute (a huge body of literature is devoted to
this problem, which can be entered through (Merlet 2004)).
In addition, it is subject, in the same way as serial robots, to
modeling and numerical errors (Boye and Pritschow 2005).
Indeed, the reliability of the end-effector pose estimation
depends on to the completeness of the robot geometry
modeling and to the identification accuracy of the model
(calibration) whereas the platform configuration usually
fully describes the robot configuration (without ambiguity).
Vision appears then to be a relevant solution for parallel
robot control since it allows the platform pose to be sensed.

Paccot et al. (2008) obtained a first result on position-
based dynamic visual servoing (PBDVS) of a parallel robot.
To fulfill the dynamic control requirements the acquisition
frequency was increased by grabbing a single configurable
(position and size) ROI in the image containing all of the
visual features. This acquisition method was available from
an off-the-shelf CMOS camera and allowed for a 500 Hz
pose estimation using Dementhon’s algorithm (Paccot et al.
2008). However, even if this work demonstrated the fea-
sibility of the control law, the obtained accuracy was not
fully satisfactory because of the noise in velocity estima-
tion which was obtained by the numerical differentiation of
the pose.

1.4. Contributions and organization of the paper

To the best of the authors’ knowledge, no generic 6-d.o.f.
image-based dynamic visual servoing (IBDVS) has been
presented yet. Indeed, as stated above, all image-based
dynamic control laws previously proposed were designed
for particular applications (Corke and Good 1996; Zhang
and Pstrowski 1999; Kelly et al. 2000) where the robotic
systems can be controlled from a single point. As a mat-
ter of fact, they have not been extended to more complex
systems (more features or more d.o.f.). In addition, the
obtained performances were limited since the low acqui-
sition frequency of the proposed control laws results in the
reduction of the control gains (Corke and Good 1996), the
use of joint sensor as a complement to the visual measures

(Kelly et al. 2000) or the control of a poorly responsive
blimp (Zhang and Pstrowski 1999).

The first contribution of this paper is the development
of an efficient 6-d.o.f. IBDVS. This control law uses a
high-speed sequential acquisition of ROIs in the images
to achieve a high-performance dynamic control where the
robot dynamics can be compensated for either from vision
(if the robot dynamics can be computed from the end-
effector pose and velocity) or from joint configuration and
velocity. A second contribution of this paper is the improve-
ment of the PBDVS performances compared with Paccot
et al. (2008). This improvement is achieved by adopting a
new approach to estimate simultaneously the 3D pose and
velocity without any numerical differentiation. Basically,
the velocity estimates are obtained from the artifacts in the
image generated by the delay between the sequential acqui-
sition of the ROIs (Ait-Aider et al. 2006; Dahmouche et al.
2009). The third contribution is the experimental validation
of the methods on a high-speed parallel kinematic manipu-
lator (Orthoglide (Chablat and Wenger 2003)) without any
other sensing than vision.

In the context of dynamic control of parallel robots, we
have seen in the previous section that it is more relevant
to exploit the end-effector pose rather than the joint con-
figuration to design the control laws. The contributions in
parallel robot control is twofold. First, the control perfor-
mances benefit from the intrinsic properties of vision-based
control schemes (relative positioning, etc.). Second, the pro-
posed control laws respect the natural representation of
parallel robots since the control is achieved through robot
end-effector sensing (no need of any joint sensing).

Finally, although the proposed control laws are validated
in the context of parallel robots control, their versatile for-
mulation should yield simple adaptation to serial robots.
The differences between parallel robots and serial robots
control will be pointed out in the paper.

The following section presents the theoretical back-
ground of the virtual visual servoing for simultaneous pose
and velocity estimation. Section 3 is devoted to the pose and
velocity estimation, under a piecewise constant acceleration
motion assumption, exploited by the PBDVS. The proposed
IBDVS is presented in Section 4 where the requirements for
an ‘ideal’ high-performance IBDVS are first defined and a
control law is then proposed to satisfy these requirements.
Section 5 presents the experimental setup and some imple-
mentation details. Finally, Section 6 shows the experimental
results obtained with the proposed control law and a com-
parison with a classical joint-based computed torque control
is discussed.

2. Virtual visual servoing framework for pose
and velocity estimation

For the completeness of the paper, let us reformulate here
some background results from Dahmouche et al. (2009)
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Fig. 1. Projection model of a set of points in the case of sequen-
tial acquisition. At the time instant t0, the relative pose between
the object and the robot is cTo. The relative pose at ti and tj are,
respectively, cTo δTi and cTo δTj which means that the projected
points do not correspond to the same pose of the object.

that are useful. In the sequential image features acquisi-
tion method, a rigid object, abstracted as a set of 3D points,
is observed by successively grabbing one single sub-image
containing a single visual point at a time (see Figure 1).

The projection model of a set of 3D points Pi resulting in
a visually deformed shape of the object in the image (Ait-
Aider et al. 2006; Dahmouche et al. 2008, 2009) is thus
given by

∀i = 1 . . . n m̃i ≡ [K | 03×1] cTo δTi
oP̃i (1)

where n is the number of 2D–3D correspondences, oP̃i are
the homogeneous coordinates of point Pi in the object ref-
erence frame, m̃i are the homogeneous coordinates of the
associated point projection in the camera plane (mi), ≡ is
the projective equality, cTo the homogeneous transforma-
tion matrix between the object and camera frames at a refer-
ence time tref and δTi the displacement between tref and the
ith point acquisition time ti. Finally, K is the matrix contain-
ing the camera intrinsic parameters, whilst lens distortion is
not shown here for the sake of clarity but is compensated
for.

The specificity of this acquisition method is that the pro-
jection model of a rigid object depends on the object pose
and velocity. Indeed, the displacement δTi is nothing but
the integration of the object velocity between the refer-
ence time tref and the grabbing time ti. Then, the estimation
method consists essentially in minimizing the reprojection
error built upon (1):

min
cTo,δTi

1

2

n∑
i=1

‖π ( [K | 03×1] cToδTi
oP̃i) −m∗

i ‖2 (2)

where π (·) represents the nonlinear formulation of the
perspective projection and m∗

i the desired points position.
As the reprojection error is nonlinear, the optimization

problem (2) can be solved using an iterative numerical
scheme. One elegant method, taking into account the spe-
cific structure of SE(3), is to use the virtual visual servo-
ing paradigm (Marchand and Chaumette 2002; Dahmouche

et al. 2009). This can be seen as an iterative scheme where
the linearization is done in se(3) rather than in R6.

The aim of this method is to minimize an error eu which
can be chosen as the reprojection error (Chaumette and
Hutchinson 2006):

eu = m − m∗ (3)

where m and m∗ are two vectors of dimension 2n × 1
containing, respectively, the estimated and the desired 2D
points positions.

One can obtain an exponential decrease of the error by
imposing

ėu = −λ eu. (4)

The derivative of the reprojection error with respect to the
virtual time u is given by

deu

du
= dm

du
= d

du
π ([K | 03×1] cTo( u, t) δTi( u, t) oP̃i) .

(5)
It can be shown that (5) can be rewritten as follows (see the
Appendix for details):

deu

du
= L

(
τu

τ̇u

)
(6)

where L is a (2n × 12) matrix which relates the object
velocity τu and acceleration τ̇u to the image velocity of the
set of image points m. The subscript u indicates that the
velocity and acceleration twists are virtual, i.e. they do not
correspond to twists related to the actual robot but to twists
related to the virtual robot (evolving along the virtual time
u) to converge to the same state as the real one.

The virtual control vector is finally obtained from (3), (4)
and (6) as follows:(

τu

τ̇u

)
= −λL+

(
m(cT̂o, τ̂ ) −m∗( t)

)
, λ > 0 (7)

where cT̂o and τ̂ are the previous estimates of cTo and
τ . Note that L, m and m∗ are composed of rows that are
evaluated at the successive time instant. In the context of
virtual visual servoing framework (see Figure 2), this equa-
tion provides the pose and velocity correction vector. The
object velocity is thus obtained by integrating the acceler-
ation τ̇u and the pose is obtained by exploiting both parts
of the virtual control vector (velocity and acceleration).
It might be used in the standard ‘look-and-move’ frame-
work but we will see in the next section how this can be
used in the more efficient ‘dynamic direct visual servoing’
framework by involving the accelerations and the inverse
dynamic model (IDM).

3. Position-based dynamic visual servoing

3.1. The motion model

The work presented by Dahmouche et al. (2009) made
the assumption that the velocity was piecewise constant
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Fig. 2. Pose and velocity estimation under constant velocity assumption, using the virtual visual servoing paradigm.

over the time interval during which the sub-images were
grabbed. However, this assumption is no longer appropri-
ate for computed torque control. Indeed, under this control
scheme, the torques applied to the actuators are computed
from the output of the inverse dynamic model (IDM), which
is, in turn, fed with the pseudo-control vector (w) made of
the acceleration to apply to the end-effector. Thus, over a
control period, only the acceleration can be assumed con-
stant (up to the internal regulation of the torques in the
actuators). Therefore, the motion model of the target has to
be reformulated under the latter assumption, which essen-
tially boils down to two things: computing δTi in order to
compute the projection model and the interaction matrix
and computing the control vector.

Under the assumption that the acceleration is constant
over the control sampling period, τ (t) is the end-effector
twist which represents the integral of the robot end-effector
acceleration:2

τ (ti) = τ (tref) +
∫ ti

tref

τ̇i dt (8)

where τ̇i = [v̇i, ω̇i] is the value of the platform acceleration
at the sample time ti = i Ta, Ta being the sub-image acqui-
sition period. This period has to be taken smaller than the
control period Tc in order to gather enough object points to
update the pose and velocity between two control updates.

