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Abstract— This paper is concerned with multivariable coupled
hysteretic systems. The traditional Bouc-Wen monovariable hys-
teresis model devoted to one degrees of freedom (DoF) actuated
systems is extended to model the hysteresis in systems with
multiple DoF which typify strong cross-couplings. The proposed
approach is able to model and to compensate for known hysteresis
nonlinearities which affect smart materials. First, after presenting
the new multivariable hysteresis Bouc-Wen model, a procedure of
identification of its parameters is proposed. Then, we propose a
multivariable compensator for the hysteresis. The compensator is
based on the combination of the inverse multiplicative structure
with the model which permits to avoid additional calculation of
its parameters. Such advantage is essential when the number of
DoF is high. All along the paper, the cases of under, over and fully
actuated hysteretic systems are discussed. Finally, the proposed
method is used to model and to compensate for the hysteresis in
a three DoF piezoelectric tube actuator. The experimental results
demonstrate its efficiency to linearize the hysteresis in the direct
transfers and to minimize the hysteresis of the cross-couplings.

Index Terms— monovariable and multivariable hysteresis, clas-
sical Bouc-Wen approach, static or rate-independent hysteresis,
compensation, inverse multiplicative structure, piezoelectric ac-
tuators, smart materials.

I. INTRODUCTION

To achieve surface or spatial positioning, applications at the
micro/nano-scales such as Scanning Probe Microscopy (SPM)
and Atomic Force Microscopy (AFM) require the use of
actuators able to provide displacements in different directions
(multi-degrees of freedom (DoF) actuators). In addition to the
need of multi-DoF actuators, these applications also require
high scanning speed and high bandwidth, high resolution
and high precision of positioning [1]. Multi-DoF Piezoelec-
tric based actuators (Piezotube scanners, piezo stages, etc)
present many advantages for such applications: large operating
bandwidth, high positioning resolution. Unfortunately, they
are typified by nonlinearities. One of these nonlinearities is
the hysteresis which strongly affects the final precision of
positioning [2]. Even if the hysteresis in piezoelectric actuators
has been widely investigated in the literature, the subject of
hysteresis in multi-DoF piezoelectric actuators is quite recent.
Multivariable hysteresis found in these multi-DoF actuators
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consists of the presence of the hysteresis nonlinearity both in
the expected axis (direct transfers) and in the couplings axis
(cross-couplings) which poses a great challenge in their model-
ing, identification and control. To achieve optimal positioning
accuracy, these hysteresis have to be minimized or completely
suppressed.

Feedback control can be used to remove the hysteresis ef-
fects and the cross-couplings [3], [4], [5], [6], [7], [8], [9], [10],
[11], but in many applications such as micropositioning, mi-
cro/nanomanipulation and micro/nanoassembly, there is a lack
of usable displacement sensors to close the loop. Generally,
embeddable sensors (strain gage...) do not possess the required
performances while performant sensors (optical sensors...) are
very expensive and bulky [2]. Some works have considered
the design of piezoelectric actuators combined with integrated
sensors [14], [15]. Although interesting in term of integration,
these latter approaches are not valuable for already existing
actuators since the systems design requires to a priori account
for the sensing elements. Furthemore, adding the sensors as
part of the systems will create a compromise between the per-
formances of the actuators and of the sensors. Consequently,
the performances of the actuators in such systems are less than
those of purely actuated systems. Another alternative to avoid
the use of external sensors is self-sensing technique which
consists in exploiting piezoelectric direct and converse effects
in order to estimate the actuator deflection [16] . In this, when
a voltage is applied to the actuator electrodes, the actuator
bends and the corresponding mechanical stress provokes the
apparition of electrical charges on the actuator surface. Self-
Sensing consists in using an electrical circuit that amplifies
these charges and transforms them into an exploitable voltage.
Then, a convenient observer uses the applied voltage and
the voltage provided by the electrical circuit to estimate the
actuator deformation/deflection [17]. Nevertheless, this tech-
nique requires supplementary design of electronic circuit for
charge amplification. Moreover, the estimation is influenced
by charge leakage within the piezoelectric material which
makes this technique inaccurate and inappropriate for long-
term displacements measurements [18].

All these endeavors on feedback control are rendered more
difficult when the number of degrees of freedom of the piezo-
electric actuator is high making finally closed-loop techniques
hardly implementable for micro and nano-scales in general.

