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Abstract: This paper illustrates a general synthesis methodology of asymptotic stabilising,
energy-based, boundary control laws, that is applicable to a large class of distributed port-
Hamiltonian systems. Similarly to the finite dimensional case, the idea is to design a state
feedback law able to perform the energy-shaping task, i.e. able to map the open-loop port-
Hamiltonian system into a new one in the same form, but characterised by a new Hamiltonian
with a unique and isolated minimum at the equilibrium. Asymptotic stability is then obtained via
damping injection on the boundary, and is a consequence of the La Salle’s Invariance Principle
in infinite dimensions. The general theory is illustrated with the help of a simple concluding
example, i.e. the boundary stabilisation of a transmission line with distributed dissipation.
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1. INTRODUCTION

Port-Hamiltonian systems have been introduced about
twenty years ago as the mathematical formalisation of
bond-graphs to describe lumped parameter physical sys-
tems in an unified manner. Further information can be
found e.g. in Maschke and van der Schaft [1992], van der
Schaft [2000], in Duindam et al. [2009], van der Schaft and
Jeltsema [2014], and also in Macchelli [2014a] as far as
an extension to macro-economic systems is concerned. For
this class of systems, the dynamic results from the power
conserving interconnection of a limited set of components,
each characterised by a particular “energetic behaviour,”
i.e. storage, dissipation, generation and conversion. The
generalisation to the infinite dimensional scenario leads
to the definition of distributed port-Hamiltonian systems
(see e.g., van der Schaft and Maschke [2002], Macchelli
and Maschke [2009]) that have been introduced about one
decade ago, and that have proved to represent a powerful
framework for modelling, simulation and control physical
systems described by PDEs. Distributed port-Hamiltonian
systems share analogous geometric properties with their
finite dimensional counterpart, and also the development
of stabilising control laws follows the same rationale of
the lumped parameter case. Since in most of the cases the
Hamiltonian is the total energy of the system, stabilisation
could be obtained by driving the Hamiltonian to zero.
As a consequence, having such a physical quantity at our
disposal simplifies the controller design considerably.

Most of the current research on the stability and stabili-
sation of distributed port-Hamiltonian systems deals with

the development of boundary controllers. For example, in
Rodriguez et al. [2001], Macchelli and Melchiorri [2004,
2005], Pasumarthy and van der Schaft [2007], Siuka et al.
[2011], Schöberl and Siuka [2013], this task has been ac-
complished by looking at, or generating, a set of Casimir
functions in closed-loop that robustly (i.e., independently
from the Hamiltonian functions) relates the state of the
infinite dimensional port-Hamiltonian system with the
state of the controller, which is a finite dimensional port-
Hamiltonian system interconnected to the boundary of the
distributed parameter one. The shape of the closed-loop
energy function is changed by acting on the Hamiltonian
of the controller e.g. to introduce a minimum in a de-
sired configuration. As discussed in van der Schaft [2000],
Ortega et al. [2001], this procedure is the generalisation
of the control by interconnection via Casimir generation
(energy-Casimir method) developed for finite dimensional
systems. The result is an energy-balancing passivity-based
controller that is not able to deal with equilibria that
require an infinite amount of supplied energy in steady
state, i.e. with the so-called “dissipation obstacle.”

In this paper, it is shown how to enlarge the class of
boundary energy-shaping controllers beyond the dissipa-
tion obstacle by focusing on the trajectories that corre-
spond to a particular Hamiltonian, rather than on the
geometric structure (i.e., the Dirac structure), of the sys-
tem only (see e.g., Macchelli [2014b,c]). Since the state
dependent control action obtained thanks to the energy-
Casimir method is able to shape the Hamiltonian function,
the idea is to procede in a more direct manner, i.e. by
determining a feedback law that maps the open-loop tra-
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jectories into the trajectories of a target system with the
same port-Hamiltonian structure (i.e., Dirac and resistive
structures are not modified), but characterised by a shaped
Hamiltonian with the desired stability properties. This
is the same concept adopted in finite dimensions in case
of stabilisation with state-modulated sources discussed in
Ortega et al. [2001], or with the more general IDA-PBC
control technique presented in Ortega et al. [2002].