The integration of the acceleration to obtain the object
translation velocity from (8) can be then written as

vi = vref +
i−1∑
k=0

v̇k Ta. (9)

The rotation space being nonlinear, the integration of the
rotation acceleration without simplification introduces an
unnecessary computational burden. However, the instanta-
neous rotation axis direction of the platform being usually
designed constant or slowly variable at trajectory planning
time, a simplification of this motion model is to consider
only the acceleration component which is parallel to the
rotation velocity. In this case, the rotation velocity will have
a constant direction uω and a uniformly variable amplitude
(ω̇) over one control sampling period. The object veloc-
ity and rotation displacement are hence obtained by inte-
grating the projection of the piecewise constant rotational

acceleration ω̇ on the rotational velocity axis uω:

ωi = ω0 +
i−1∑
k=0

(ω̇k · uω) Ta uω. (10)

After obtaining the velocity expressions, one obtains
respectively the translation and rotation parts (δRi and δti)
of δTi by integrating the obtained velocities:

δti =
∫ ti

tref

v(t) dt =
i−1∑
k=0

(
1

2
v̇k T2

a + vk Ta

)
(11)

and

δθui =
i−1∑
k=0

(
1

2
(ω̇k · uω) T2

a uω + ωkTa

)
(12)

where δθui is the rotation displacement vector.
The associated homogeneous rotation matrix of the

object displacement δRi can then be obtained from the rota-
tion vector using Rodrigues formula or, equivalently, the
exponential matrix map (expm) (Iserles et al. 2000):

δRi = expm([δθui]× ) � exp(δθui) . (13)

3.2. Pose and velocity estimation

In the previous section we have obtained the pose and veloc-
ity evolution of the robot’s end-effector. The role of the
virtual visual servoing is to regulate these variables to con-
verge into the real ones thanks to the virtual control law (7).
This is done simply by integrating the correction of the cur-
rent state (pose and velocity). The robot acceleration being
assumed constant over the control period Tc, we obtain the
estimated pose and velocity as follows:

τ̂j+1 = τ̂j+(τ̇j + τ̇uj ) Tc (14)

t̂j+1 = t̂j + 1

2
v̇jT

2
c +(v̂j + vuj ) Tc (15)

R̂j+1 = R̂j exp

(
1

2

(
ω̇j · ûω

)
T2

c ûω+(ω̂j + ωuj ) Tc

)
(16)

where v̂j and ω̂j are the translational and rotational esti-
mated velocities of the end-effector ( τ̂ j = [v̂j, ω̂j]).
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Fig. 3. Chronogram of the control process.

Fig. 4. The vision-based Cartesian computed torque control based on sequential image acquisition is composed of a standard Cartesian
computed torque control (upper loop) and of a virtual visual servoing estimator (lower loop).

Note that here, the pose and velocity estimator is
launched at each control sample time tj (see Figure 3).
Thus, the reference time tref is set at each control sample
time to tref = tj. Finally, the expressions (11) and (13) are
now exploitable both for being inserted into the projection
model (1) and into the interaction matrix expression (53)
that requires an estimation of the 3D points coordinates.

3.3. Control scheme

The PBDVS control scheme (Figure 4) is composed of
a virtual visual servoing control loop and a dynamic

control loop. The virtual visual servoing control loop esti-
mates the end-effector pose and velocity while the real con-
trol loop aims at regulating the estimated state with respect
to the desired one under the computed torque control
scheme.

The obtained pose and velocity are then transformed into
the robot state space representation (x, ẋ) to be used in the
dynamic control loop for the regulation and dynamic com-
pensation. The IDM of the robot is thus provided from
visual pose and velocity measures of the platform in the
case of parallel robot (Khalil and Ibrahim 2004; Dah-
mouche et al. 2010), which makes the control theoretically
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free from joint sensing, or from joints measures when con-
trolling parallel robots. The control vector which represents
the joints torques is thus given in the case of parallel robots
as follows (Khalil and Ibrahim 2007):

� = D
T

⎛
⎝Mw + C(x, ẋ) +G(x) +

k∑
j=1

J
T
jpJ

−1
j Hj

⎞
⎠ (17)

where:

• w represents the controller output (PID or PD, for
instance) which corresponds to the robot platform
acceleration (Figure 4);

• D is the forward instantaneous kinematic matrix of the
manipulator;

• M is the inertia matrix of the robot;
• C(x, ẋ) represents the Coriolis and centrifuge forces and

G(x) the gravitational attraction;
• Hj is the IDM of the jth leg;
• Jjp is the Jacobian linking the last leg joint variables to

the end-effector Cartesian variables and J
−1
j the jth legs

inverse kinematic matrix.

Note that the case of parallel robots is considered in
Section 6.

In the case of serial robots, the control torques are
computed as follows:

� = M( q) q̈ + C( q, q̇) q̇ + G( q) (18)

where M( q) is the inertia matrix of the robot, C( q, q̇) rep-
resents the Coriolis and centrifuge forces and G( q) is the
gravity force. Here, the robot acceleration q̈ is obtained
from the pseudo-control vector w (the controller output)
and the second-order kinematic model of the robot. Note
that the IDM for serial robots is written in terms of the
joints position and velocity. In this case, the implementa-
tion of the PBDVS requires the computation of the joints
position and velocity from the end-effector state (pose and
velocity) using the inverse kinematic model of the robot.

4. Image-based dynamic visual servoing

4.1. Dynamic control in the image

In classical visual servoing the robot can be modeled as
a simple integrator which corresponds to a first-order sys-
tem. The conventional approach to control this system is to
impose a first-order decrease of the task function (Espiau
et al. 1992). However, this approach is not suitable in direct
dynamic visual servo control since the control law provides
torques and not velocities.

To design an image-based dynamic control, we propose
an approach inspired from classical computed torque con-
trol where the objective is to servo the system through a
proportional and derivative actions. The closed-loop corre-
sponds then to a second-order system of the form:

ẍ∗ − ẍ + Kv(ẋ∗ − ẋ) +Kp(x∗ − x) = 0 (19)

were x, ẋ and ẍ are, respectively, the robot configuration,
velocity and acceleration in a suitable representation. The
superscript ∗ denotes the desired value of the considered
variable. In practice, the proportional and derivative control
gains, respectively Kp and Kv, can be tuned to obtain the
desired response.

To design the dynamic visual servoing control law, let us
define the task function as follows (Samson et al. 1991):

e = C (m(x, ẋ) −m∗) (20)

where e is the task function and C the combination matrix.
The pair m∗ and m(x, ẋ) (denoted by m in the sequel)
refers to the desired and observed features positions in the
image. In the case of sequential ROI acquisition, these posi-
tions depend on the relative pose and velocity of the target
(Dahmouche et al. 2009).

In contrast to the classical methods, we aim at obtaining
a second-order (instead of the usual first-order) decay of the
task function. This can be formulated as follows:

ë + �v ė + �p e = 0 (21)

where �p and �v are diagonal matrices containing the
control gains.

The robot dynamics are thus formulated from image
features rather than from the robot configuration (most
often unmeasurable) as in (19). Now, the problem is to
define the task function e and to handle properly the time
differentiation of the nonlinear task function.

4.2. IBDVS task function

A single image acquired by a classical visual acquisition
system does not contain velocity information. As a result, it
is not possible to obtain the second derivative of the task
function without numerical differentiation (which would
lead to noise amplification). A significant advantage of
exploiting a set of visual features acquired at different time
instants is that they contain pose and velocity information
about the observed motion. It is thus possible to extract
pose and velocity errors without any use of numerical
differentiation.

However, dealing with visual features acquired at
different time instants raises some new issues since
conventionally the features’ position errors in the image
correspond to a pose error and its derivative to a velocity
error. This is clearly not true with the task function (20)
when using non-simultaneous acquisition since the features
positions in the images depend on the pose and the velocity.
One has thus to choose adequately the combination matrix
of the task function so that it represents only the robot
configuration error. In other words, the task function must
be independent from the robot velocity. Furthermore, to
avoid numerical differentiation of the task function, we
propose to define a second task function related to the
velocity errors. We will now see how the two task functions
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are defined and how they can be adequately combined to
design a coherent and consistent control law.

For this purpose, let us define the two task functions as
follows:

e = C(m − m∗) (22)

e′ = C′(m − m∗) (23)

where C and C′ are combination matrices. The role of the
first task function is only to constrain the desired posi-
tion whereas the second task function is designed to rep-
resent only the velocity error. Towards this aim, e must be
made independent from the velocity error and e′ indepen-
dent from the pose error which can be done by adequately
choosing C and C′. These conditions can be formalized as
follows:

∂e

∂ τ̇
= 0 (24)

∂e′

∂τ
= 0. (25)

To find the combination matrices allowing to satisfy
these two conditions, let us express the derivatives of
the task functions with respect to the robot velocity and
acceleration:

ė = C(ṁ − ṁ∗) = C L

[
τ

τ̇

]
− C L

[
τ ∗

τ̇ ∗

]

= C L

[
τ − τ ∗

τ̇ − τ̇ ∗

]
(26)

where L is the interaction matrix relating the features
velocity to the kinematic twist and the acceleration.

Decomposing the ( 2n × 12) interaction matrix L into its
two ( 2n × 6) blocks Lτ , Lτ̇ related to the kinematic twist
and to the acceleration (L = [Lτ , Lτ̇ ]) yields the following
expression of the time derivative of the two task functions:

ė = C(ṁ − ṁ∗) = CLτ (τ − τ ∗) +CLτ̇ (τ̇ − τ̇ ∗) (27)

ė′ = C′(ṁ − ṁ∗) = C′Lτ (τ − τ ∗) +C′Lτ̇ (τ̇ − τ̇ ∗) (28)

From these two equations, we deduce that the conditions to
satisfy (24) and (25) are

CLτ̇ = 06×6 (29)

C′Lτ = 06×6. (30)

Furthermore, the system behavior can be improved by
decoupling the elements of the kinematic screw and the
accelerations by imposing secondary conditions:

CLτ = I6×6 (31)

C′Lτ̇ = I6×6. (32)

The matrices C and C′ can be obtained by exploiting the
properties of the pseudo-inverse. By definition, for n ≥ 6,

L+ L = I12×12. (33)

Let us decompose the pseudo-inverse of the interaction
matrix into two blocks:

L+ =
[

L+
u

L+
l

]
(34)

where L+
u and L+

l are, respectively, the 6 × 2n upper and
lower sub-matrices of the interaction matrix pseudo-inverse.