Feedforward control is, in this case, an appealing alternative
to feedback control in order to avoid such limitations. Two



2

main approaches are used for hysteresis feedforward control.
The first approach consists in precisely modeling the hysteresis
and then deriving an inverse model or an approximation of
the inverse. Applying this inverse model as a controller in
cascade with the hysteretic piezoelectric system results in a
global linearized system [2], [19], [20], [21], [22]. The second
technique is the charge control compensation where, instead
of inverting the hysteresis model, the input to the system
is no longer the voltage, but the electric charge provided
by a designed electronic circuit [23], [24], [25], [26]. This
is because the relation between the charge and the output
displacement is almost linear.

Different models have been used for feedforward control of
hysteresis. These models can be classified into two classes.
The first class is based on the superposition of several el-
ementary hysteresis called hysterons. This class includes the
Preisach techniques [27], [28], [29], [30], [31] and the Prandtl-
Ishlinskii techniques [20], [32], [33], [34], [35]. Preisach and
Prandtl-Ishlinskii approaches can be very precise if the number
of hysterons is very high but, in return, become difficult
to implement. The second class consists in using nonlinear
differential equations as hysteresis model and as hysteresis
compensator. The Bouc-Wen approach [36], [37] is in this
class. The Bouc-Wen approach utilizes compact equations
which are well convenient for structural analysis (stability, per-
formances) or synthesis. Furthemore, due to the low number
of parameters, the identification and the implementation of
Bouc-Wen equations are facilitated.

All the above mentioned hysteresis feedforward control
dealt with one-DoF piezoelectric actuators. In [40], [41] and
references herein, the concept of vector Preisach hysteresis
model has been studied. It consists in modeling and controlling
the hysteresis in magnetic field where, instead of using scalar
variables, vectors are used. The method is purely devoted
to magnetic systems since the models consider the physical
relation and geometrical alignment between magnetic field
strength and magnetic flux density. In [42] , coupled differen-
tial equations are used to analyze the response of hysteretic
structural systems under two-dimensional earthquake excita-
tions, but the coupling effect was assigned only to some of
the parameters governing the shape of hysteresis, not on the
entire model parameters. Both the vector Preisach model and
this latter model are devoted to 2-DoF systems. Moreover, the
compensation has not been tackled.

To summarize, multivariable hysteresis modeling and com-
pensation that consider both the direct transfers and the
couplings are new and require formulation usable for different
kinds of systems (piezoelectric, magnetic, magnetostrictive,...).
This paper deals with the modeling, identification and feedfor-
ward control of such multivariable hysteresis, with application
to piezoelectric actuators. For that, we propose to extend
the classical Bouc-Wen approach, which is monovariable, to
the multivariable case capable to track the hysteresis in n-
DoF actuated systems. This is possible thanks to its low
number of parameters making the identification procedure
easy and realizable. To be more general, under actuated, over
actuated and fully actuated hysteretic systems are investigated.
Finally, in order to validate the approach, experiments on a

3-DoF piezotube scanner typified by strong hysteresis and
strong cross-couplings have been carried out. The experimental
results confirmed the efficiency of the proposed multivariable
Bouc-Wen hysteresis modeling and control technique.

The paper is organized as follows. Section II provides
a recall on the monovariable Bouc-Wen hysteresis model.
Section III is devoted to the new hysteresis model: multi-
variable modeling with consideration of under, over and fully
actuation cases. In section IV, the identification procedure
of the multivariable hysteresis model is detailed. Section V
deals with the derivation of the multivariable compensator that
permits to cancel the hysteresis both in the direct transfers
and in the couplings. The experimental application to a 3-
DoF piezoelectric scanner is presented in section VI. Finally,
the conclusion of the paper is given in section VII.

II. RECALL OF THE MONOVARIABLE HYSTERESIS
BOUC-WEN MODEL

The Bouc model of hysteresis [36] - further modified
by Wen [37] - was initially used for nonlinear vibrational
mechanics. It was afterwards widely used in structural and
mechanical engineering [38]. It is defined as a set of two
differential nonlinear equations relating the applied mechanical
force f to the deformation x of a structure:{

f(x, ẋ, z) = αk0x+ (1− α)k0z

ż = ẋ[A− |z|m(γ + βsgn(ẋz))]
(1)

where z represents an internal variable describing the structure
inelastic behavior. k0 and α denote the initial and the post-
to-pre yield stiffness respectively, and parameters A, γ and β
control the hysteresis shape and scale.