In this paper, then, the boundary control via energy-
shaping is developed for the class of linear, distributed,
port-Hamiltonian systems presented in Le Gorrec et al.
[2005], Jacob and Zwart [2012]. By transforming the orig-
inal system via state feedback into a new one with an
Hamiltonian function that has an isolated minimum at the
equilibrium, simple stability is obtained. To have asymp-
totic stability, it is necessary to add damping by means of
a further control loop. In this respect, another important
contribution of this paper is to show that, if it is possible to
impose full boundary dissipation to the port-Hamiltonian
system resulting from the energy-shaping procedure, then
the desired equilibrium can be proved to be asymptotically
stable. It is worth noting that the proposed techniques can
be easily extended to the nonlinear case: the difficult part
is then to prove existence of solutions for the set of coupled
PDEs and ODEs associated to the closed-loop system, and
the invariance properties of the steady state trajectories
determined by the damping injection loop.

The paper is organised as follows. In Section 2, the class
of linear, distributed, port-Hamiltonian systems under in-
vestigation is briefly presented, together with some fun-
damental properties. The energy-shaping boundary con-
trol technique is presented in Section 3, while asymptotic
stability in case of full boundary dissipation (damping
injection) is discussed in Section 4. Then, in Section 5,
the general methodology is illustrated with the help of
an example, namely a trasmission line with distributed
dissipation. Conclusions and a discussion about possible
future research activities are reported in Section 6.

2. BACKGROUND

In this paper, we refer to the class of linear distributed
port-Hamiltonian systems that have been studied in Le
Gorrec et al. [2005], Villegas et al. [2009], Jacob and Zwart
[2012], Ramı́rez et al. [2014], i.e. to systems described by
the following PDE:

∂x

∂t
(t, z) = P1

∂

∂z

(
L(z)x(t, z)

)
+ (P0 −G0)L(z)x(t, z) (1)

with x ∈ Rn, and z ∈ [a, b]. Moreover, P1 = P1
T,

P0 = −P0
T, G0 = GT

0 ≥ 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such
that L(z) = LT(z) and L(z) ≥ κI, with κ > 0, for
all z ∈ [a, b]. For the sake of clearness, (Lx) (t, z) :=
L(z)x(t, z). The state space is X = L2(a, b;Rn), and is
endowed with the inner product 〈x1 | x2〉L = 〈x1 | Lx2〉
and norm ‖x1‖2L = 〈x1 | x1〉L, where 〈· | ·〉 denotes the
natural L2-inner product. The selection of this space for
the state variable is motivated by the fact that ‖·‖2L is
proportional to the energy function. As a consequence, X
is also called the space of energy variables, and Lx are
the co-energy variables. This class is quite general and

includes models of flexible structures, traveling waves, heat
exchangers, and bioreactors among others. The PDE (1)
can be also written as ẋ = J x, where J is the linear
operator defined as

J x := P1
∂

∂z
(Lx) + (P0 −G0)Lx

with domain

D(J ) =
{
Lx ∈ H1(a, b;Rn)

}
To have a distributed port-Hamiltonian system, the PDE
(1) has to be “completed” by proper boundary port. More
precisely, given Lx ∈ H1(a, b;Rn), the boundary port
variables associated to (1) are the vectors f∂ , e∂ ∈ Rn
defined by (

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)
︸ ︷︷ ︸

=:R

(
(Lx)(b)
(Lx)(a)

)
(2)

The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that

1

2

d

dt
‖x(t)‖2L = eT∂ (t)f∂(t)

The problem of determining the boundary inputs and
outputs for (1) to have a so-called boundary control
system on X, see e.g. Curtain and Zwart [1995], has been
addressed in Le Gorrec et al. [2005], Villegas et al. [2009].

Theorem 1. Let W be a n× 2n real matrix. If W has full
rank and satisfies WΣWT ≥ 0, being

Σ =

(
0 I
I 0

)
then the system (1) with input

u(t) = W

(
f∂(t)
e∂(t)

)
=: Bx (3)

is a boundary control system onX, with B : H1(a, b;Rn)→
Rn. Furthermore, the operator J̄ x := P1(∂/∂z)(Lx)+(P0−
G0)Lx with domain

D(J̄ ) =

{
Lx ∈ H1(a, b;Rn) |

(
f∂
e∂

)
∈ KerW

}
=
{
Lx ∈ H1(a, b;Rn) | Bx = 0

}
generates a contraction semigroup on X. Moreover, let
W̃ be a full rank n × 2n matrix such that

