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∗ Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie
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Abstract:
This paper deals with robust gripping force control at the microscale for a safe manipulation of
deformable soft materials. Since mechanical properties of micrometer sized objects are uncertain,
instability often occurs during a gripping task. In this article, the design of an output feedback
self-scheduled dynamic controller is proposed considering parametric uncertainties of a set of
65 soft and resilient microspheres. The degrees of freedom of the controller are managed by the
design of a set of elementary observers. Robustness with respect to parametric uncertainties is
satisfied thanks to an iterative procedure based on an eigenstructure assignment methodology
and a worst case analysis. The developed controller is of low order and can be implemented in
real time. Simulations demonstrate the validity of the proposed control approach.
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1. INTRODUCTION

Microrobotics hold promises for efficient and safe manip-
ulation of biologic samples and living cells (Liu et al.
[2009]). In precursor works, Atomic Force Microscopy in-
spired techniques has proven themselves a reliable tool for
characterization of biomaterials. Muller et al. [2009] used
an AFM probe to obtain high resolution force images of
living cells. Boukallel et al. [2009] proposed an improved
probe design to measure mechanical characteristics of cells
in long traction/compression cycles. Desmaele et al. [2012]
introduced a dynamic measurement method improving
the reliability. However, the single cantilever or similar
design of such sensors are ill adapted for manipulation.
Recently, the development of microgrippers that include
both actuation and force sensing in dimensions adapted to
biologic samples opens the way to novel and cost-effective
applications ranging from in-vitro fertilization to genetics
(Carrozza et al. [2000], Beyeler et al. [2007]).

Biologic cells are highly deformable soft materials. They
are very sensitive on applied force and on how they are
handled. The use of grippers for their manipulation calls
for a precise force control of grasping. This particular issue
is evidently not limited to biologic samples and is a general
concern for micro and nanoscale manipulation. To apply
safety gripping forces required for the manipulation of soft
objects, several solutions have been reported. Bolopion
et al. [2012] uses haptic feedback allowing the user to in-
teract with microscale objects and leaves the force control
to the operator. In a more traditional approach, feedback

control (Liu et al. [2009], Carrozza et al. [2000], Park et al.
[2005]) allow for an automated approach to gripping.

At the microscale, soft materials have mechanical prop-
erties, namely stiffness and damping, close to that of ac-
tuation and sensing systems of microgrippers. Therefore,
during gripping tasks, samples have enough variation to
induce instabilities to damage the gripper or the sample. In
the literature, microscale force feedback control design are
most of time based on PI, PID or LQG schemes (Liu et al.
[2009], Carrozza et al. [2000], Park et al. [2005], Boudaoud
et al. [2013]). Controller synthesis is often achieved con-
sidering the mechanical properties of a single sample
and closed loop performance are validated experimentally
when gripping the sample used for the synthesis (Liu
et al. [2009], Boudaoud et al. [2013]). These approaches
lack the robustness required for micromanipulation. To
overcome this problem, H∞ controllers such as proposed in
Rakotondrabe and Le Gorrec [2010], Rakotondrabe et al.
[2007] are often used. Resulting schemes allow for a robust
force control, but such controllers are often of high order
and difficult to implement in real time (Boudaoud et al.
[2012], Poussot-Vassal et al. [2008]).

In the aim to provide robustness in a low-order controller
an approach is proposed here. Its synthesis is based on
an eigenstructure assignment methodology as previously
mentioned in Boudaoud et al. [2012]. The shortcoming
of this approach is in the presence of unknown variable
parameters. Indeed, in a gripping case, it is assumed that
size, stiffness and the damping of the samples are part
of those unknowns. To overcome this problem, based on
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Fig. 1. Simplified scheme of the FT-G100 microgripper.

a set of elementary observers, multi-model assignment
constraints are defined here using an iterative procedure
(Magni et al. [1998]). The most relevant multimodel con-
straints are defined considering parametric uncertainties in
a set of 65 soft and resilient microspheres with diameters
ranging from 40 µmto 80 µm and stiffness from 2,8 N/m
to 15,7 N/m. The order of the controller is equal to the
number of observers, and is potentially low.

This proposed approach is implemented here using an
electrostatic microgripper with an integrated force sensor.
A nonlinear coupled model of a microgripper grasping an
object is established. A set of 65 microspheres with varying
size, stiffness and damping are mechanically character-
ized. Using the nonlinear model and the sample dataset,
gripping force control is then achieved through the above
mentioned methodology.

2. SPECIFICATIONS OF THE MICROGRIPPER AND
SAMPLE MICROSPHERES

The microgripper used in this study is the FT-G100 from
FemtoTools GmbH (Beyeler et al. [2007]). A detailed
description of its architecture and working principle are
described in Boudaoud et al. [2013]. This two finger mi-
crogripper depicted in fig. 1 includes comb-drive actuation
on one digit and capacitive force sensing on the other. The
gap of the gripper is 100 µm.