In [39], the Bouc-Wen model represented by Eq. 1 has
been re-written in order to match with piezoelectric based
actuators behavior. The resulting model is given in Eq. 2. In
this, the first equation relates the driving signal U with the
actuator displacement/deformation y and with the internal state
h. The second equation is the state-equation The piezoelectric
coefficient dp characterizes the electromechanical transfer.
Finally, the parameter m of Eq. 1 was assumed to be equal to
1 due to the piezoelectric elastic structure [43].{

y = dpU − h , y(t0) = y0

ḣ = AU̇ − β|U̇ |h− γU̇ |h| , h(t0) = h0
(2)

The Bouc-Wen model described by (2) can be reduced in a
compact notation by introducing a non-linear operator H(.)
such that [39]: {

y = dpU −H(U)

H(U) = h
(3)

with ḣ = AU̇ − β|U̇ |h− γU̇ |h|.

III. A NEW MULTIVARIABLE HYSTERESIS MODEL FOR
MULTI-DOF PIEZOELECTRIC SYSTEMS

In this section, we consider a multi-DoF piezoelectric sys-
tem as presented in Fig. 1. We have k inputs rassembled in a
vector U and n outputs rassembled in a vector y. If k < n,
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the system is under actuated. If k = n, the system is fully
actuated. And if k > n, the system is over actuated. When the
system is under or over actuated, we say that it is rectangular.
Otherwise, it is square.

multi-DoF
hysteretic
piezoelectric
system

multi-DoF
hysteretic
piezoelectric
system

Fig. 1: A multivariable hysteretic system.

The proposition consists in extending the monovariable
Bouc-Wen hysteresis model described by Eq. 2 and Eq. 3
into multivariable hysteresis. For that, the different signals and
parameters are transformed into vectors and matrices. This
yields1: {

y = DU − h
ḣ = AU̇ −B

(
| ˙̂U | ◦ ĥ

)
− Γ

(
˙̂
U ◦ |ĥ|

) (4)

equivalently: {
y = DU −H(U)

H(U) = h
(5)

with ḣ = AU̇ −B
(
| ˙̂U | ◦ ĥ

)
− Γ

(
˙̂
U ◦ |ĥ|

)
.

In Eq. 5, D, A, B and Γ are Rn×k matrices containing
multivariable hysteresis model parameters. U ∈ Rk is the input
voltage vector and h ∈ Rn is the (hysteresis) state vector. Û
and ĥ are defined from U and h as follows:

˙̂
U =

[
U̇ ;O(n−k)×1

]
and ĥ = h if n > k

ĥ =
[
h;O(k−n)×1

]
and ˙̂

U = U̇ if n < k

Û = U and ĥ = h if n = k

H(U) is a multivariable nonlinear operator. The compact
notation in Eq. 5 will be particularly useful when synthesizing
a feedforward controller in Section V.

IV. IDENTIFICATION OF THE PARAMETERS OF THE NEW
MULTIVARIABLE HYSTERESIS MODEL

Let us develop the two equations of Eq. 4 in order to derive
the relation between the applied voltages Uj with the output
yi and with the internal state hi. We have:

yi =

 k∑
j=1

DijUj

− hi (6)

ḣi =

k∑
j=1

AijU̇j −
k∑
j=1

Bij | ˙̂Uj |ĥj −
k∑
j=1

Γij
˙̂
Uj |ĥj | (7)

According to equations Eq. 6 and Eq. 7, the parameters
to be identified are Dij , Aij , Bij and Γij (1 ≤ i ≤ n and

1(A ◦B) denotes the Hadamard product of vectors A = [Aij ]i,j and
B = [Bij ]i,j , i.e.(A ◦B) = [AijBij ]i,j

1 ≤ j ≤ k) which are respectively the elements of the matrices
D, A, B and Γ. These parameters can be real positive, negative
or null. yi is the ith output while Uj is the jth input control.
Consequently, when i = j, we have the direct hysteresis and
when i 6= j, we have the coupling hysteresis.

From equation Eq. 7, we observe that a signal ḣi (1 ≤
i ≤ n) does not depend only on hi but also on hj , j being
the subscript denoting the applied Uj . Therefore, an output yi
(1 ≤ i ≤ n) which naturally depends on hi also depends on hj .
Considering this fact, we propose the following identification
procedure that can be splitted into three steps:

A) derivation of the experimental data (characterization),
B) identification of the direct hysteresis parameters,
C) and identification of the coupling hysteresis parameters.