The property (33) yields

L+
u Lτ = I (35)

L+
l Lτ = 0 (36)

L+
u Lτ̇ = 0 (37)

L+
l Lτ̇ = I. (38)

These properties will be exploited in the next section to
define the combination matrices C and C′ that satisfy the
control law constraints (29) to (32).

4.3. Control design

By setting C = L̂+
u and C′ = L̂+

l respectively as an estimate
of the upper part and the lower part of the interaction matrix
pseudo-inverse, Equations (27) and (28) become

ė = L̂+
u Lτ (τ − τ ∗) +L̂+

u Lτ̇ (τ̇ − τ̇ ∗) (39)

ė′ = L̂+
l Lτ (τ − τ ∗) +L̂+

l Lτ̇ (τ̇ − τ̇ ∗) . (40)

Under the assumption that L̂+, is accurately estimated
(i.e. satisfies (35)–(38)), Equations (39) and (40) become

ė = τ − τ ∗ (41)

ė′ = τ̇ − τ̇ ∗. (42)

The derivative of the task function e depends only on the
kinematic twist while the derivative of the task function e′

depends only on acceleration. Therefore, the two task func-
tions are decoupled and the secondary conditions (31) and
(32) are satisfied.

We can deduce from (41) and (42) that the task function
ė′ is equal to the time derivative of the task function e:

ė = e′. (43)

The second derivative of the task function e can then be
written in terms of the derivative of e′ as follows:

ë = ė′ = L̂+
l (ṁ − ṁ∗) = τ̇ − L̂+

l ṁ∗. (44)

The substitution of Equations (22), (23), (43) and (44) into
(21) gives

τ̇ = L̂+
l ṁ∗ + �vL̂+

l (m∗ − m) +�pL̂+
u (m∗ − m) . (45)

Interestingly by combining the two sub-matrices L̂+
l and

L̂+
u , we obtain a more compact expression of the dynamic

visual servoing control law:

τ̇ = −[�p, �v] L̂+(m − m∗) +L̂+
l ṁ∗. (46)
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Fig. 5. Image-based dynamic visual servoing. The pseudo-control vector (acceleration) is computed from visual features. Pose and
velocity estimation is provided thanks to the method presented in Section 2.

Note that the choice of gain matrix specifies the evolution
of the task function. Moreover, as we impose a second-
order decay of the task function, the steady-state error is
null when tracking a constant velocity. This property should
provide good tracking performances.

The interaction matrix depends on the pose and veloc-
ity of the platform of the robot. These parameters can be
obtained using the algorithms presented in Section 2. Note
also that errors on the estimation of the pose and the veloc-
ity have only a weak effect on the accuracy and the stability
of the system since these estimations are not used as a con-
trol feedback in contrast to PBDVS. The joints torques are
then computed through the inverse dynamic model as in
PBDVS using (17) and (18) in the case of parallel and serial
robots, respectively. An illustration of the IBDVS control
scheme is given in Figure 5.

Remark. Let us point out again that the proposed control
scheme is based on the assumption that the estimate of
the interaction matrix is sufficiently accurate to consider
that L̂+L ≈ I. This hypothesis may appear strong but it
is similar to the one implicitly assumed in the stability
proof of the standard visual servoing when the reference
image varies. It is also similar to the assumption made
in the proof of stability of computed torque control. In
practice, this assumption is quite realistic because of two
main reasons. The first is that the pose and velocity errors
are typically small in trajectory tracking applications. In
this case, the update of the combination matrices at each
iteration provides an accurate linearization of the control,
especially in high control frequency. The second reason
is that the estimation algorithm allows measurements
of the pose and the velocity to be obtained with a good
accuracy (Dahmouche et al. 2009) which should yield a
good estimate of the interaction matrix.

5. Implementation

The proposed method was validated on the Orthoglide robot
(Chablat and Wenger 2003) with the setup shown in Figure
6. The control system architecture is composed of an off-
the-shelf ‘Photon focus MV-D1024-TrackCam’ camera, a
standard PC and the robot itself, controlled by a real-time
PSpace DSP robot controller (Figure 7). The PC handles
the image acquisition and the pose and velocity estimation
process, while the DSP computes the torque control and
handles the low-level control and security.

More precisely, the PC controls the camera to achieve
a high-speed sequential sub-images acquisition by running
the acquisition and the estimation processes in two paral-
lel threads. The acquisition thread is triggered by the robot
controller clock at a 4 kHz frequency, corresponding to the
camera acquisition frequency. In this thread, the position of
the current sub-image is predicted from the previously esti-
mated pose and velocity, then the sub-image is grabbed and
analyzed and the extracted point image coordinates are for-
warded to the estimation process through a shared memory
containing the image coordinates of 16 target points (this
number was empirically chosen). The estimation process
(which runs in another thread) is requested each k = 10
ROIs acquisition. It runs then at 400 Hz, the same sam-
pling frequency as the robot controller. The estimation pro-
cess uses the 16 points contained in the shared buffer to
update the pose and velocity estimate. Figure 8 illustrates
the acquisition and estimation processes.

The robot end-effector pose and velocity are estimated
by the PC and transmitted to the DSP card via an industrial
RS-422 serial interface. Since the PC is constrained by the
camera driver to run under a non-real-time operating sys-
tem, the estimation process takes an unpredictable amount
of time, which is nevertheless expected to fit the 400 Hz
robot controller frequency and secured by a watchdog timer.
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Fig. 6. Experimental setup for position-based and image-based
visual servoings on the Orthoglide.

Finally, in the PBDVS the control vector processed by the
robot controller is sent back to the estimation process on
the PC through the RS-422 link while in IBDVS the control
vector is computed in the PC from image errors and sent
to the DSP card to process dynamic compensation from the
measured pose and velocity.

While implementing the control schemes, one has to
take care of the sampling effect and the delay introduced
by the acquisition and processing time. However, in our
case, the control law sampling frequency is high enough
(400 Hz) compared with the control gain (for instance,
25 rad s−1 in PBVS) to neglect the sampling effect. In addi-
tion, one advantage of the parallel implementation of acqui-
sition/points extraction and estimation is that the time delay
introduced by the processing time is considerably reduced
particularly in sequential acquisition of ROIs. Indeed,
the points are extracted one by one at very high speed
(4 kHz) and not all at the same time as in global acqui-
sition which can be time consuming. The time lag intro-
duced by acquisition, estimation and dynamic control is
equivalent to two sampling periods as it can be seen in
the control process chronogram (Figure 3). In addition, as
we will see, the observation of the end-effector allows us
to measure some dynamic phenomenon such as flexibili-
ties and backlashes. These nonlinearities in the system lead
us to prefer fairly robust control approaches (PD or PID,
for instance) to the use of linear automatic control tools
(such as Z-transform) that are not adapted to nonlinear
systems.

Note that the implementation of the proposed control
laws take all their meaning in a parallel robot control appli-
cation since the platform pose and velocity are usually suf-
ficient to define the robot configuration. This makes any use
of joint sensor dispensable. The implementation of the con-
trol law on a serial robot may require either the computation
of the joint configuration and velocity though the inverse
kinematic model or the use of a joint sensor to resolve the
possible ambiguities of the robot configuration from the
end-effector pose.

Fig. 7. Data flow in the implemented control architecture. In
PBDVS the pseudo-control vector w is computed by the DSP card
and transmitted to the PC to improve pose and velocity estimation
while in IBDVS w is directly computed in the PC and transmitted
to the robot controller.

6. Experimental results

6.1. Preliminary tests

To have a relevant interpretation of the results, it is neces-
sary to characterize both the vision system and the robot in
terms of reliability and accuracy before proceeding to the
implementation of the proposed control scheme. With the
lack of other exteroceptive measurements (interferometric
laser, for instance), the only practical way to identify possi-
ble defaults of either of the two systems (vision or robot) is
by proceeding to some preliminary tests.

6.1.1. Vision accuracy First of all, different static poses
were estimated during several seconds at the operating fre-
quency (400 Hz). The standard deviations of the corre-
sponding position stdev(t) and velocity stdev( v) estimation
noise were measured:

stdev(t) = [2.67, 4.05, 3.45] 10−5m

and
stdev( v) = [2.04, 3.2, 5.75] 10−3m s−1.

Note that these values are considerably small, meaning a
very stable estimation of the pose between two iterations
(including a stable feature extraction) even though there
might exist a bias between the mean estimation of the pose
and the actual one. However, the average reprojection error
is only of 0.19 pixel/point indicates that even this bias is
small too. This will be confirmed by the results obtained
in high-speed trajectories (Section 6.2) where the residual
error is still less than a pixel.

6.1.2. Backlashes and flexibilities Concerning the robot,
some joint flexibilities and backlashes were noticed. To
characterize the resulting motion of the platform, an effort
was applied by hand on the latter while the brakes were
on and its displacement was measured with vision. The
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Fig. 8. High-speed parallel processing timing diagram.

resulting displacement of the target in the Cartesian space
is

δx = [10.0 mm, 8.1 mm, 7.1mm, 2.38◦, 2.65◦, 2.93◦]T

while the mean points displacement in the image is
[δu, δv] = [25.9, 20.3] pixels. This displacement is much
larger than the measurement residual error. These results
give an idea of the correspondence between image errors
and Cartesian error. In addition, they show that in static, the
vision-based pose estimation of the platform is more accu-
rate than the model-based estimation. This is underlined
to be one of the most important benefits of exteroceptive
sensors.

6.2. Position-based dynamic visual servoing

After achieving this procedure, the proposed control law
was implemented. Note that the use of the pose and veloc-
ity estimation method in Dahmouche et al. (2009) in the

control law leads to robot instability. The main instabil-
ity cause, as stated, is the velocity tracking delay due to
the assumption of a constant velocity. On the opposite, the
implementation of the improved method presented in Sec-
tion 2 allows us to not only stabilize the robot but also to
control it to 100% of its speed. However, since the flexibil-
ities and backlashes are measured, they are accounted for
by the control law and this causes the robot to oscillate.
To reduce this phenomenon, the natural frequency of the
closed-loop system was decreased by scaling down the PID
controller gain by 20%.