Manipulated samples are thermoplastic particles, called
expancel microspheres, provided by AkzoNobel 1 . They are
composed of a polymer shell encapsulating a gas. They are
deformable, soft and resilient, with properties in the range
of biological samples which makes them very attractive for
force control experiments at the microscale. Three models
of microspheres have been used: 461 WE 20 d36, 461
DE 20 d70 and 461 DET 40 d25. For each model, the
manufacturer provides the size, with around 10% certitude
as shown in Table 1, but the stiffness and the damping are
not known. Hence, the size and both the stiffness and the
damping of a set of 65 microspheres are experimentally
identified in section 3.2 using the FT-G100 microgripper .

1 http://www.akzonobel.com

Table 1. Reference, diameter and number of charac-

terized Expancel microspheres.

Reference Diameter Number of samples

461 WE 20 d36 57 µm ± 14 µm 25

461 DE 20 d70 55 µm ± 5 µm 17

461 DET 40 d25 68 µm ± 10 µm 23

3. NONLINEAR MODELING OF THE GRASPING

3.1 Modeling of the gripper

In Boudaoud et al. [2012], a nonlinear model of the FT-
G100 actuation mechanism (fig. 1) is described along with
an experimental validation. It’s a mass-spring-damper
model including the stiffness ka and the damping da that
are nonlinear polynomial functions of the position of the
actuated arm ya:

ka (ya) =

6∑
i=1

kiay
i−1
a and da (ya) =

4∑
i=1

diay
i
a

This mass-spring-damper model is extended to the case
where a microsphere is gripped between the actuated
and sensing arms. This model is obtained by coupling
both the nonlinear model of the actuation mechanism
with the linear mass-spring-damper model of the sensing
mechanism and considering the gripped object as a spring-
damper with a particular stiffness ko and damping do.
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where yi, ki, di and mi are respectively the position,
stiffness, damping and mass of the actuated arm (i ⇔
a) and the sensing arm (i ⇔ b) as depicted in fig. 1.
Na, ε, hz, and g are intrinsic parameters of the comb
drive, providing the electrostatic force Felec(Vin). Fc is the
gripping force, as measured through the capacitive sensor.
Da is an amplification parameter. Numerical values of the
model parameters are given in Boudaoud et al. [2012] and
Boudaoud et al. [2013].

3.2 Experimental characterization of the microspheres

In a random gripping case, the stiffness ko, the damping
do and the diameter dsphere (fig. 1) of the gripped object
are unknown. A robust control strategy would ideally be
able to deal with these uncertainties. For the synthesis of
such a controller, a set of 65 expancel microspheres with
varying ko, do and dsphere are experimentally identified.

http://www.akzonobel.com


Fig. 2. The microgripper handling an expancel microsphere: uncom-

pressed (a) and compressed (b).

This dataset is then used in the study, first for synthesis
and then for validation.

The set of microspheres are characterized using solely the
microgripper, which was mounted on a 3 DoF stage for
this purpose. The user positions the gripper on the sphere
manually until it contacts the sensing arm as depicted in
fig. 1. In order to contact both fingers on the object, the
actuated arm of the gripper is then fed with an input
voltage Vin0 until the sensing arm registers a signal. At
this stage, the gripping force is lower than 0.1 µN . The
final position ya of the actuated arm is measured with
an external laser interferometer (SP-120 SIOS Meßtechnik

GmbH). The dsphere is deduced from this measurement (i.e.
dsphere = 100 µm− ya).

A 10 V step signal is then applied to the actuator,
which compresses the grasped sample (Fig.2). The step
response provided by the force sensor is hence used for the
identification of the stiffness k0 and the damping d0 using
the nonlinear coupled model as in eq. (1).

Size and stiffness identification results are shown in Fig.3.
dsphere ranges from 43.66 µm to 78.11 µm and ko varies
between 2.8 N/m and 15.7 N/m. The damping do ranges
from 1.5× 10−6 to 1.8× 10−4. The first eigenmode of the
coupled system (grasping model) is between 1.6 kHz and
2 kHz. The frequency response of the coupled system to
a 10 V step voltage is shown in Fig.4 for three different
microspheres from Table 1.

3.3 Linearization of the grasping model

For each object in the dataset, the nonlinear grasping
model is linearized in the neighborhood around an oper-
ating point δa. For the comb drive actuator, the nonlinear
parameters ka (δa) and da (δa) are polynomial. The gov-
erning parameter δa is the position of the actuated arm.
Using a Jacobian linearization, the nonlinear plant of eq.
(1) is formulated into a linear parameter varying model:
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Fig. 4. Frequency responses of the microgripper handling three

different microspheres for a 10 V step voltage - simulation and

experimental data.