A. Experimental system characterization

In this step, a sine or triangular input voltage Uj (with
j = 1 · · · k) is applied to the piezoelectric actuator. In the
meantime, the other inputs (i.e. all Up with p 6= j and
1 ≤ p ≤ k) are set equal to zero. For each experiment, i.e.
each applied Uj , the experimental data Uexpj and yexpi are
captured and an experimental hysteresis curve

(
Uexpj , yexpi

)
can be plotted. From equations Eq. 6 and Eq. 7, the model of
such hysteresis is expressed as follows:{

yi = DijUj − hi
ḣi = AijU̇j −Bij | ˙̂Uj |ĥj − Γij

˙̂
Uj |ĥj |

(8)

B. Identification of the parameters of the direct hysteresis
equation

This step consists in identifying the parameters of the
direct hysteresis equations. From Eq. 8, the related equation
is obtained by letting i = j:{

yj = DjjUj − hj
ḣj = AjjU̇j −Bjj | ˙̂Uj |ĥj − Γjj

˙̂
Uj |ĥj |

(9)

The parameters identification is performed by using the fol-
lowing least square optimization problem.
Find Djj , Ajj , Bjj and Γjj such that:

ḣj =

AjjU̇
exp
j −Bjj

∣∣∣ ˙̂
U exp
j

∣∣∣ ĥj − Γjj
˙̂
U exp
j

∣∣∣ĥj∣∣∣
yj(q) = DjjU

exp
j − hj

min

(
Nexp∑
q=1

(
yexpj (q)− yj(q)

)2) (10)

where yexpj and Uexpj correspond to the experimental data of
yj and Uj , and Nexp is the number of recorded points.

C. Identification of the parameters for the couplings hysteresis
equations

Having identified the parameters of the direct hysteresis
equations in the previous step, the aim of this step is to
identify the remaining parameters which in fact correspond
to the parameters of the couplings hysteresis equations. As
we will see, the equations of the direct hysteresis in Eq. 9
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will also be used in this step. The parameters identified at
step 2 are therefore used to identify the parameters Dij , Aij ,
Bij and Γij of the couplings hysteresis ((Uj , yi) with i 6= j).
First, remind that the equations of the couplings hysteresis are
yielded from Eq. 8 by letting i 6= j:{

yi = DijUj − hi
ḣi = AijU̇j −Bij | ˙̂Uj |ĥj − Γij

˙̂
Uj |ĥj |

(11)

As we can see from the second equation of Eq. 11, the internal
state evolution ḣi is dependant on hj . Therefore, the state
equation of hj given by Eq. 9 is required. The final equations
for the couplings hysteresis become:

yi = DijUj − hi
ḣi = AijU̇j −Bij | ˙̂Uj |ĥj − Γij

˙̂
Uj |ĥj |

ḣj = AjjU̇j −Bjj | ˙̂Uj |ĥj − Γjj
˙̂
Uj |ĥj |

(12)

To identify the parameters Dij , Aij , Bij and Γij , the following
least square optimization problem is used.
Find Dij , Aij , Bij and Γij such that:

ḣj =

AjjU̇
exp
j −Bjj

∣∣∣ ˙̂
U exp
j

∣∣∣ ĥj − Γjj
˙̂
U exp
j

∣∣∣ĥj∣∣∣
ḣi =

AijU̇
exp
j −Bij

∣∣∣ ˙̂
U exp
j

∣∣∣ ĥj − Γij
˙̂
U exp
j

∣∣∣ĥj∣∣∣
yi = DijU

exp
j − hi

min

(
Nexp∑
q=1

(yexpi (q)− yi(q))
2

)
(13)

V. FEEDFORWARD CONTROL OF MULTIVARIABLE
HYSTERETIC SYSTEMS BY COMBINING THE

MULTIVARIABLE BOUC-WEN MODEL WITH AN INVERSE
MULTIPLICATIVE STRUCTURE

In this section, the design of a compensator for the mul-
tivariable hysteresis is studied. We assume now that all the
parameters of the multivariable Bouc-Wen model in Eq. 4 are
identified. Let Fig. 2 be the system controlled by a feedforward
hysteresis compensator, where yref = (yref1 yref2 · · · yrefn )T

is the reference input.

multivariable 
hysteresis

compensator

multi-DoF
hysteretic

piezoelectric
system

Fig. 2: Principle of the feedforward multivariable hysteresis
compensation.