(
WT W̃T

)
is

invertible and let P be given by

P =

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)−1
Define the output as

y(t) = W̃

(
f∂(t)
e∂(t)

)
=: Cx (4)

with C : H1(a, b;Rn) → Rn. Then, for u ∈ C2(0,∞;Rn)
and (Lx)(0) ∈ H1(a, b;Rn), the following energy balance
equation is satisfied:

1

2

d

dt
‖x(t)‖2L ≤

1

2

(
u(t)
y(t)

)T

P

(
u(t)
y(t)

)
(5)

Proof. See Le Gorrec et al. [2005].
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In this paper, the matrices W and W̃ are selected in such
a way that (1) is in impedance form, which means that

WΣWT = W̃ΣW̃T = 0 WΣW̃T = I (6)

and consequently the energy-balance relation (5) reduces
to

1

2

d

dt
‖x(t)‖2L ≤ y

T(t)u(t)

3. BOUNDARY CONTROL BY ENERGY-SHAPING

In this section, it is shown how to design a boundary state-
feedback control action in the form

u(t) = β(x(t, ·)) + u′(t) (7)

that is able to map the open-loop dynamic (1) into the
target one

∂x

∂t
(t, z) =

=P1
∂

∂z

δHd

δx
(x(t, z)) + (P0 −G0)

δHd

δx
(x(t, z))

u′(t) = WR

 δHd

δx
(t, b)

δHd

δx
(t, a)


(8)

in which Hd(x) = H(x) + Ha(x). The target system has
the same internal structure of the original one, i.e. the
matrices P1, P0 and G0 are not changed, but a different
Hamiltonian Hd and boundary input u′.

The idea here is to overcome the intrinsic limitations
of the energy-Casimir method that are associated with
the admissible (internal) dissipation, and to realise an
“explicit” energy-shaping procedure, as in the lumped
parameter case. The energy-Casimir method, in fact, is
constructive and it is based on the definition of a boundary
controller in port-Hamiltonian form whose Dirac structure
is chosen in order to have a proper set of Casimir functions
in closed-loop. Such invariants show how it is possible to
shape the total energy of the system by acting on the
controller Hamiltonian: the stabilising control law depends
then on this choice and on the relation between states of
the plant and of the controller specified by the Casimir
functions. The associated control action can be easily
written in terms of a state-feedback law β(x(t, ·)) as in
(7), but unfortunately such control action suffers of all the
intrinsic limitations of the energy-Casimir method, i.e. it
is not able to stabilise equilibria that require an infinite
amount of supplied energy in steady state, van der Schaft
[2000], Ortega et al. [2001].

Proposition 2. (Energy-shaping). Consider the boundary
control system of Theorem 1, and denote by H(x) =
1
2 ‖x‖

2
L its Hamiltonian function. Then, the boundary

state-feedback law u = β(x) + u′, being u′ an auxiliary
boundary input, maps (1) into the target dynamical sys-
tem (8), with Hd(x) = H(x) +Ha(x) if

P1
∂

∂z

δHa

δx
(x) + (P0 −G0)

δHa

δx
(x) = 0 (9)

β(x) +WR

 δHa

δx
(b)

δHa

δx
(a)

 = 0 (10)

Proof. The proof is immediate by comparison of initial
and target dynamics. For a geometric interpretation of
this result in the distributed parameter scenario, refer to
Macchelli [2014c].

With u′ = 0, energy is not increasing along the trajectories
of (8), i.e. Ḣd(x(t)) ≤ 0. Asymptotic stability can be
then obtained by damping injection, provided that a dual
output to u′ is properly defined. In this respect, with
Theorem 1 in mind, the natural choice turns out to be

y′(t) = W̃R

 δHd

δx
(t, b)

δHd

δx
(t, a)

 (11)

which clearly implies that d
dtHd(x(t)) ≤ y′

T
(t)u′(t). Such

new boundary port (u′, y′) has now to be terminated over
a dissipative element to obtain asymptotic stability of
equilibria, or just to improve the convergence rate:

u′(t) = −Ξy′(t), Ξ = ΞT > 0 (12)

Conditions for checking asymptotic stability in closed-loop
are discussed in the next section, while an application
of this technique on a particular example is presented in
Section 5.