Gc (∆c)

{
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[
ỹa ˙̃ya ỹb ˙̃yb

]T
where Ac ∈ Rn×n, Bc ∈ Rn×m and Cc ∈ Rp×n, with
n = 4, m = 1 and p = 1. ∆c = [∆′c dsphere] and
∆′c = [ko do]. ỹa is the variation of ya around the
operating point δa. The nonlinearity arising from the
square voltage is overcome by considering U = V 2

in as
the input of the model for the controller design. This
consideration is valid since the input voltage applied to
the actuator is always positive.

A set of 65 Linear Time Invariant (LTI) models are derived
from eq. (2). Stiffness ko, damping do and the diameter
dsphere (expressed as 100 µm − δa) are matched for each
object in the dataset. Bode diagram of the elementary LTI
models obtained from eq. (2) are shown in Fig.5.

The capacitive force sensor provides its output with a delay
Tr = 0.3 ms. This delay has to be taken into account

-20

0

20

M
ag

ni
tu

de
 (

dB
)

10
4

10
5

-180
-135
-90
-45

0
45

P
ha

se
 (

de
g)

Frequency  (rad/sec)

Fig. 5. Bode diagrams of the set of LTIs models.



for the controller synthesis. As such, let us consider Fcd
the delayed gripping force signal. The delay is added
to the model of eq. 2 by means of a first order Padé
approximation as follows:

Gdelay =
Fcd

Fc
= e−Trs '

1− Tr
2
s

1 + Tr
2
s

(3)

The order of the state space model is therefore increased
by 1. Considering Adelay, Bdelay, Cdelay and Ddelay the
state space matrices of Gdelay under the state space
representation, the LPV model becomes:

Gcd (∆c)

{
Ẋcd = Acd (∆c)Xcd +BcdU

Fcd = Ccd
(
∆′c
)
Xcd

(4)

Acd (∆c) =

[
Ac (∆c) 0n×1

BdelayCc (∆′c) Adelay

]
, Bcd =

[
Bc

01×m

]
Ccd (∆′c) =

[
DdelayCc (∆′c) Cdelay

]
Xcd =

[
XT
c XT

d

]T
where Xd ∈ R1×1 is the state of the first order Padé
approximation Gdelay.

4. SELF SCHEDULED CONTROLLER

Control specifications are defined in terms of precision,
closed loop bandwidth and damping as required for a
micromanipulation task. For nominal performance, control
specifications are given as: (i) The closed loop response
time of the system must be lower than 15 ms. (ii) No
overshoot is admitted. An overshoot of a few µN can
destroy the manipulated object. (iii) The maximum static
error must be lower than 0.1 %.

The proposed control strategy is based on an output
feedback eigenstructure assignment (ESA). The control
strategy is first build considering a nominal model, a
configuration for a given fixed value of ∆c. In a second
step to ensure the robustness, ∆c is considered variable.
An iterative strategy and a worst-case analysis is used
to tune the parameters of the multimodel eigenstructure
assignment.

4.1 ESA with fixed ∆c = ∆c1

The classical ESA methodology is first proposed in Moore
and Klein [1976]. Let us consider the coupled model
(grasping model) [Acd (∆c1), Bcd, Ccd (∆′c1)] with a fixed
parameter ∆c = ∆c1.

Lemma 1. Given an eigenvalue λi (∆c1), the triple Γ =
(λi (∆c1), νi (∆c1), ωi (∆c1)) satisfying[

Acd (∆c1)− λi (∆c1)In+1 −Bcd
] [ νi (∆c1)

ωi (∆c1)

]
= 0 (5)

is assigned by the static gain Kc if and only if

KcCcd
(
∆′c1
)
νi (∆c1) = ωi (∆c1) (6)

where νi (∆c1) ∈ Cn+1 and ωi (∆c1) ∈ Cm are respectively
the eigenvector and the input direction of the closed loop
system.

This control strategy has two main limitations: (i) the
degrees of freedom of the controller (i.e. number of eigen-
structures that can be assigned in closed loop) is limited by

the number of outputs p of the system, (ii) the controller
is generally not robust against the variation of uncertain
and nonlinear parameters.