In the results given below, the reference trajectory is
an oblique circle of 6 cm radius which is twice traveled
through. The maximum velocity reached during the trajec-
tory execution is 1 m s−1 which corresponds to 16.4 m s−2

tangential acceleration and 16.67 m s−2 normal accelera-
tion. The two trajectory laps are achieved in less than 1.4 s.

Figure 9 shows the reference trajectory, the trajectory
realized under vision-based computed torque control and
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Table 1. Mean (in mm) and standard deviation (in mm) using the model-based and vision-based control.

Model-based control Vision-based control

x y z x y z

Mean 0.19 0.1 0.28 0.11 −0.08 −0.06
Standard deviation 2.42 1.47 1.76 2.21 1.6 1.64

Fig. 9. Trajectories in space: reference, vision-based and joint-
based (computed from the kinematic model) along (a) the x-axis
and (b) the z-axis.

that achieved under model-based computed torque control.
Both trajectories were recorded by vision, since the latter
has shown better accuracy than the model. First of all,
note that the trajectory obtained with the vision-based
control seems to be as smooth as that obtained with
the model-based control. One should also notes that the
model-based trajectory radius seems to be larger than the
reference trajectory while this is, visibly, not the case of
the vision-based trajectory. Indeed, the mean radius of the
model-based trajectory and the vision-based trajectory are
61.34 and 60.20 mm, respectively. In addition, the algebraic
distance between the trajectories and the reference circle
(normal distance) is smaller for the vision-based control
(2.74 mm) than for the model-based control (3.25 mm).

Figure 10 represents the desired positions and, respec-
tively, the errors obtained from the application of the model-
based and vision-based controls. One notices first that the
vision-based control error is smaller than the measured
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Fig. 10. Desired trajectory (top) with respect to time and errors
for model-based (center) and vision-based (bottom) control.
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Fig. 11. Image reprojection error with respect to time.

backlashes. In addition, a comparison between both errors
reveals that model-based control errors are important in
statics as well as in dynamics. Errors in statics using the
vision-based control are smaller than those obtained using
the model-based control and almost equivalent in dynam-
ics. This is confirmed by the respective means and standard
deviations of the tracking errors (Table 1).

Figure 11 shows the pose and velocity tracking errors
in the image. Note that even at this high speed, the image
reprojection errors remain smaller than 1 pixel. It also
seems that the image error increases with acceleration. This
may be caused by the errors between the estimated inverse
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Fig. 12. Features positions in the image in (a) the u-axis and (b) the v-axis, and the positions errors in (c) the u-axis and (d) the v-axis.

Table 2. Features tracking errors in the image in pixels.

u v

Mean −0.73 −0.50
Standard deviation 1.63 1.70

dynamic model and the actual one, which can be shown to
yield a computed torque control error proportional to the
control acceleration. Nevertheless, the error in the image
remains much smaller than projection residuals due to flex-
ibilities and backlashes, and hence the dynamic errors given
in Table 1 are certainly due to the latter.

6.3. Image-based dynamic visual servoing

One difficulty in the implementation of the IBDVS is the
generation of the reference trajectory in the image. Several
path planning algorithms that have been proposed in the lit-
erature (see Mezouar and Chaumette 2002, for instance)
can certainly be adapted to our context. However, to vali-
date the proposed control law, the learning technique was
preferred to eliminate any errors or inaccuracies in the
synthesized path that could mislead the results analysis.
The desired image trajectory was obtained through the
‘teaching-by-showing’ technique. The positions of visual
features were recorded during the execution of the Cartesian
trajectory obtained by the vision-based 3D dynamic control.

In the results given below, the reference trajectory is similar
to that used in the previous experiments.

To improve the performance of the control, a mean filter
is used to reduce the noise on the speed error. Moreover,
to reduce the effect of friction, a PID regulator is imple-
mented instead of a PD. The integral action is implemented
by integrating the pose error as it is done in a classical way.
The gains of the PID controller were selected to provide a
critical response of the third-order with a triple pole.

As can be seen in Figure 12, the obtained trajectory is
smooth and fits the reference trajectory quite properly. The
maximum error shown in the same figure remains lower
than the error in the image due to the backlashes and flex-
ibilities. Table 2 shows the mean and standard deviation
errors in the image between the reference trajectory and the
trajectory obtained by the 2D dynamic visual servoing.3

Figure 13 shows the desired and the vision-based esti-
mate of the Cartesian trajectories. The obtained Cartesian
trajectory is smooth and fits pretty well the desired trajec-
tory. The position evolution of the platform measured by
vision and the positioning error in space are shown in Fig-
ure 14. This latter shows that the positioning error is smaller
than the flexibilities and backlashes which means that the
errors caused by the mechanical defects of the robot are par-
tially compensated for. Figure 15 shows also that the desired
velocity is well tracked. Statistics on position and velocity
errors including the standard deviations on the three axes
presented in Table 3 confirm this comment.
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Table 3. IBDVS 3D position (mm) and velocity (mm s−1) errors.

x y z vx vy vz

Mean −0.47 −0.79 0.17 0.16 0.01 −0.04
Standard deviation 0.65 0.68 2.00 38.6 16.8 29.5
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Note also that this control law performs better than a
classical joint-based control law and even better than the
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Fig. 14. (a) The desired and the obtained Cartesian positions with
IBDVS and (b) the position error.

PBDVS since the obtained standard deviations for the three
control laws are: joint-based dynamic control (3.33 mm),
PBDVS (3.18 mm) and IBDVS (2.21 mm).

It was noted during the experiments that increasing con-
trol gains makes the robot oscillate. To identify the source
of these oscillations (control or robot mechanics), the con-
trol gains were increased until the appearance of significant
oscillations (initial gains multiplied by 2 which corresponds
to an angular frequency of 50 rad s−1). Figure 16(a) shows
the trajectories reconstructed from joint measures and the
forward kinematic model with the same 2D dynamic con-
trol. It can be seen in the zoomed curves (Figure 16(b))
that the trajectory reconstructed by vision reveals oscilla-
tions which also appear in the image (Figure 17). However,
these oscillations are much weaker in the path obtained by
the kinematic model. This means that small oscillations at
the joints level result in larger displacements of the plat-
form. The most plausible explanation for this phenomenon
is that the small oscillations at the joints are amplified by the
flexibilities and the backlashes between the actuators and
the platform. This also explains why vision-based control
performs better than model-based control.

Moreover, the mechanical defects introduce phase shifts
in the movement between the actuators and the platform.

 at UNIV OF TEXAS ARLINGTON on July 23, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


534 The International Journal of Robotics Research 31(4)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1000

−500

0

500

1000

t(s)

V
el

oc
ity

 (
m

m
/s

)

(a)

 

 
V

x

V
y

V
z

Vd
x

Vd
y

Vd
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−150

−100

−50

0

50

100

150

t(s)

V
el

oc
ity

 e
rr

or
 (

m
m

/s
)

(b)

 

 
EVx
EVy
EVz

Fig. 15. (a) The desired and the obtained dynamic visual servoing
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This phase shift increases with the natural frequency of the
control (proportional gains), which can lead the system into
an oscillatory mode. Therefore, the control gains are, most
likely, limited by the imperfections of the robot and not by
the vision-based control.
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Fig. 17. Features positions in the image along (a) the u-axis and
(b) the v-axis, and the positions errors along (c) the u-axis and (d)
the v-axis for a control angular frequency of 50 rad s−1.
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7. Conclusion

In this paper, two dynamic visual servo control schemes
based on a high-speed acquisition system have been pre-
sented. The first is a position (and velocity)-based dynamic
visual servoing (PBDVS). This control scheme uses the
estimated pose and velocity of the robot platform to com-
pensate for the robot dynamics and regulate the system.
The second control scheme regulates the system directly in
the image. The experimental results show that the proposed
visual servo control law has globally better performances
than the classical joint-based dynamic control. These results
strengthen the idea that vision-based control can perform
better than joint-based control. Note also that the proposed
control laws are not limited to the sequential acquisition of
ROIs but can be used with any high-speed acquisition sys-
tem since it is possible to consider successive acquisitions
to implement the proposed algorithms.

This paper opens a large span of research topics. The first
is to re-project the different development in the ‘look-and-
move’ approach into the dynamic control. Different con-
trol laws using different visual features could be proposed.
Another research topic is to design dynamic vision-based
control laws that take into account and compensate for more
dynamic phenomena such as flexibilities, backlashes and
other mechanical defects. Considering parallel robot con-
trol problem, it appears that it is also relevant to control
this class of robots from leg observation (Dallej et al. 2007;
Özgür et al. 2011). One interesting perspective is thus to
generalize this concept into dynamic control of a parallel
robot from leg observation.

Notes

1. Typically, more than a second.
2. Acceleration is assumed constant in the reference frame (i.e.

the camera frame).
3. This error in the image, which represents the difference

between the actual and the desired trajectories, must not
be mixed up with the reprojection errors in the process of
estimating the pose and the velocity.
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Appendix: Interaction matrix computation

A simple estimation of the interaction matrix can be
obtained from the time derivative of the first-order approx-
imation of the projection model (Dahmouche et al. 2009).
This interaction matrix can be obtained in two steps: the
computation of the interaction matrix of the 3D point then
the computation of the interaction matrix of the 2D point.

The first-order approximation of the 3D point position in
the camera frame can be written as follows:

cPi( ti) ≈ cPi( t0) +
ti
cṖi( t0) . (47)

The 3D point velocity at ( t + 
ti) is obtained from the
time derivative of (47):

cṖi ≈ cṖi( t0) +
ti
cP̈i( t0) . (48)

The instantaneous velocity (cṖi) and the acceleration
(cP̈i) of the 3D point can be written as a function of the
object pose and velocity as follows:

cṖi( t) = cvo + cωo × cOPi (49)

cP̈i( t) = ˙cvo + 2cωo × cvo + cω̇o × cOPi

+ cωo×(cωo × cOPi) (50)

where cOPi is the position of the 3D point in the object
frame represented in the camera frame.

