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Abstract

MEMS based capacitive type sensors offer advantdgesto their small size, relative high sensitivibatch
fabrication capability, low power consumption amivl noise features. A MEMS capacitive sensor iscadgi
an electrostatic transducer and an analytical apgeb is used to model a MEMS-based capacitive-tgpsas.

A closed-form model to evaluate the pull-in voltageociated with a clamped square diaphragm anidcalar
diaphragm subject to electrostatic forces due tbias voltage is developed. The approach is base on
linearized uniform approximation of the nonlinedeatrostatic force due to the bias voltage and tise of a
2D load deflection model for MEMS based capacisigeustical sensor. The spring hardening effect ciased
with nonlinear stretching of the central region af clamped diagram is also considered. The resulting
electrostatic pressure on the diaphragm, the pulaltage, and the deflection of the midpoint ef dimphragm
for different bias voltage are studied. A compamisaf the results obtained using the developed dicaly
model of the communication with the results obtaibg Senturia is discussed. Numerical results aes¢nted
showing the effectiveness of the method in nonliideatification problems.

1 Introduction

Any micro-electro-mechanical system (MEMS) includeput transducers, mechanical resonators and butpu
transducers. The input transducers convert the igleatrical signals into an electrical force. Tbece acting on
mechanical resonators sufficiently isolated fromittsurroundings causes the corresponding vibratifothe
resonators. The output transducers will sense tioiom of the mechanical resonator and generate the
corresponding electrical signals. The central camepb in micro-electro-mechanical systems is theharical
resonator which constitutes a capacitive transdandris formed with two plates: a fixed plate anch@vable
plate. Due to the electrical force, when the gamwben the two plates becomes two thirds of théainifap, the
movable plate is not stable, we have a "push-doywhenomenon and the MEMS fails. From the dynamics
point of view, the system loses its stability. Tdep being equal to two-thirds of the initial gaptésmed the
minimum gap in MEMS [1]. In fact, stoppers are ugethe design of MEMS for avoiding such a failafethe
capacitor. The main function of MEMS is to transiigput signals to output signals with a specifiegiuency
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relationship through a mechanical resonator. If #xact frequency of MEMS cannot be determined, the
vibration of mechanical resonator in MEMS cannotebsily induced by input signals with certain freqcies.
Furthermore, the output signals cannot be sensgdvhich leads to the failure of MEMS. Due to themous
advance in microelectronics and signal processsmall size, bandwidth, high sensibility, low power
consumption and batch fabrication, MEMS capacitigasors, usually called CMUT (capacitive micromaeti
ultrasonic transducer) have been an attractivernaitive to conventional piezoelectric transducearsthe
generation and detection of ultrasound in air aatew The CMUT is constructed directly on a silicubstrate
by means of CMOS technology and provides the adgenbf increased bandwidth with comparable seitgitiv
to conventional piezoelectric transducers as wekkase of fabrication and electronics integratidie CMUT
consists of a lot of very thin square or circuldicen nitride membranes in parallel suspended absilicon
substrate. Basically, the single cell of a CMUTais electrostatic transducer like the well known dmnser
microphone [1]; nevertheless, this kind of capaeitiransducer is able not only to detect but atsganerate
acoustic waves in fluids. This capacitive-type seris then basically an electrostatic transducat depends on
electrical energy in terms of constant voltage tage drive) to facilitate monitoring of capacitarateange due
to an external mechanical excitation such as forcacoustical pressure. The electrostatic forcecatd with
the voltage is non linear due to its inverse squal&ionship with the airgap thickness betweendapacitor
electrodes. This gives rise to a phenomenon knawipall-in” that causes the movable structure (nigane)
to collapse if the bias voltage exceeds the pulisnit and limits the effective range of deformatiof the
structure. Accurate determination of the pull-idtage, or the collapse voltage, is critical in thesign process
to determine the sensitivity, harmonic distortioxddhe dynamic range of a MEMS-based capacitivestracer
with a square or a circular diaphragm. Pull-in abdlity is fundamental to the understating of maigMS
devices and is one of the basic parameters of éisigl of many electrostatic MEMS devices. Lackaof
accurate model for predicting pull-in voltage faasic beam structures such as fixed-fixed beamedffree
beams or for basic membranes necessitates therdedrfor a closed form expression for the pul«iftage.
Attempts have been made by several authors indke[f-4] to derive a closed-form expression far plull-in
voltage.