4. ASYMPTOTIC STABILITY ANALYSIS

The aim of this section is to show that the energy-shaping
control law defined in (9) and (10), combined with the
damping injection relation (12) is able to asymptotically
stabilise (1) in an equilibrium (Lx)? ∈ H1(a, b; Rn) solu-
tion of

P1
∂

∂z
(Lz)?(z) + (P0 −G0)(Lz)?(z) = 0 (13)

The main result is an application to the La Salle’s Invari-
ance Principle in infinite dimensions, see e.g. Luo et al.
[1999]. The first step is to determine how to chose Ha so
that (9) holds.

Lemma 3. The functions Ha solutions of (9) are in the

form Ha(x) = Ĥa(ξ(x)), with

ξ(x(t, ·)) =

∫ b

a

Φ̂T(z)x(t, z) dz (14)

where Φ̂(z) =
(
Φ1(z), . . . , Φnξ

(z)
)
. Here, the functions

Φi ∈ H1(a, b; Rn), i = 1, . . . , nξ ≤ n, are independent
solutions of

P1
∂

∂z
Φi(z) + (P0 −G0)Φi(z) = 0 (15)

Since in this paper we have restricted ourselves to the
linear case, let us assume that Ha is quadratic in ξ.
Furthermore, denote by φ? ∈ Rnξ a vector such that
(Lx)?(z) = Φ̂(z)φ?. Then, Hd = H + Ha has a global
minimum in (Lx)? if

Ha(x) =
1

2

{∫ b

a

Φ̂T
[
x− L−1Φ̂φ?

]
dz

}T

×

×Qa

{∫ b

a

Φ̂T
[
x− L−1Φ̂φ?

]
dz

}
−

− φT?

(∫ b

a

Φ̂Tx dz

)
+ κ (16)
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where Qa = Qa
T ≥ 0 and κ ∈ R is some constant.

Remark 4. If in (16) it is assumed that Qa = 0, then
the energy-shaping state-feedback law β defined in (10)
reduces to a constant, namely

β(x) = WR

(
Φ̂(b)φ?
Φ̂(a)φ?

)
which are the boundary conditions associated to the equi-
libria (Lx)?. Then, the effect of the damping injection
contribution (12) is to dissipate the total energy until the
new minimum is reached. A simple application of Villegas
et al. [2009] shows that the equilibrium is exponentially
stable.

Theorem 5. (Asymptotic stability). Let us consider the
linear, infinite dimensional, port-Hamiltonian system (1)
and the equilibrium (Lx)? satisfying (13). Then, the con-
trol action u = β(x) + u′ with β defined in (10), being Ha

chosen as in (16), and with u′ defined in (12), makes (Lx)?
asymptotically stable.

Proof. Here, only a sketch of the proof is reported. At
first, let us assume for simplicity and without loss of
generality that Φ̂(z) = (Lx)?(z), so that ξ ∈ R and
Qa ∈ R. In spite of Remark 4, select Qa > 0. Note at first
that with a simple change of coordinates, studying the
stability of (Lx)? is equivalent to studying the stability
of the origin. For the closed-loop system, the following
energy-balancing relation holds true:

d

dt
Hd(x) = −

∫ b

a

(
δHd

δx

)T

G0
δHd

δx
dz − y′TΞy′

≤ 0

with y′ given by (11). Since Ξ is non-singular, and in
spite of (12), it is easy to verify that energy is decreasing
until a steady-state configuration x̄(t, z) is reached. Such
configuration, possibly time-variant, satisfies

G0

[
(Lx̄)(t, z) +Qaξ̄(t)Φ̂(z)

]
= 0 δHd

δx
(x̄(t, b))

δHd

δx
(x̄(t, a))

 =

=

(
(Lx̄)(t, b)
(Lx̄)(t, a)

)
+Qaξ̄(t)

(
Φ̂(b)

Φ̂(a)

)
= 0

(17)

where ξ̄ is the corresponding steay state evolution of ξ.
The second relation in (17) is a consequence of Theo-
rem 1. Under the assumption of pre-compactness of the
orbits, asymptotic stability is a consequence of La Salles
Invariance Principle, Luo et al. [1999]. More precisely, it
is nessarily to verify that the only steady state solution
x̄(t, z) which is invariant and compatible with Ḣd = 0 is

the origin. In this respect, it is easy to see that ˙̄ξ(t) = 0,
that means that ξ̄(t) = ξ? in steady state. With some
further computations, it is possible to prove that