Equations (49) and (50) can be rewritten in matrix form
as a function of the kinematic and the dynamic twists and
substituted into (48):

Ṗi( ti) = LPi

[
cτo
cτ̇o

]
(51)

where LPi is the 3D point interaction matrix given by

LPi = [
L3di + 
tiHPi , 
tiL3di

]
(52)

with
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• 
ti = ti − tref;
• L3di = [

I , − [cOPi]×
]

is the well-known 3D point
interaction matrix;

• HPi = (
2 [cωo]× [cPi( t) ×cωo]×

)
.

Thanks to the relation between the 2D and 3D point

velocities given by 2dJ3di = ∂mi( t)

∂Pi( t)
, the 2D point interac-

tion matrix Li can be written as a function of the 3D point
interaction matrix as follows:

Li = 2dJ3di LPi = 2dJ3di

[
L3di + 
tiHPi , 
tiL3di

]
(53)

where the well-known Jacobian 2dJ3di of the 2D perspective
image point with respect to the 3D point cPi =( xi, yi, zi)T is
given by

2dJ3di =

⎡
⎢⎢⎣

1

zi
0 − xi

z2
i

0
1

zi
− yi

z2
i

⎤
⎥⎥⎦ . (54)

An expression of L ( 2n × 12) is built by stacking the
individual interaction matrices Li, i = 1 . . . n associated
with each point.