In this communication an analytical solution is geeted to calculate the pull-in voltage and diaghra
deflection for a clamped square diaphragm andauleir clamped diaphragm under electrostatic acinaiihe
method includes the nonlinearities of the electtisforce and the large deflection model for angad square
and a clamped circular diaphragm deflection.

2 Themode

The basic structure of a MEMS capacitive microphisrghown in Figure 1 : a metalized membrane dtegtdy
a tensile force is put in front of a fixed condagtibackplate by means of a surrounding border wassures a
separation distance. In fact, the structure carvibeved as a parallel plate capacitor consistingaofop
diaphragm and a bottom backplate separated by # singap acting as the dielectric material. Whan a
acoustical sound wave is incident on the diaphragoguses the diaphragm to deflect and the gapewmst the
diaphragm and the backplate decreases causing@age in the capacitance between them. As thérdigm
vibrates in accordance with the frequency of treuatical wave, the capacitance between the elextrobanges
accordingly due to a variable airgap. If a batisrgonnected across the diaphragm and the backfd#teving
the principle of energy conservation, electricargfe will flow to and away from the battery in amtance with
diaphragm vibrations. By connecting a suitable ghaifow sensing electrical circuit to the systemjsable
voltage signal representation of the incident atoalswave can be obtained.

Acoustical wav

N
diaphragm

airaar

backolat

Figure 1. Cross-section of a MEMS-based capadiyige acoustical sensor
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A parallel plate approximation is first considetechighlight the major aspects of the analysis (Feg).
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Figure 2. A simplified mechanical model of the MEM&h two parallel plates

The fixed plate of the capacitor with area A ismected with a constant supply voltage V. The ofifate of the
capacitor with mass m and area A is movable arid.rithe support of the moving plate is modeled tigio an
equivalent spring with stiffness k. Without anyattestatic force, the gap between two plates otctacitor in
the MEMS is @. The coordinate x is shown in Figure 2 and thginris at equilibrium without any voltage. By
applying a voltage across the plates, an electiosttiractive force Kx) is induced which leads to a decrease of
the gap spacing, thereby stretching the springs Tésults in an increase of the mechanical eldstie (or
spring force) K(x) which counteracts the electrostatic force. Hulhstability occurs as a result of the fact that
the electrostatic force increases non-linearly witsreasing gap spacing, whereas the mechanisticelarce is

a linear function of the change in the gap spacingsimple terms, the pull-in voltage can be dedirzs the
voltage at which the restoring spring force cadamger balance the attractive electrostatic force.

Neglecting any damping within the system, the dguabf motion of the movable plate due to an elestatic
attraction force Kx) caused by a constant supply voltage V is:

d 2 X
Igt—z +kx = Fy(X) 1)

The mechanical elastic force ig(K) = kx and the capacitance of the movable-plalbel-plate capacitor is
given by :

iy =22 @

where sois the permittivity of the free space. The eledmts attraction force §x) between the plates due to

the charges on the plates can be found by diffietamg the stored energy of the capacitor with eespo the
position of the movable plate and is expressed as :

ggAV?

) =2 (5 V2 () ) - 3)
dx \ 2

2(dg -x)?

At the static equilibrium the mechanical elasticcibequals the electrostatic attraction force &ed¢lationship
between the voltage V and displacement of the mevalate is :

V={e- X) \/W%A) )(4

The maximum of the voltage is obtained for dV/dxetl from this equation we obtain the distance wileee
pull-in occurs:
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dv/dx = - | 2kx/ (& A) +(doXk [1/(2k x £ A) (5)

The distance where the pull-in occurs js=xdy/3 and the pull-in gap is,o= 2dy/3. The pull-in voltage for this

ideal parallel plate structure is then :
_ | 3
Y=y 8kd /(27¢,A) (6)

and the spring constant of the movable plate ierghy:

k=27 AV, (8 &) )

A graph of the normalized voltage as a functiothefnormalized displacement of the movable plagh@wvn in
Figure 3. A stable displacement occurs for a namedlgap greater than 2/3 (or a normalized disphece of
the movable plate smaller than 1/3).
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Figu8. Variations of the normalized voltage for thectostatic actuator

If the applied voltage is increased beyond the-fulloltage, the resulting electrostatic force wallercome the
elastic restoring force and will cause the movallge to collapse on the fixed plate and the capawiill be
short circuited.