φ(t, z) := x̄(t, z) + ξ?QaL−1(z)Φ̂(z) = 0

for t ≥ τ , being τ sufficiently large, which implies that

x̄(t, z) = −ξ?QaL−1(z)Φ̂(z)

when t ≥ τ . From (14) we have that

ξ? =

∫ b

a

Φ̂T(z)x̄(t, z) dz

= ξ?Qa

∫ b

a

Φ̂T(z)L−1(z)Φ̂(z) dz

Since the integral term is greater than 0 since L(·) > 0, we
have that ξ? = 0, and then that x̄(t, z) = 0 for t ≥ τ . Then,
the zero solution is the only invariant solution compatible
with Ḣd = 0, which turns out to be asymptotically stable
based on La Salles Invariance Principle considerations.

5. EXAMPLE: BOUNDARY STABILISATION OF A
TRANSMISSION LINE WITH DISSIPATION

The port-Hamiltonian formulation of the lossless transmis-
sion line equation is in the form (1) and given by (see van
der Schaft and Maschke [2002]):

∂

∂t

(
q(t, z)
p(t, z)

)
=

{(
0 −1
−1 0

)
∂

∂z
−
(

0 0
0 D

)}
×

×


δH

δq
(q(t, z), p(t, z))

δH

δp
(q(t, z), p(t, z))

 (18)

where z ∈ Z ≡ [0, `], q and p are the charge and magnetic
flux densities along the line, and

H(q, p) =
1

2

∫ `

0

(
p2

L
+
q2

C

)
dz (19)

is the Hamiltonian (energy) function, with C and L the
distributed capacitance and inductance. Moreover, in (18),
D ≥ 0 is the dissipation term associated to the presence
of a distributed resistance along the line. The system
exchanges power with the environment through a couple
of ports defined in z = 0 and in z = `:(

I0(t), V0(t)
)

=

(
δH

δp
(0, t),

δH

δq
(0, t)

)
(
I`(t), V`(t)

)
=

(
−δH
δp

(0, t)(`, t),
δH

δq
(`, t)

) (20)

that are the pair current/voltage at the extremities of the
line itself. Finally, it is assumed that the controller is acting
on the boundary ports (20) with the following causality:

u(t) =

(
I0(t)
V`(t)

)
y(t) =

(
V0(t)
I`(t)

)
(21)

With the definition (21) of (boundary) inputs and outputs,
a boundary control system in the sense of Theorem 1 is
obtained. As discussed in Section 3, to stabilise (18), it is
required to determine the state-feedback law u = β(q, p)+
u′, such that the equilibrium (q?, p?) is asymptotically
stable. Such equilibrium is solution of

∂

∂z

δH

δp
(q?, p?) = 0

∂

∂z

δH

δq
(q?, p?) +D

δH

δp
(q?, p?) = 0

(22)

where
δH

δq
(q?(z), p?(z)) =

q?(z)

C
δH

δp
(q?(z), p?(z)) =

p?(z)

L
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At first, let us assume that D = 0, i.e., there is no
distributed resistance in the line. In this case, from
Lemma 3, the class of function Ha that can be employed
in the energy-shaping design procedure are in the form
Ha(q, p) = Ĥa

(
ξ1(q, p), ξ2(q, p)

)
, with

ξ1(q(t, ·)) =

∫ `

0

q(t, z) dz

ξ2(p(t, ·)) =

∫ `

0

p(t, z) dz

(23)

and Ĥa that can be freely chosen. From (22), it is easy to
find out that the equilibrium configuration is given by

q(t, z) = q? p(t, z) = p? (24)

which means constant charge and flux densities along
the line (or constant current and voltages since the
Hamiltonian is quadratic). To have in closed-loop a port-
Hamiltonian system with Hamiltonian Hd = H +Ha with
a minimum in (24), a possible choice of Ĥa is

Ĥa(ξ1, ξ2) =
1

2
K1(ξ1 − ξ1?)2+

+
1

2
K2(ξ2 − ξ2?)2 − q?ξ1 − p?ξ2 (25)

where ξ1? and ξ2? are the values of ξ1 and ξ2 at the
equilibrium, i.e. ξ1? = `q?, and ξ2? = `p?, while K1, K2

are two positive gains. It is easy to check that the closed-
loop system is lossless, so only simple stability has been
achieved e.g. in the sense of Swaters [2000]. However,
asymptotic stability can be obtained by damping injection
at the boundary, as discussed in Section 3; then, asymp-
totic stability follows immediately from Theorem 5.