 at UNIV OF TEXAS ARLINGTON on July 23, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ACaslon-Bold
    /ACaslon-BoldItalic
    /ACaslon-Italic
    /ACaslon-Ornaments
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeCorpID-Acrobat
    /AdobeCorpID-Adobe
    /AdobeCorpID-Bullet
    /AdobeCorpID-MinionBd
    /AdobeCorpID-MinionBdIt
    /AdobeCorpID-MinionRg
    /AdobeCorpID-MinionRgIt
    /AdobeCorpID-MinionSb
    /AdobeCorpID-MinionSbIt
    /AdobeCorpID-MyriadBd
    /AdobeCorpID-MyriadBdIt
    /AdobeCorpID-MyriadBdScn
    /AdobeCorpID-MyriadBdScnIt
    /AdobeCorpID-MyriadBl
    /AdobeCorpID-MyriadBlIt
    /AdobeCorpID-MyriadLt
    /AdobeCorpID-MyriadLtIt
    /AdobeCorpID-MyriadPkg
    /AdobeCorpID-MyriadRg
    /AdobeCorpID-MyriadRgIt
    /AdobeCorpID-MyriadRgScn
    /AdobeCorpID-MyriadRgScnIt
    /AdobeCorpID-MyriadSb
    /AdobeCorpID-MyriadSbIt
    /AdobeCorpID-MyriadSbScn
    /AdobeCorpID-MyriadSbScnIt
    /AdobeCorpID-PScript
    /AGaramond-BoldScaps
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-RomanScaps
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AGar-Special
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldEx
    /AkzidenzGroteskBE-BoldExIt
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-Ex
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightEx
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdEx
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Aldine401BT-BoldA
    /Aldine401BT-BoldItalicA
    /Aldine401BT-ItalicA
    /Aldine401BT-RomanA
    /Aldine401BTSPL-RomanA
    /Aldine721BT-Bold
    /Aldine721BT-BoldItalic
    /Aldine721BT-Italic
    /Aldine721BT-Light
    /Aldine721BT-LightItalic
    /Aldine721BT-Roman
    /Aldus-Italic
    /Aldus-ItalicOsF
    /Aldus-Roman
    /Aldus-RomanSC
    /AlternateGothicNo2BT-Regular
    /AmazoneBT-Regular
    /AmericanTypewriter-Bold
    /AmericanTypewriter-BoldA
    /AmericanTypewriter-BoldCond
    /AmericanTypewriter-BoldCondA
    /AmericanTypewriter-Cond
    /AmericanTypewriter-CondA
    /AmericanTypewriter-Light
    /AmericanTypewriter-LightA
    /AmericanTypewriter-LightCond
    /AmericanTypewriter-LightCondA
    /AmericanTypewriter-Medium
    /AmericanTypewriter-MediumA
    /Anna
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Arcadia
    /Arcadia-A
    /Arkona-Medium
    /Arkona-Regular
    /ArrusBT-Black
    /ArrusBT-BlackItalic
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AssemblyLightSSK
    /AuroraBT-BoldCondensed
    /AuroraBT-RomanCondensed
    /AuroraOpti-Condensed
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /Avenir-Black
    /Avenir-BlackOblique
    /Avenir-Book
    /Avenir-BookOblique
    /Avenir-Heavy
    /Avenir-HeavyOblique
    /Avenir-Light
    /Avenir-LightOblique
    /Avenir-Medium
    /Avenir-MediumOblique
    /Avenir-Oblique
    /Avenir-Roman
    /BaileySansITC-Bold
    /BaileySansITC-BoldItalic
    /BaileySansITC-Book
    /BaileySansITC-BookItalic
    /BakerSignetBT-Roman
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /BaskervilleBook-Italic
    /BaskervilleBook-MedItalic
    /BaskervilleBook-Medium
    /BaskervilleBook-Regular
    /BaskervilleBT-Bold
    /BaskervilleBT-BoldItalic
    /BaskervilleBT-Italic
    /BaskervilleBT-Roman
    /BaskervilleMT
    /BaskervilleMT-Bold
    /BaskervilleMT-BoldItalic
    /BaskervilleMT-Italic
    /BaskervilleMT-SemiBold
    /BaskervilleMT-SemiBoldItalic
    /BaskervilleNo2BT-Bold
    /BaskervilleNo2BT-BoldItalic
    /BaskervilleNo2BT-Italic
    /BaskervilleNo2BT-Roman
    /Baskerville-Normal-Italic
    /BauerBodoni-Black
    /BauerBodoni-BlackCond
    /BauerBodoni-BlackItalic
    /BauerBodoni-Bold
    /BauerBodoni-BoldCond
    /BauerBodoni-BoldItalic
    /BauerBodoni-BoldItalicOsF
    /BauerBodoni-BoldOsF
    /BauerBodoni-Italic
    /BauerBodoni-ItalicOsF
    /BauerBodoni-Roman
    /BauerBodoni-RomanSC
    /Bauhaus-Bold
    /Bauhaus-Demi
    /Bauhaus-Heavy
    /BauhausITCbyBT-Bold
    /BauhausITCbyBT-Heavy
    /BauhausITCbyBT-Light
    /BauhausITCbyBT-Medium
    /Bauhaus-Light
    /Bauhaus-Medium
    /BellCentennial-Address
    /BellGothic-Black
    /BellGothic-Bold
    /Bell-GothicBoldItalicBT
    /BellGothicBT-Bold
    /BellGothicBT-Roman
    /BellGothic-Light
    /Bembo
    /Bembo-Bold
    /Bembo-BoldExpert
    /Bembo-BoldItalic
    /Bembo-BoldItalicExpert
    /Bembo-Expert
    /Bembo-ExtraBoldItalic
    /Bembo-Italic
    /Bembo-ItalicExpert
    /Bembo-Semibold
    /Bembo-SemiboldItalic
    /Benguiat-Bold
    /Benguiat-BoldItalic
    /Benguiat-Book
    /Benguiat-BookItalic
    /BenguiatGothicITCbyBT-Bold
    /BenguiatGothicITCbyBT-BoldItal
    /BenguiatGothicITCbyBT-Book
    /BenguiatGothicITCbyBT-BookItal
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /Benguiat-Medium
    /Benguiat-MediumItalic
    /Berkeley-Black
    /Berkeley-BlackItalic
    /Berkeley-Bold
    /Berkeley-BoldItalic
    /Berkeley-Book
    /Berkeley-BookItalic
    /Berkeley-Italic
    /Berkeley-Medium
    /Berling-Bold
    /Berling-BoldItalic
    /Berling-Italic
    /Berling-Roman
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BernhardTangoBT-Regular
    /BlockBE-Condensed
    /BlockBE-ExtraCn
    /BlockBE-ExtraCnIt
    /BlockBE-Heavy
    /BlockBE-Italic
    /BlockBE-Regular
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BremenBT-Black
    /BremenBT-Bold
    /BroadwayBT-Regular
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Caliban
    /CarminaBT-Bold
    /CarminaBT-BoldItalic
    /CarminaBT-Light
    /CarminaBT-LightItalic
    /CarminaBT-Medium
    /CarminaBT-MediumItalic
    /Carta
    /Caslon224ITCbyBT-Bold
    /Caslon224ITCbyBT-BoldItalic
    /Caslon224ITCbyBT-Book
    /Caslon224ITCbyBT-BookItalic
    /Caslon540BT-Italic
    /Caslon540BT-Roman
    /CaslonBT-Bold
    /CaslonBT-BoldItalic
    /CaslonOpenFace
    /CaslonTwoTwentyFour-Black
    /CaslonTwoTwentyFour-BlackIt
    /CaslonTwoTwentyFour-Bold
    /CaslonTwoTwentyFour-BoldIt
    /CaslonTwoTwentyFour-Book
    /CaslonTwoTwentyFour-BookIt
    /CaslonTwoTwentyFour-Medium
    /CaslonTwoTwentyFour-MediumIt
    /CastleT-Bold
    /CastleT-Book
    /Caxton-Bold
    /Caxton-BoldItalic
    /Caxton-Book
    /Caxton-BookItalic
    /CaxtonBT-Bold
    /CaxtonBT-BoldItalic
    /CaxtonBT-Book
    /CaxtonBT-BookItalic
    /Caxton-Light
    /Caxton-LightItalic
    /CelestiaAntiqua-Ornaments
    /Centennial-BlackItalicOsF
    /Centennial-BlackOsF
    /Centennial-BoldItalicOsF
    /Centennial-BoldOsF
    /Centennial-ItalicOsF
    /Centennial-LightItalicOsF
    /Centennial-LightSC
    /Centennial-RomanSC
    /Century-Bold
    /Century-BoldItalic
    /Century-Book
    /Century-BookItalic
    /CenturyExpandedBT-Bold
    /CenturyExpandedBT-BoldItalic
    /CenturyExpandedBT-Italic
    /CenturyExpandedBT-Roman
    /Century-HandtooledBold
    /Century-HandtooledBoldItalic
    /Century-Light
    /Century-LightItalic
    /CenturyOldStyle-Bold
    /CenturyOldStyle-Italic
    /CenturyOldStyle-Regular
    /CenturySchoolbookBT-Bold
    /CenturySchoolbookBT-BoldCond
    /CenturySchoolbookBT-BoldItalic
    /CenturySchoolbookBT-Italic
    /CenturySchoolbookBT-Roman
    /Century-Ultra
    /Century-UltraItalic
    /CharterBT-Black
    /CharterBT-BlackItalic
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamBT-Bold
    /CheltenhamBT-BoldCondItalic
    /CheltenhamBT-BoldExtraCondensed
    /CheltenhamBT-BoldHeadline
    /CheltenhamBT-BoldItalic
    /CheltenhamBT-BoldItalicHeadline
    /CheltenhamBT-Italic
    /CheltenhamBT-Roman
    /Cheltenham-HandtooledBdIt
    /Cheltenham-HandtooledBold
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Christiana-Bold
    /Christiana-BoldItalic
    /Christiana-Italic
    /Christiana-Medium
    /Christiana-MediumItalic
    /Christiana-Regular
    /Christiana-RegularExpert
    /Christiana-RegularSC
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Light
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /CMR10
    /CMR8
    /CMSY10
    /CMSY8
    /CMTI10
    /CommonBullets
    /ConduitITC-Bold
    /ConduitITC-BoldItalic
    /ConduitITC-Light
    /ConduitITC-LightItalic
    /ConduitITC-Medium
    /ConduitITC-MediumItalic
    /CooperBlack
    /CooperBlack-Italic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Light
    /CooperBT-LightItalic
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-BoldCond
    /CopperplateGothicBT-Heavy
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Critter
    /CS-Special-font
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Della-RobbiaItalicBT
    /Della-RobbiaSCaps
    /Del-NormalSmallCaps
    /Delphin-IA
    /Delphin-IIA
    /Delta-Bold
    /Delta-BoldItalic
    /Delta-Book
    /Delta-BookItalic
    /Delta-Light
    /Delta-LightItalic
    /Delta-Medium
    /Delta-MediumItalic
    /Delta-Outline
    /DextorD
    /DextorOutD
    /DidotLH-OrnamentsOne
    /DidotLH-OrnamentsTwo
    /DINEngschrift
    /DINEngschrift-Alternate
    /DINMittelschrift
    /DINMittelschrift-Alternate
    /DINNeuzeitGrotesk-BoldCond
    /DINNeuzeitGrotesk-Light
    /Dom-CasItalic
    /DomCasual
    /DomCasual-Bold
    /Dom-CasualBT
    /Ehrhard-Italic
    /Ehrhard-Regular
    /EhrhardSemi-Italic
    /EhrhardtMT
    /EhrhardtMT-Italic
    /EhrhardtMT-SemiBold
    /EhrhardtMT-SemiBoldItalic
    /EhrharSemi
    /ELANGO-IB-A03
    /ELANGO-IB-A75
    /ELANGO-IB-A99
    /ElectraLH-Bold
    /ElectraLH-BoldCursive
    /ElectraLH-Cursive
    /ElectraLH-Regular
    /ElGreco
    /EnglischeSchT-Bold
    /EnglischeSchT-Regu
    /ErasContour
    /ErasITCbyBT-Bold
    /ErasITCbyBT-Book
    /ErasITCbyBT-Demi
    /ErasITCbyBT-Light
    /ErasITCbyBT-Medium
    /ErasITCbyBT-Ultra
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EUEX10
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuropeanPi-Four
    /EuropeanPi-One
    /EuropeanPi-Three
    /EuropeanPi-Two
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldCondensed
    /Eurostile-BoldExtendedTwo
    /Eurostile-BoldOblique
    /Eurostile-Condensed
    /Eurostile-Demi
    /Eurostile-DemiOblique
    /Eurostile-ExtendedTwo
    /EurostileLTStd-Demi
    /EurostileLTStd-DemiOblique
    /Eurostile-Oblique
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /ExPonto-Regular
    /FairfieldLH-Bold
    /FairfieldLH-BoldItalic
    /FairfieldLH-BoldSC
    /FairfieldLH-CaptionBold
    /FairfieldLH-CaptionHeavy
    /FairfieldLH-CaptionLight
    /FairfieldLH-CaptionMedium
    /FairfieldLH-Heavy
    /FairfieldLH-HeavyItalic
    /FairfieldLH-HeavySC
    /FairfieldLH-Light
    /FairfieldLH-LightItalic
    /FairfieldLH-LightSC
    /FairfieldLH-Medium
    /FairfieldLH-MediumItalic