To obtain stiffness due to the electrostatic fonee expand equation (1) using a Taylor series apration
about the nominal distancg X

2 2 2 n-1

d“x eq AV 1 ggAV 2x N n(x-x
N P L A [P [1- 20§ nO) |
dt (dg—xg) 2 (dg-xg) (dg—Xg) n=3 (dg—Xp)

The electrostatic attraction force effectively nfaadi the spring constant k of the movable plate thedeffective
spring constant at a specified voltage V is :

g AV?
Ktective= | K ———= ()]

(dg—%g) >

The resonant frequency of the structure is shift@h weg =+/ K /M 10 0res=1/(K ggrocie! M -
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3 Deflection of a square diaphragm

Due to the presence of residual stress and a signify large deflection of the diaphragm compatedts
thickness, the developed strain energy in the middithe diaphragm causes a stretch of the diaphragldle
surface. Figure 4 shows the principle of deflectiba diaphragm.

Clamped diaphragm

Ba\mkplme
Figure 4. A schematic of electrostatic actuation

The deflection of the diaphragm middle surface egponds to a nonlinear behavior of a rigidly cladhpe
diaphragm and is known as spring hardening. Taba@ [5] developed an analytical solution for tbad-
deflection of membranes. They found a relationddgpveen the external load and the membrane defletdi
determine the residual stress and Young’s moduldkio films. Pan et al [6] compared the analytisalution
with FEM analysis. They found that the functionaitrh of the analytical results is correct, but saroastants
have to be corrected. Pan et al also found thatitfaytical forms of the membrane’s bending linesnit
describe the real behavior very accurately. Mahr@ider et al [7] found an analytical solution fbe load-
deflection behavior of a membrane by minimizatiéthe total potential energy and assuming a funetidorm

of the deflected membrane shape which extracted f8}. The deflection of the midpoint of a squarapthragm
under a uniform pressure load P can be expresqd&jl as

PG):Qe—(;hO + Cz(V)e—Ehg (10)
a a

where P is the applied uniform pressurgthie deflection of the diaphragm midpoint, e theptiragm thickness,
2a the diaphragm side length, E the Young’s moduuthe in-plane Poisson’s ration asmdhe residual stress.
The dimensionless constantgs &d G are numerical parameters which are obtained frdmdg- 3,45 and €
(v)=1,994(1-0,271)/(1-v). The non-linear spring constant of the diaphragthen :

_Pho)A _ eo eE »
= o _(C,lz + Q(v)gho)A (11)

Ky

where E:E/(l- v? is the effective Young's modulus. The deflectibependent nonlinearity due to spring
hardening appears in equation (11) where the scpfattee midpoint deflection variable, s considered. For a
test device we consider the parameters given ie tab

parameter e a d E v c
value 0,8 1,2 3,5 169 0,28 20
unity um um pum GPa - MPa

Table 1. Model parameters
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A plot of the variations of the non-linear spring @ function of the deflection of the diaphragm poitht is
shown in figure 5. From this figure we can obtdie tvalue of the non-linear spring. Note that thpsirg
hardening has been obtained under the hypotheais applied uniform pressure.
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Figure 5. Spring constant and diaphragm deflection

The deflection of the diaphragm from mid-side tal+side can be calculated from midpoint deflectiga$[8] :

2
mym=n1+04m(lj w{ézj (12)
a 2a

For a parallel plate configuration, the nonlinebectostatic force is always uniform. However, @mrigidly
clamped diaphragm, the electrostatic force becamasuniform due to a hemispherical deformation iteaff
the diaphragm (Figure 6). Thus, to evaluate théedebn of a rigidly clamped diaphragm under arcetestatic
force, it is necessary to obtain a uniform lineaydel of the electrostatic force that can be appiredbad-
deflection equation (10).
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Figure 6. Non-uniformity of the pressure profilef
Unifomity of the pressure profile (baott)

A uniform linearized model of the electrostaticdercan be obtained from (8) by linearizing the tetestatic
force about the zero deflection point x=0. We abthen:

1 X
sovz-—3+—§ A=kx (13)
2d3  d3

The left-hand of this equation equals an approxmatiform electrostatic force and the uniform elestatic
pressure on the diaphragm is :