It is possible to verify that the same control action can
be determined by applying the energy-Casimir method. In
fact, let us consider the following linear control system

ξ̇C(t) = JC
∂HC

∂ξC
(ξC(t)) + uC(t)

yC(t) =
∂HC

∂ξC
(ξC(t))

in which ξC = (ξ1, ξ2) ∈ R2 is the state variable, while
JC = −JT

C and HC are the interconnection matrices
and Hamiltonian respectively, to be assigned later on.
With simple computations, it can be checked that Casimir
functions are not present in closed-loop if JC = 0. From
a physical point of view, this result is obvious. With this
choice, in fact, such boundary controller consists of two
separate systems, each required to provide a constant
power flow in steady state: they are not energy-balancing
controllers. So, it is necessary to couple these regulators
and allow for an internal power flow at the controller side.
This can be achieved by choosing

JC =

(
0 I
−I 0

)
which implies that the closed loop system is characterised
by the following Casimir functions:

C1(ξ1(t), q(t, ·)) = ξ1(t)−
∫ `

0

q(t, z) dz

C2(ξ2(t), p(t, ·)) = ξ2(t)−
∫ `

0

p(t, z) dz

Note the similarities with (23), which lead to the same
choice (25) as far as the controller Hamiltonian is con-
cerned.

Due to internal dissipation, i.e. when D 6= 0, the energy-
Casimir method cannot be applied, and it then preferable
to rely on the energy-shaping methodology presented in
Section 3. The PDE (9) provides the admissible functions
Ha, and (10) the associated boundary control action. From
(22), the equilibrium configuration takes the following
form

q?(z) = − p̄?
`
Dz + q̄? p?(z) = p̄?

where q̄?, p̄? are some real constants.

With Lemma 3 in mind, the admissible Ha takes the form
Ha(q, p) = Ĥa(ξ(q, p)) with

ξ(q(t, ·), p(t, ·)) =

∫ `

0

 q̄?
p̄?
− D̄

`
z

1

T(
q(t, z)
p(t, z)

)
dz

A possible choice for Ha is with

Ĥa(ξ) =
1

2
K(ξ − ξ?)2 − p̄?ξ

where K is a positive gain, and ξ? the value of ξ at the
equilibrium. With this choice, the state feedback action β
obtained thanks to (10) is able to shape the closed-loop
Hamiltonian and to introduce a minimum in the desired
equilibrium. Asymptotic stability is obtained via damping
injection (12) on the new control port (u′, y′) defined in
(8) and (11) in the general case, as discussed in Theorem 5.

6. CONCLUSIONS

The motivating idea of the paper has been the develop-
ment of a general synthesis methodology of boundary con-
trol laws for linear, distributed port-Hamiltonian systems
with one-dimensional spatial domain. As in the lumped
parameter case, the feedback law is determined in such a
way that its effect on the system is to shape the energy
function, and to modify the dissipative structure. The
first step is responsible for achieving simple stability of an
equilibrium, while the second one for assuring asymptotic
convergence of the trajectories. Usually, the first step has
been usually accomplished thanks to the so-called energy-
Casimir method, but due to the fact that the class of
stabilising controller that such method can provide is quite
limited because of the dissipation obstacle, the problem of
determining a feedback law able to shape the Hamiltonian
in a proper manner has been tackled here by directly focus-
ing on the trajectories of open and closed-loop system, i.e.
by determining the control action that maps the open-loop
system into a new one, with the same (Dirac) structure but
a different Hamiltonian. To achieve asymptotic stability, a
further feedback loop is closed to implement a damping
injection strategy: the first loop obtained by applying the
energy-shaping procedure is responsible for having a new
Hamiltonian with an isolated minimum at the equilibrium,
while this second one for dissipating energy until such
minimum is reached. The resulting control law is proved
to asymptotically stabilise the system.

Even if the proposed methodology has been developed for
linear systems, some of the techniques discussed here can
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be easily generalised to cope with the nonlinear case. This
extension is the main future research topic, together with
the stabilisation of distributed port-Hamiltonian systems
with 2D or 3D spatial domain.
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