    /FairfieldLH-MediumSC
    /FairfieldLH-SwBoldItalicOsF
    /FairfieldLH-SwHeavyItalicOsF
    /FairfieldLH-SwLightItalicOsF
    /FairfieldLH-SwMediumItalicOsF
    /Fences
    /Fenice-Bold
    /Fenice-BoldOblique
    /FeniceITCbyBT-Bold
    /FeniceITCbyBT-BoldItalic
    /FeniceITCbyBT-Regular
    /FeniceITCbyBT-RegularItalic
    /Fenice-Light
    /Fenice-LightOblique
    /Fenice-Regular
    /Fenice-RegularOblique
    /Fenice-Ultra
    /Fenice-UltraOblique
    /FlashD-Ligh
    /Flood
    /Folio-Bold
    /Folio-BoldCondensed
    /Folio-ExtraBold
    /Folio-Light
    /Folio-Medium
    /FontanaNDAaOsF
    /FontanaNDAaOsF-Italic
    /FontanaNDCcOsF-Semibold
    /FontanaNDCcOsF-SemiboldIta
    /FontanaNDEeOsF
    /FontanaNDEeOsF-Bold
    /FontanaNDEeOsF-BoldItalic
    /FontanaNDEeOsF-Light
    /FontanaNDEeOsF-Semibold
    /FormalScript421BT-Regular
    /Formata-Bold
    /Formata-MediumCondensed
    /ForteMT
    /FournierMT-Ornaments
    /FrakturBT-Regular
    /FrankfurterHigD
    /FranklinGothic-Book
    /FranklinGothic-BookItal
    /FranklinGothic-BookOblique
    /FranklinGothic-Condensed
    /FranklinGothic-Demi
    /FranklinGothic-DemiItal
    /FranklinGothic-DemiOblique
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItal
    /FranklinGothic-HeavyOblique
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothicITCbyBT-Heavy
    /FranklinGothicITCbyBT-HeavyItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumItal
    /FranklinGothic-Roman
    /Freeform721BT-Bold
    /Freeform721BT-BoldItalic
    /Freeform721BT-Italic
    /Freeform721BT-Roman
    /FreestyleScrD
    /Freestylescript
    /FreestyleScript
    /FrizQuadrataITCbyBT-Bold
    /FrizQuadrataITCbyBT-Roman
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura
    /FuturaBlackBT-Regular
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldCondensedItalic
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Heavy
    /FuturaBT-HeavyItalic
    /FuturaBT-Light
    /FuturaBT-LightCondensed
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /Futura-CondensedLight
    /Futura-CondensedLightOblique
    /Futura-ExtraBold
    /Futura-ExtraBoldOblique
    /Futura-Heavy
    /Futura-HeavyOblique
    /Futura-Light
    /Futura-LightOblique
    /Futura-Oblique
    /Futura-Thin
    /Galliard-Black
    /Galliard-BlackItalic
    /Galliard-Bold
    /Galliard-BoldItalic
    /Galliard-Italic
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Galliard-Roman
    /Galliard-Ultra
    /Galliard-UltraItalic
    /Garamond-Antiqua
    /GaramondBE-Bold
    /GaramondBE-BoldExpert
    /GaramondBE-BoldOsF
    /GaramondBE-CnExpert
    /GaramondBE-Condensed
    /GaramondBE-CondensedSC
    /GaramondBE-Italic
    /GaramondBE-ItalicExpert
    /GaramondBE-ItalicOsF
    /GaramondBE-Medium
    /GaramondBE-MediumCn
    /GaramondBE-MediumCnExpert
    /GaramondBE-MediumCnOsF
    /GaramondBE-MediumExpert
    /GaramondBE-MediumItalic
    /GaramondBE-MediumItalicExpert
    /GaramondBE-MediumItalicOsF
    /GaramondBE-MediumSC
    /GaramondBE-Regular
    /GaramondBE-RegularExpert
    /GaramondBE-RegularSC
    /GaramondBE-SwashItalic
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-Book
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-BookItalic
    /Garamond-Halbfett
    /Garamond-HandtooledBold
    /Garamond-HandtooledBoldItalic
    /GaramondITCbyBT-Bold
    /GaramondITCbyBT-BoldCondensed
    /GaramondITCbyBT-BoldCondItalic
    /GaramondITCbyBT-BoldItalic
    /GaramondITCbyBT-BoldNarrow
    /GaramondITCbyBT-BoldNarrowItal
    /GaramondITCbyBT-Book
    /GaramondITCbyBT-BookCondensed
    /GaramondITCbyBT-BookCondItalic
    /GaramondITCbyBT-BookItalic
    /GaramondITCbyBT-BookNarrow
    /GaramondITCbyBT-BookNarrowItal
    /GaramondITCbyBT-Light
    /GaramondITCbyBT-LightCondensed
    /GaramondITCbyBT-LightCondItalic
    /GaramondITCbyBT-LightItalic
    /GaramondITCbyBT-LightNarrow
    /GaramondITCbyBT-LightNarrowItal
    /GaramondITCbyBT-Ultra
    /GaramondITCbyBT-UltraCondensed
    /GaramondITCbyBT-UltraCondItalic
    /GaramondITCbyBT-UltraItalic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garamond-Light
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Garamond-LightItalic
    /GaramondNo4CyrTCY-Ligh
    /GaramondNo4CyrTCY-LighItal
    /GaramondThree
    /GaramondThree-Bold
    /GaramondThree-BoldItalic
    /GaramondThree-BoldItalicOsF
    /GaramondThree-BoldSC
    /GaramondThree-Italic
    /GaramondThree-ItalicOsF
    /GaramondThree-SC
    /GaramondThreeSMSIISpl-Italic
    /GaramondThreeSMSitalicSpl-Italic
    /GaramondThreeSMSspl
    /GaramondThreespl
    /GaramondThreeSpl-Bold
    /GaramondThreeSpl-Italic
    /Garamond-Ultra
    /Garamond-UltraCondensed
    /Garamond-UltraCondensedItalic
    /Garamond-UltraItalic
    /GarthGraphic
    /GarthGraphic-Black
    /GarthGraphic-Bold
    /GarthGraphic-BoldCondensed
    /GarthGraphic-BoldItalic
    /GarthGraphic-Condensed
    /GarthGraphic-ExtraBold
    /GarthGraphic-Italic
    /Geometric231BT-HeavyC
    /GeometricSlab712BT-BoldA
    /GeometricSlab712BT-ExtraBoldA
    /GeometricSlab712BT-LightA
    /GeometricSlab712BT-LightItalicA
    /GeometricSlab712BT-MediumA
    /GeometricSlab712BT-MediumItalA
    /Giddyup
    /Giddyup-Thangs
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldExtraCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-ExtraBoldDisplay
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSans-LightShadowed
    /GillSans-Shadowed
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /Gill-Special
    /Giovanni-Bold
    /Giovanni-BoldItalic
    /Giovanni-Book
    /Giovanni-BookItalic
    /Glypha
    /Glypha-Bold
    /Glypha-BoldOblique
    /Glypha-Oblique
    /Gothic-Thirteen
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /GoudyCatalogueBT-Regular
    /Goudy-ExtraBold
    /GoudyHandtooledBT-Regular
    /GoudyHeavyfaceBT-Regular
    /GoudyHeavyfaceBT-RegularCond
    /Goudy-Italic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-ExtraBold
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudySans-Black
    /GoudySans-BlackItalic
    /GoudySans-Bold
    /GoudySans-BoldItalic
    /GoudySans-Book
    /GoudySans-BookItalic
    /GoudySansITCbyBT-Black
    /GoudySansITCbyBT-BlackItalic
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Light
    /GoudySansITCbyBT-LightItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GoudySans-Medium
    /GoudySans-MediumItalic
    /Granjon
    /Granjon-Bold
    /Granjon-BoldOsF
    /Granjon-Italic
    /Granjon-ItalicOsF
    /Granjon-SC
    /GreymantleMVB-Ornaments
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Black-SemiBold
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Compressed
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-Light-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Condensed-Thin
    /Helvetica-ExtraCompressed
    /Helvetica-Fraction
    /Helvetica-FractionBold
    /HelveticaInserat-Roman
    /HelveticaInserat-Roman-SemiBold
    /Helvetica-Light
    /Helvetica-LightOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /HelveticaNeue-Black
    /HelveticaNeue-BlackCond
    /HelveticaNeue-BlackCondObl
    /HelveticaNeue-BlackExt
    /HelveticaNeue-BlackExtObl
    /HelveticaNeue-BlackItalic
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldCond
    /HelveticaNeue-BoldCondObl
    /HelveticaNeue-BoldExt
    /HelveticaNeue-BoldExtObl
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-ExtBlackCond
    /HelveticaNeue-ExtBlackCondObl
    /HelveticaNeue-Extended
    /HelveticaNeue-ExtendedObl
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyCond
    /HelveticaNeue-HeavyCondObl
    /HelveticaNeue-HeavyExt
    /HelveticaNeue-HeavyExtObl
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Italic
    /HelveticaNeue-Light
    /HelveticaNeue-LightCond
    /HelveticaNeue-LightCondObl
    /HelveticaNeue-LightExt
    /HelveticaNeue-LightExtObl
    /HelveticaNeue-LightItalic
    /HelveticaNeueLTStd-Md
    /HelveticaNeueLTStd-MdIt
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-MediumExt
    /HelveticaNeue-MediumExtObl
    /HelveticaNeue-MediumItalic
    /HelveticaNeue-Roman
    /HelveticaNeue-Thin
    /HelveticaNeue-ThinCond
    /HelveticaNeue-ThinCondObl
    /HelveticaNeue-ThinItalic
    /HelveticaNeue-UltraLigCond
    /HelveticaNeue-UltraLigCondObl
    /HelveticaNeue-UltraLigExt
    /HelveticaNeue-UltraLigExtObl
    /HelveticaNeue-UltraLight
    /HelveticaNeue-UltraLightItal
    /Helvetica-Oblique
    /Helvetica-UltraCompressed
    /HelvExtCompressed
    /HelvLight
    /HelvUltCompressed
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-ExtraBold
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /Humanist521BT-UltraBold
    /Humanist521BT-XtraBoldCondensed
    /Humanist531BT-BlackA
    /Humanist531BT-BoldA
    /Humanist531BT-RomanA
    /Humanist531BT-UltraBlackA
    /Humanist777BT-BlackB
    /Humanist777BT-BlackCondensedB
    /Humanist777BT-BlackItalicB
    /Humanist777BT-BoldB
    /Humanist777BT-BoldCondensedB
    /Humanist777BT-BoldItalicB
    /Humanist777BT-ExtraBlackB
    /Humanist777BT-ExtraBlackCondB
    /Humanist777BT-ItalicB
    /Humanist777BT-LightB
    /Humanist777BT-LightCondensedB
    /Humanist777BT-LightItalicB
    /Humanist777BT-RomanB
    /Humanist777BT-RomanCondensedB
    /Humanist970BT-BoldC
    /Humanist970BT-RomanC
    /HumanistSlabserif712BT-Black
    /HumanistSlabserif712BT-Bold
    /HumanistSlabserif712BT-Italic
    /HumanistSlabserif712BT-Roman
    /ICMEX10
    /ICMMI8
    /ICMSY8
    /ICMTT8
    /Iglesia-Light
    /ILASY8
    /ILCMSS8
    /ILCMSSB8
    /ILCMSSI8
    /Imago-Book
    /Imago-BookItalic
    /Imago-ExtraBold
    /Imago-ExtraBoldItalic
    /Imago-Light
    /Imago-LightItalic
    /Imago-Medium
    /Imago-MediumItalic
    /Industria-Inline
    /Industria-InlineA
    /Industria-Solid
    /Industria-SolidA
    /Insignia
    /Insignia-A
    /IPAExtras
    /IPAHighLow
    /IPAKiel
    /IPAKielSeven
    /IPAsans
    /ITCGaramondMM
    /ITCGaramondMM-It
    /JAKEOpti-Regular
    /JansonText-Bold
    /JansonText-BoldItalic
    /JansonText-Italic
    /JansonText-Roman
    /JansonText-RomanSC
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Juniper
    /KabelITCbyBT-Book
    /KabelITCbyBT-Demi
    /KabelITCbyBT-Medium
    /KabelITCbyBT-Ultra
    /Kaufmann
    /Kaufmann-Bold
    /KeplMM-Or2
    /KisBT-Italic
    /KisBT-Roman
    /KlangMT
    /Kuenstler480BT-Black
    /Kuenstler480BT-Bold
    /Kuenstler480BT-BoldItalic
    /Kuenstler480BT-Italic
    /Kuenstler480BT-Roman
    /KunstlerschreibschD-Bold
    /KunstlerschreibschD-Medi
    /Lapidary333BT-Black