6
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1 X
Bu= g0 V7|~ (14)
2d3  dd

This equation is general and can be applied tosamy of diaphragms. The pull-in deflection is oh&d for
x=dy/3=hy and the effective pull-in pressure is :

. 2
ead, eEdg Sgo V;
P(h) =C -t Cov) D (15)
3a 27a 6dg

and the pull-in voltage for the square clamped fdiagm is given by :

6d3 C1e0d0+_CZW)eéd8

5¢9| 3a? 27a*

pi (16)

Figure 7 shows the variations of electrostatic atas$tic forces as a function of the displacemerabtained

from (13). The spring constant k is obtained usgation (11) or Figure 5. At a distance of onedtlaf the

original airgap, the elastic force graph intersélogs17.45 volts constant voltage graph and thussgihe voltage
where the pull-in occurs.
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Figure 7. Electrostatic and elaftices

The pull-in voltage can be calculated using equai®). If we use equation (6) we obtaip ¥ 15.02 volts, a
value which is 2.43 volts smaller than the valutaoted with the method proposed in this work. The-gide to
mid-side deflection profiles of the diaphragm fdffetent voltages is shown in figure 8.
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Figure 8. Mid-side to mid-side deflection profilesa clamped square diaphragm
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Figure 9 shows the pull-in voltage as a functionhef airgap thickness. For a value gfd3.5um we obtain the

pull-in voltage of 17.45 volts.
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Figure 9. Tension of collapse falamped square diaphragm

4 Deflection of acircular diaphragm
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The analytical method developed in the precedintjcae to determine the pull-in voltage for a rigidilamped
square diaphragm can be adopted to evaluate thinpultage for a circular diaphragm under elestatic load.
Figure 10 shows a clamped circular diaphragm atisad and thickness e under a uniform transvees Ro

>
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r

Figure 10. Schematic of a clamped circular diaphrag

For a rigidly clamped circular diaphragm the deftmt of the midpoint of the diaphragm under a umifo

pressure P can be expressed as [9] :

\
h(r)= 5 Ee3

T 2T 11(T)

12(1-v?)Pa’ {Io(Tr/a)— lo(M | a’ —rz:l
4a2

(17)

where r is the radial position, h(r) the defectaira radial position r, T the tension parametggnd | are the
modified function Bessel functions of first kind péroth and first order respectively. The tensiarameter is

defined as:

2
a [121-v°)o
72 [12a-vT)o
e E

The deflection of the center of the diaphragm igwied from equation (17):

8

(18)
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120-vZypat 1 1g(M) ]
h=—"———|- (19)
T Ee 4 2T11(T) |
and we obtain the applied pressuregpifinthe format of equation (15) :
T2 Ee?’hO 1 1g(T) 771
(hp) = 4| 120
12(1-v)a” [ 4 2TI(T) |

Using the same method as the square diaphragmarageonsideringgin the pull-in deflection (+dy/3) we
obtain then :

S¢€p v2 T2Eedd 1 1o(T) -1
P O |+ _To 1)
6d3 36(1-v2)at |4 2TIy(T)
And the expression for the pull-in voltage for gidly clamped circular diaphragm is :
T2Ee343 1 o(T) -1
Vyi = | (22)
30e, (1-vo)a” [4 2TI4(T)

Figure 11 shows the pull-in voltage for a rangédiaphragm radius.
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Figure 11. Pull-in voltage for clamped circularpmhisagms

Equation (22) provides a model that includes sphiaglening phenomena and a linearized approximétidine
nonlinear electrostatic force, resulting in a maexurate determination of the pull-in voltage farcalar
diaphragms.

5 Conclusion

A new relatively simple closed-form model to evatughe pull-in voltage associated with a rigidlamlped
square or circular diaphragm subject to an elettiosforce has been developed. The method incatesithe
nonlinear and non uniform nature of the electrastimirce associated with a clamped diaphragm deddom.
However, the approach is based on a linearize@rmifipproximation of the nonlinear electrostaticédue to
a voltage an the use of a 2D load deflection motle¢ spring hardening effect associated with défiacof a
clamped diaphragm has been evaluated. The methotecaxtended to determine the pull-in voltagedftier
microstructures such as cantilever beams undetretatic excitation.
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