A. Compensator equation

The compensator is built in order to achieve the following
condition:

yref = y (14)

Introducing this condition into the first equation of the multi-
variable model in Eq. 4, we obtain:

yref = DU − h (15)

from which we deduce the input control U that satisfies the
condition (14):

U = D−1(yref + h) (16)

U is the output of the compensator and the desired displace-
ment yref is its input.

By utilizing the compact notation (see Eq. 5), the compen-
sator can also be written as follows:

U = D−1(yref +H (U)) (17)

Fig. 3 presents the detailed block diagram of the compensator
and of the multivariable Bouc-Wen hysteresis model with
the compact notation. The figure shows that the structure
of the compensator is inverse multiplicative. Its parameters
are similar to that of the hysteresis model. This means that
the compensator can be directly deduced from the identified
model, and thus there is no need of additional calculation to
obtain the compensator parameters. This advantage is essential
in multivariable synthesis because the number of parameters
increases substantially with the number of degrees of free-
dom. Furthemore, the proposed technique which is based on
the inverse multiplicative structure permits to calculate the
hysteresis compensator without an explicit calculation of the
inverse model. Note that the model itself, whose the structure
includes a nonlinear differential equation, is not invertible.
However, the compensator calculation requires the inverse of
matrix D (see Eq. 17). In the next subsection, we will discuss
on its invertibility and its inversion according if the system is
under, over or fully actuated.

multivariable hysteresis
compensator

multi-DoF hysteretic
piezoelectric system

+
+

+
-

Fig. 3: Block diagram of the feedforward hysteresis control.

B. Inverse of matrix D and compensator implementation

For Fully actuated systems, D is square. This matrix is
always invertible (non-singular) in real actuators. In fact, when
designing a multi-DoF actuators, the first expectation from the
designer is that each input control Uj affects a corresponding
output and axis yj , i.e. the direct transfers Djj are non-null,
and that the couplings are minimized. Consequently, the only
case where D is singular is when some of its vectors are
linearly dependent. This means that when applying a voltage
Uj , some or all couplings yi (i 6= j) exist in such a way that
their sum compensates for the the output yj . This case is very
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rare and in general, designers of actuators never allow systems
having such characteristics.

For Under and Over actuated systems, D is not square.
In this case, we use the Moore-Penrose pseudo-inverse [44]
D+ to define U :

U = D+(yref + h) (18)

Since D is an Rn×k matrix, we have D+ ∈ Rk×n. The Moore-
Penrose pseudo inverse is defined by:

D+ = CT
(
CCT

)−1 (
BTB

)−1
BT (19)

where B ∈ Rn×m and C ∈ Rm×k are any decomposition
matrices of D such that D = BC. The use of this pseudo
inverse guarantee that the solution has a minimum 2-norm
in case of over actuated systems and minimizes the 2-norm
of the error in the under actuated case. The Moore-Penrose
pseudo-inverse has the following properties:

DD+D = D
D+DD+ = D+

(DD+)
T

= DD+

(D+D)
T

= D+D

(20)

For under or over actuated systems, the block diagram of the
compensator is similar to that of Fig. 3 but with D+ instead
of D−1.

It is also worth to notice that the structure of the operator
H(U) is dependent on whether the system is under, over or
fully actuated. This is because the structure of ḣ depends on
whether the system is under, over or fully actuated (see Eq.
4).

VI. APPLICATION TO THE CONTROL OF A 3-DOF
PIEZOELECTRIC ACTUATOR

This section is devoted to the application of the proposed
modeling, identification procedure and feedforward control
in a real case. The system to be modelled and controlled
is a piezoelectric tube (piezotube) actuator able to provide
displacement along 3 axes, i.e. a 3-DoF actuator.

A. Experimental setup

The actuator, pictured in Fig. 4-(a), is a piezotube scanner
extensively used in atomic force microscopy (AFM). This
actuator has 3-DoF and can provide displacement along three
directions (X , Y and Z). Based on PZT material (lead
zirconate titanate), it has four external electrodes (+x, -x,
+y and -y), and an inside electrode for ground (Fig. 4-(b)).
When applying a positive voltage U to the +x electrode
and the opposite voltage −U to the -x electrode, the first
sector expands while the second one contracts. This yields
a global deflection (displacement) of the piezotube along the
X direction (Fig. 4-(c)). The same deflection can be obtained
along the Y direction if the voltages are applied to +y and -y
electrodes. Axial deformation (extension or elongation along

the Z direction) is obtained by applying simultaneously +U
(or −U ) on the four external electrodes as depicted in Fig.
4-(d). In the sequel, we simply denote Ux, Uy and Uz the
voltage applied permitting to obtain the x, the y and the z
displacement respectively. The piezotube used in this paper is

z

+y

-y

+x
-x +U-U

-U

+U

+U

+U
+U

+U

Ground
electrode

Four (4) external
electrodes

(a)