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /LatinMT-Condensed
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LDecorationPi-One
    /LDecorationPi-Two
    /Leawood-Black
    /Leawood-BlackItalic
    /Leawood-Bold
    /Leawood-BoldItalic
    /Leawood-Book
    /Leawood-BookItalic
    /Leawood-Medium
    /Leawood-MediumItalic
    /LegacySans-Bold
    /LegacySans-BoldItalic
    /LegacySans-Book
    /LegacySans-BookItalic
    /LegacySans-Medium
    /LegacySans-MediumItalic
    /LegacySans-Ultra
    /LegacySerif-Bold
    /LegacySerif-BoldItalic
    /LegacySerif-Book
    /LegacySerif-BookItalic
    /LegacySerif-Medium
    /LegacySerif-MediumItalic
    /LegacySerif-Ultra
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Slanted
    /Life-Bold
    /Life-Italic
    /Life-Roman
    /LINE10
    /LINEW10
    /Linotext
    /Lithos-Black
    /LithosBold
    /Lithos-Bold
    /Lithos-Regular
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOSL10
    /LOMD-Normal
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaHandwritingItalic
    /LucidaMath-Symbol
    /LucidaSansTypewriter
    /LucidaSansTypewriter-Bd
    /LucidaSansTypewriter-BdObl
    /LucidaSansTypewriter-Obl
    /LucidaTypewriter
    /LucidaTypewriter-Bold
    /LucidaTypewriter-BoldObl
    /LucidaTypewriter-Obl
    /LydianBT-Bold
    /LydianBT-BoldItalic
    /LydianBT-Italic
    /LydianBT-Roman
    /LydianCursiveBT-Regular
    /Machine
    /Machine-Bold
    /Marigold
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MatrixScriptBold
    /MatrixScriptBoldLin
    /MatrixScriptBook
    /MatrixScriptBookLin
    /MatrixScriptRegular
    /MatrixScriptRegularLin
    /Melior
    /Melior-Bold
    /Melior-BoldItalic
    /Melior-Italic
    /MercuriusCT-Black
    /MercuriusCT-BlackItalic
    /MercuriusCT-Light
    /MercuriusCT-LightItalic
    /MercuriusCT-Medium
    /MercuriusCT-MediumItalic
    /MercuriusMT-BoldScript
    /Meridien-Bold
    /Meridien-BoldItalic
    /Meridien-Italic
    /Meridien-Medium
    /Meridien-MediumItalic
    /Meridien-Roman
    /Minion-Black
    /Minion-Bold
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-BoldItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-DisplayItalic
    /Minion-DisplayRegular
    /MinionExp-Italic
    /MinionExp-Semibold
    /MinionExp-SemiboldItalic
    /Minion-Italic
    /Minion-Ornaments
    /Minion-Regular
    /Minion-Semibold
    /Minion-SemiboldItalic
    /MonaLisa-Recut
    /MrsEavesAllPetiteCaps
    /MrsEavesAllSmallCaps
    /MrsEavesBold
    /MrsEavesFractions
    /MrsEavesItalic
    /MrsEavesPetiteCaps
    /MrsEavesRoman
    /MrsEavesRomanLining
    /MrsEavesSmallCaps
    /MSAM10
    /MSAM10A
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM10A
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MTEX
    /MTEXB
    /MTEXH
    /MTGU
    /MTGUB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MTSYN
    /MusicalSymbols-Normal
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-CnBold
    /Myriad-CnBoldItalic
    /Myriad-CnItalic
    /Myriad-CnSemibold
    /Myriad-CnSemiboldItalic
    /Myriad-Condensed
    /Myriad-Italic
    /MyriadMM
    /MyriadMM-It
    /Myriad-Roman
    /Myriad-Sketch
    /Myriad-Tilt
    /NeuzeitS-Book
    /NeuzeitS-BookHeavy
    /NewBaskerville-Bold
    /NewBaskerville-BoldItalic
    /NewBaskerville-Italic
    /NewBaskervilleITCbyBT-Bold
    /NewBaskervilleITCbyBT-BoldItal
    /NewBaskervilleITCbyBT-Italic
    /NewBaskervilleITCbyBT-Roman
    /NewBaskerville-Roman
    /NewCaledonia
    /NewCaledonia-Black
    /NewCaledonia-BlackItalic
    /NewCaledonia-Bold
    /NewCaledonia-BoldItalic
    /NewCaledonia-BoldItalicOsF
    /NewCaledonia-BoldSC
    /NewCaledonia-Italic
    /NewCaledonia-ItalicOsF
    /NewCaledonia-SC
    /NewCaledonia-SemiBold
    /NewCaledonia-SemiBoldItalic
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothic-BoldOblique
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldCondensed
    /NewsGothicBT-BoldCondItalic
    /NewsGothicBT-BoldExtraCondensed
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Demi
    /NewsGothicBT-DemiItalic
    /NewsGothicBT-ExtraCondensed
    /NewsGothicBT-Italic
    /NewsGothicBT-ItalicCondensed
    /NewsGothicBT-Light
    /NewsGothicBT-LightItalic
    /NewsGothicBT-Roman
    /NewsGothicBT-RomanCondensed
    /NewsGothic-Oblique
    /New-Symbol
    /NovareseITCbyBT-Bold
    /NovareseITCbyBT-BoldItalic
    /NovareseITCbyBT-Book
    /NovareseITCbyBT-BookItalic
    /Nueva-BoldExtended
    /Nueva-Roman
    /NuptialScript
    /OceanSansMM
    /OceanSansMM-It
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OnyxMT
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-BoldOblique
    /Optima-ExtraBlack
    /Optima-ExtraBlackItalic
    /Optima-Italic
    /Optima-Oblique
    /OSPIRE-Plain
    /OttaIA
    /Otta-wa
    /Ottawa-BoldA
    /OttawaPSMT
    /Oxford
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /Parisian
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PhotinaMT
    /PhotinaMT-Bold
    /PhotinaMT-BoldItalic
    /PhotinaMT-Italic
    /PhotinaMT-SemiBold
    /PhotinaMT-SemiBoldItalic
    /PhotinaMT-UltraBold
    /PhotinaMT-UltraBoldItalic
    /Plantin
    /Plantin-Bold
    /Plantin-BoldItalic
    /Plantin-Italic
    /Plantin-Light
    /Plantin-LightItalic
    /Plantin-Semibold
    /Plantin-SemiboldItalic
    /Poetica-ChanceryI
    /Poetica-SuppLowercaseEndI
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /ProseAntique-Bold
    /ProseAntique-Normal
    /QuaySansEF-Black
    /QuaySansEF-BlackItalic
    /QuaySansEF-Book
    /QuaySansEF-BookItalic
    /QuaySansEF-Medium
    /QuaySansEF-MediumItalic
    /Quorum-Black
    /Quorum-Bold
    /Quorum-Book
    /Quorum-Light
    /Quorum-Medium
    /Raleigh
    /Raleigh-Bold
    /Raleigh-DemiBold
    /Raleigh-Medium
    /Revival565BT-Bold
    /Revival565BT-BoldItalic
    /Revival565BT-Italic
    /Revival565BT-Roman
    /Ribbon131BT-Bold
    /Ribbon131BT-Regular
    /RMTMI
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /RotisSansSerif
    /RotisSansSerif-Bold
    /RotisSansSerif-ExtraBold
    /RotisSansSerif-Italic
    /RotisSansSerif-Light
    /RotisSansSerif-LightItalic
    /RotisSemiSans
    /RotisSemiSans-Bold
    /RotisSemiSans-ExtraBold
    /RotisSemiSans-Italic
    /RotisSemiSans-Light
    /RotisSemiSans-LightItalic
    /RotisSemiSerif
    /RotisSemiSerif-Bold
    /RotisSerif
    /RotisSerif-Bold
    /RotisSerif-Italic
    /RunicMT-Condensed
    /Sabon-Bold
    /Sabon-BoldItalic
    /Sabon-Italic
    /Sabon-Roman
    /SackersGothicLight
    /SackersGothicLightAlt
    /SackersItalianScript
    /SackersItalianScriptAlt
    /Sam
    /Sanvito-Light
    /SanvitoMM
    /Sanvito-Roman
    /Semitica
    /Semitica-Italic
    /SIVAMATH
    /Siva-Special
    /SMS-SPELA
    /Souvenir-Demi
    /Souvenir-DemiItalic
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /Souvenir-Light
    /Souvenir-LightItalic
    /SpecialAA
    /Special-Gali
    /Sp-Sym
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-PhoneticAlternate
    /StoneSans-PhoneticIPA
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /StoneSerif
    /StoneSerif-Italic
    /StoneSerif-PhoneticAlternate
    /StoneSerif-PhoneticIPA
    /StoneSerif-Semibold
    /StoneSerif-SemiboldItalic
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-BlackRounded
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-BoldRounded
    /Swiss721BT-Heavy
    /Swiss721BT-HeavyItalic
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Medium
    /Swiss721BT-MediumItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721BT-ThinItalic
    /Swiss921BT-RegularA
    /Symbol
    /Syntax-Black
    /Syntax-Bold
    /Syntax-Italic
    /Syntax-Roman
    /Syntax-UltraBlack
    /Tekton
    /Times-Bold
    /Times-BoldA
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /Times-NewRoman
    /Times-NewRomanBold
    /Times-Oblique
    /Times-PhoneticAlternate
    /Times-PhoneticIPA
    /Times-Roman
    /Times-RomanSmallCaps
    /Times-Sc
    /Times-SCB
    /Times-special
    /TimesTenGreekP-Upright
    /TradeGothic
    /TradeGothic-Bold
    /TradeGothic-BoldCondTwenty
    /TradeGothic-BoldCondTwentyObl
    /TradeGothic-BoldOblique
    /TradeGothic-BoldTwo
    /TradeGothic-BoldTwoOblique
    /TradeGothic-CondEighteen
    /TradeGothic-CondEighteenObl
    /TradeGothicLH-BoldExtended
    /TradeGothicLH-Extended
    /TradeGothic-Light
    /TradeGothic-LightOblique
    /TradeGothic-Oblique
    /Trajan-Bold
    /TrajanPro-Bold
    /TrajanPro-Regular
    /Trajan-Regular
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /Transitional551BT-MediumB
    /Transitional551BT-MediumItalicB
    /Univers
    /Universal-GreekwithMathPi
    /Universal-NewswithCommPi
    /Univers-BlackExt
    /Univers-BlackExtObl
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-CondensedBold
    /Univers-CondensedBoldOblique
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-ExtraBlackExt
    /Univers-ExtraBlackExtObl
    /Univers-Light
    /Univers-LightOblique
    /UniversLTStd-Black
    /UniversLTStd-BlackObl
    /Univers-Oblique
    /Utopia-Black
    /Utopia-BlackOsF
    /Utopia-Bold
    /Utopia-BoldItalic
    /Utopia-Italic
    /Utopia-Ornaments
    /Utopia-Regular
    /Utopia-Semibold
    /Utopia-SemiboldItalic
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Viva-BoldExtraExtended
    /Viva-Regular
    /Weidemann-Black
    /Weidemann-BlackItalic
    /Weidemann-Bold
    /Weidemann-BoldItalic
    /Weidemann-Book
    /Weidemann-BookItalic
    /Weidemann-Medium
    /Weidemann-MediumItalic
    /WindsorBT-Elongated
    /WindsorBT-Light
    /WindsorBT-LightCondensed
    /WindsorBT-Roman
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /ZapfCalligraphic801BT-Bold
    /ZapfCalligraphic801BT-BoldItal
    /ZapfCalligraphic801BT-Italic
    /ZapfCalligraphic801BT-Roman
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Demi
    /ZapfChanceryITCbyBT-Medium
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZapfHumanist601BT-Ultra
    /ZapfHumanist601BT-UltraItalic
    /ZurichBT-Black
    /ZurichBT-BlackExtended
    /ZurichBT-BlackItalic
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldExtended
    /ZurichBT-BoldExtraCondensed
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraBlack
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-LightCondensedItalic
    /ZurichBT-LightExtraCondensed
    /ZurichBT-LightItalic
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-Italic
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /NLD <>
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