(b)

(c)

+y

-x +x

-y

-y

+y

-x

+x

+y

-y

+x-x

(a)

(b)

(c)

(d)

Fig. 4: (a) and (b): a piezotube actuator or scanner and its
electrodes. (c) and (d): obtention of the displacements along
X , Y and Z directions.

a PT230.94 from PIceramic company. It can be supplied with
an input voltage up to ±250V . The whole experimental setup,
depicted in Fig. 5, is composed of:

- the piezotube actuator,
- a computer with Matlab-Simulink and a dSPACE board

(ds1104) for the signals acquisition and for the implementation
of the compensator,

- four high voltage (HV) amplifiers permitting to amplify
the control signals Ux, Uy and Uz ,

- and three displacement sensors used to measure the
displacements x, y and z of the actuator. The sensors, ECL202
from IBS company, are based on the inductive principle (Eddy
current principle). They are set to have 40nm of resolution,
submicrometric accuracy, 15kHz of bandwidth and ±250µm
of range of measurement. In fact, they measure the displace-
ment of a small cube placed at the tip of the actuator.

B. Characterization, modeling and parameters identification
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Computer
+Matlab/Simulink

High voltage 
  amplifiers

x  z y

Ux Uz

Ux Uz

Uy

Uy

A/D Converter D/A Converter

PiezoTube Reflecting
 Cube

Y-Sensor

X-Sensor

Z-Sensor

Fig. 5: Experimental setup description.

1) Multivariable hysteresis characterization: the charac-
terization is performed as follows. A triangular voltage Ux
of amplitude 200V and of frequency 0.4Hz is applied to
the x electrodes while both Uy and Uz are set to zero. The
corresponding x, y and z displacements are pictured in Fig. 6-
(a), (d) and (g) respectively. Fig. 6-(a) corresponds to the direct
hysteresis along X axis while Fig. 6-(d) and (g) correspond to
the couplings along Y and Z axis due to Ux. To capture the
hysteresis along the Y and the Z axes, the same procedure
than for the X axis is repeated by applying Uy and then
Uz respectively, with each time deflections x, y and z being
captured. Fig. 6-(e) and Fig. 6-(i) are the resulting direct
hysteresis for the Y and for the Z axis respectively. The
remaining hysteresis curves are the cross-couplings.

Sine signals can also be used for the identification. The main
difference relative to triangular signal is that higher dynamics
(modes) are not excited. However, because triangular signals
are the most used in microscopy applications, we have chosen
this signal for the identification. The amplitude of the signal
(±200V in this case) is chosen to cover the application
range. The parameters identification in a Bouc-Wen model
should be done with the external loop of the hysteresis, which
corresponds to the hysteresis loop obtained with the maximal
range [39]. On the other hand, the frequency is chosen to be
low enough. If the frequency is high, phase-lag will affect
the experimental data and the pure static hysteresis found at
low frequency is not anymore visible and the identified model

X
[µ

m
]

X
[µ

m
]

X
[µ

m
]

Y
[µ

m
]

Y
[µ

m
]

Y
[µ

m
]

Z
[µ

m
]

Z
[µ

m
]

Z
[µ

m
]

Ux [V]

Ux [V]

Ux [V]

Uy [V]

Uy [V]

Uy [V]

Uz [V]

Uz [V]

Uz [V]

h   H

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Hysteresis characterization of the 3-DoF piezotube
actuator.

parameters not valuable. If the frequency is too low, other
nonlinearities such as creep that is out of the scope of this
paper will also affect the experimental data [19]. We found
that 0.4Hz is a good compromise for the actuator used and
for the application considered.

2) Modeling and parameters identification: The considered
piezoelectric actuator is a fully actuated system with three
inputs and three outputs and admits a square model. The
parameters identification is carried out by using individually
the nine experimental curves in Fig. 6. First, the parameters
of the direct hysteresis transfers are identified through the
optimization problem in Eq. 10 and considering first j = x,
then j = y and finally j = z with the experimental curve of
Fig. 6-(a), Fig. 6-(e) and Fig. 6-(i) respectively. The parameters
of the coupling hysteresis transfers are identified through the
optimization problem of Eq. 13. For instance, to identify the
parameters Dxz , Axz , Bxz and Γxz , we use the following
optimization problem:

Find Dxz , Axz , Bxz and Γxz such that:



ḣz =

AzzU̇
exp
z −Bzz

∣∣∣ ˙̂
U exp
z

∣∣∣ ĥz − Γzz
˙̂
U exp
z

∣∣∣ĥz∣∣∣
ḣz =

AxzU̇
exp
z −Bxz

∣∣∣ ˙̂
U exp
z

∣∣∣ ĥz − Γxz
˙̂
U exp
z

∣∣∣ĥz∣∣∣
yx = DxzU

exp
z − hx

min

(
Nexp∑
q=1

(yexpx (q)− yx(q))
2

)
(21)

where yexpx and Uexpz are the experimental data of Fig. 6-(c).
After the identification procedure, we obtain the following

model of the 3-DoF piezotube actuator:
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Fig. 7: Experimental curves and simulation of the identified
3-DoF Bouc-Wen model with external loops: input voltages
±200V .

xy
z

 =

 0.1663 0.0054 −0.0345
−0.0048 0.1803 −0.0259
0.0164 −0.0360 0.0310


︸ ︷︷ ︸

D

UxUy
Uz

−
hxhy
hz


(22)

ḣx

ḣy

ḣz


︸ ︷︷ ︸

ḣ

=

 0.0616 0.0013 −0.0338
−0.0026 0.0658 −0.0259
0.0111 −0.0364 0.0160


︸ ︷︷ ︸

A

U̇x

U̇y

U̇z


︸ ︷︷ ︸

U̇

−

 0.0073 0.0002 −0.0000
−0.0001 0.0054 0.0000

0.0004 0.0000 0.0017


︸ ︷︷ ︸

B

|U̇x| 0 0

0 |U̇y| 0

0 0 |U̇z|


︸ ︷︷ ︸

diag(|U̇|)

hx

hy

hz


︸ ︷︷ ︸

h

−

 0.0016 0.0000 −0.0003
−0.0001 0.0010 0.0001

0.0001 0.0000 −0.0003


︸ ︷︷ ︸

Γ

Ux 0 0

0 Uy 0

0 0 Uz


︸ ︷︷ ︸

diag(U̇)

|hx|
|hy|
|hz|


︸ ︷︷ ︸

|h|

(23)

3) Validation of the identified multivariable model: The
simulation results from the identified model in equations Eq.
22 and Eq. 23 have been compared with the experimental
results and are pictured in Fig. 7. This figure demonstrates a
good agreement between the simulated and the experimental
curves. We can observe that, for each curve, the error between
the experimental data and the model is very small, and
bounded. Nevertheless, we observe a disagreement between
the experiments and the model simulation for the coupling
hysteresis in Fig. 7-(f) and (h). This is due to the fact that the
two experimental hysteresis are noisy and non-symmetrical,

Ux [V]

Ux [V]

Uy [V]

Uy [V]

Uz [V]

Uz [V]

Uz [V]

X
 [

µ
m

]

X
 [

µ
m

]

X
 [

µ
m

]

y 
[µ

m
]

z 
[µ

m
]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Uy [V]

y 
[µ

m
]

y 
[µ

m
]

z 
[µ

m
]

z 
[µ

m
]

Ux [V]

x x x x model

experimental

Fig. 8: Experimental curves and simulation of the identified 3-
DoF Bouc-Wen model with external and internal loops: input
voltages ±200V and ±100V .

which can not be tracked by a classical Bouc-Wen hysteresis
model.

The previous validation has been effectuated with the exter-
nal hysteresis loops, i.e. with input control ±200V . To validate
the model with internal loops, we also carried out experiments
and model simulation with triangular input voltage ranging
between ±100V . Fig. 8 depicts the comparison between them
which demonstrates that the accuracy of the identified model is
still maintained. The same remark than with external loop (i.e.
with ±200V ) is given here regarding the two cross-couplings
in Fig. 8-(f) and (h) where we observe an inaccuracy due to
the noise and of the asymmetry of the hysteresis.

C. Hysteresis compensation

We now implement the compensator of Fig. 3 by using
the identified model in Eq. 22 and Eq. 23. The reference
input is the vector

(
xref , yref , zref

)T
. The experiments are

carried out by using triangular references of amplitude ±20µm
for xref and yref and ±3µm for zref . Fig. 9 shows the
experimental results. This figure demonstrates that the direct
hysteresis have been compensated (see Fig. 9-(a), (e) and (f))
and that the cross-couplings have been reduced (rest of the
figure). To more accurately evaluate the performances before
and after compensation, let us use the hysteresis amplitude
and the coupling amplitudes as measures. The hysteresis
amplitude is defined as the ratio h

H , between the maximal
residual displacement h and the range of displacement H as
presented in Fig. 6-(a). The coupling amplitude for axis i (i ∈
{X,Y, Z}) is defined as the ratio Hcpl

H between the maximal
displacement Hcpl when a voltage Uj (j 6= i) is applied and
the maximal displacement H that we would obtain with Ui.
Table I summarizes the different results. They show that the
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Fig. 9: Outputs (x, y, z)
T of the compensated actuator versus

the input references
(
xref , yref , zref

)T
.

direct hysteresis which were initially up to 18% have been
reduced to less than 2.5% and that the cross-couplings have
been substantially reduced. These verification and evaluation
have been effectuated with the inductive sensors which show
a noise in the measured signals. By employing optical sensors
which have better measurement resolution and precision to
evaluate the performaces, the accuracy of compensation can
be better.

TABLE I: Comparison of the system responses, before and
after compensation.

Before After
Hysteresis

(h/H)
hx
Ux/Hx

Ux 9.5/55.0=17.2% 1.0/40.0=2.5%
hy
Uy /Hy

Uy 10.1/56.0=18.0% 0.0/40.0=0.0%
hz
Uz /Hz

Uz 1.0/6.0=17.5% 0.0/6.0=0.0%
Couplings
amplitudes
Hx

Uy /Hx
Ux 1.9/55.0=3.4% 0.9/40.0=2.2%

Hx
Uz /Hx

Ux 1.9/55.0=3.4% 0.8/40.0=2.0%
Hy

Ux/Hy
Uy 1.2/56.0=2.1% 0.8/40.0=2.0%

Hy
Uz /Hy

Uy 0.9/56.0=1.6% 1.2/40.0=3.0%
Hz

Ux/Hz
Uz 2.8/6.0=46.6% 0.5/6.0=8.3%

Hz
Uy /Hz

Uz 0.3/6.0=5.0% 0.0/6.0=0.0%

D. Complex trajectories tracking

We now test the efficiency of the compensator to maintain
the performances when complex reference trajectories in the
space are applied. Lissajous curves have been used in [45] as
novel reference signal shapes for high speed scanning probe
microscopy. In this subsection, we test the efficiency of our

compensator by considering Lissajous trajectory tracking in
the X − Y plane. The reference input is based on two sine
signals: xref = x̂sin(2πfxt) and yref = ŷsin(2πfyt). The
frequency ratio is set to fx/fy = 0.4Hz/0.3Hz = 4/3 and
the amplitudes x̂ and ŷ are both set to 20µm. Fig. 10-(a),
(b) and (c) show the time domain, the spatial curves and the
tracking errors respectively. In order to evaluate the gained
performaces, the outputs of the actuator without compensator
are also pictured in the same figures. For this latter case, the
input control Ux and Uy have been scaled with a gain of 20µm

150V
in order to make the comparison possible, which comes down
to a linear feedforward control.

From these figures, we notice the substantial improvement
of the tracking when the proposed multivariable hysteresis
compensator is applied. This improvement is also seen in
Fig. 10-(c) by comparing the tracking errors with and without
the proposed compensator, for both X and Y axis. The
experiments were carried out at different fixed values of Z
and they demonstrate the same performaces.

VII. CONCLUSIONS

This paper dealt with the modeling, the identification proce-
dure and the compensation of hysteresis in multi-DoF actuated
systems. Such systems exhibit hysteresis both in the direct
transfers and in the couplings axes. The proposed model
consists in extending the classical Bouc-Wen hysteresis model
devoted to one-DoF systems. We have shown that this model
can be efficiently used for control purpose by using an inverse
multiplicative structure feedforward strategy. This technique
permits to avoid additional controller parameters computation.
Such advantage is essential when the number of DoF is
high. To validate the proposed modeling and compensation,
we applied the method to a three DoF piezoelectric tube
actuator. The experimental results demonstrated the substantial
reduction of the hysteresis in the three axis and of the
couplings of the controlled actuator. Future work will focus on
the adaptation of the proposed approach in order to take into
account the modeling and the compensation of rate dependent
hysteretic systems.
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