The later issue is addressed in the next section. For the
former, considering the LPV model of eq. 4, the number
of eigenvalues that can be assigned is n+ 1 = 5 while the
number of output of the system is one (p = 1). Therefore,
to offer additional degrees of freedom required for the
simultaneous resolution of linear constraints (6) where
eigenvectors νi (∆c1) (1 < i < r1 with r1 = the number
of multimodel constraints) are distinct, it is necessary to
increase the number of outputs.
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As such, to assign r1 eigenvalues to the fixed parameter
system of eq. 4, a set of nc (nc = r1 − p) observers are
added:

Lemma 2. The system defined by (see Fig.6)

dzi
dt

= πizi − tπi
Fcd + uπi

BcdU (7)

uπi
Acd (∆c1) + tπi

Ccd (∆′c1) = πiuπi
(8)

where, uπi ∈ C1×(n+1), tπi ∈ C1×p and πi ∈ C1×1

is an observer of the variable zi = uπi
Xcd and the

observation error εi = zi − uπiXcd satisfies ∂εi
∂t = πiεi.

This Lemma highlights that a linear relation of the states
uπi

Xcd can be estimated by an observer. This increases
the number of outputs and offers additional degrees of
freedom to the controller. It then allows assigning as many
additional triples as the number of observations.

For nc observers, the following notations are considered:

UoAcd (∆c1) + ToCcd
(
∆′c1
)

= ΠoUo (9)

with :

Uo =

uπ1...

uπnc

 To =

 tπ1...

tπnc

 ∏o
=

 π1 · · · 0
...

. . .
...

0 · · · πnc


Z =

[
z1 ... znc

]T
where Uo ∈ Cnc×(n+1), To ∈ Cnc×p and Πo ∈ Cnc×nc .

Therefore, the control problem consists now in finding a
gain matrix Kc = [Ky Kz] such that the system

Ẋcd = Acd (∆c1)Xcd +BcdU

dZ

dt
= ΠoZ − ToFcd + UoBcdU

Fcd = Ccd
(
∆′c1
)
Xcd

(10)

controlled by the input

U = −KyFcd −KzZ (11)
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has the expected performance.

In the study, we consider the control problem by taking
into account the separation principle. It is equivalent to
assign (with a static gain Kc = [Ky Kz]) the eigenvalues
of the system (10) and that of the system (12).

Ẋcd = Acd (∆c1)Xcd +BcdU[
Fcd

Z

]
=

[
Ccd
(
∆′c1
)

Uo

]
Xcd

(12)

The advantage of choosing system (12) comes from its
structure, which allows defining explicitly the variables Fcd
and Z as the outputs.

Moreover, in order to satisfy the closed loop precision
specification, this model is augmented by an integrator.
The control law as depicted by in Fig. 7 is now :

U = Ki

∫
(Fcr − Fcd)−KyFcd −KzZ (13)

where Ki is the gain of the integrator. The controller’s
gain is expressed as Kc = [Ky Kz Ki]

The order of the open loop system now equals to five and
p + 1 + nc measurements are hence available: the output
of the system Fcd, the signal Fcr −Fcd and the outputs of
the observer Z.

4.2 ESA with variable ∆c

The output feedback controller satisfies required closed
loop performance only for ∆c = ∆c1. Hence, robustness
is no longer guaranteed for the entire set of LTI models.
Let us now assume that in the set of q LTI models, ri
eigenstructures must be assigned for each model Gcd (∆ci).

Therefore
q∑
i=1

ri linear constraints must be satisfied.

(Acd (∆c1)− λ1 (∆c1)In+1) ν1 (∆c1)−Bcdω1 (∆c1) = 0
...(

Acd (∆cq)− λrq (∆cq)In+1

)
νrq (∆cq)−Bcdωrq (∆cq) = 0

(14)

Multimodel constraints are therefore defined by :

KcCcd
(
∆′c1
)
ν1 (∆c1) = ω1 (∆c1)

...

KcCcd
(
∆′cq
)
νrq (∆cq) = ωrq (∆cq)

(15)

The output feedback gain Kc must be defined to satisfy
this set of multimodel constrains. If the q LTI models
correspond to worst-case models, the multimodel synthesis
leads to an output feedback controller that meets the
robustness performance and the closed loop stability in
this set. A solution to satisfy eq. (15) is to schedule the
static gain Kc by an interpolation formula and to use
∆ci as the scheduling variable. However, here uncertain
parameters, namely the stiffness, the damping and the
diameter of the microspheres, are not directly accessible.

A self scheduled controller is hence proposed as follows:
Proposition 1: Given Uo ∈ Cnc×(n+1), To ∈ Cnc×p

and Πo ∈ Cnc×nc satisfying eq. (9) such that the
interconnection between {π1, ..., πnc} and {λ1 (∆c1) ...,
λr1 (∆c1) , ..., λ1 (∆cq), ..., λrq (∆cq)

}
is an empty set. For

each assignment, a vector γj (∆ci) (1<j<number of as-
signed eigenstructures) related to a given LTI model
Gcd (∆ci) is defined by eq. (16). The dynamic controller
satisfies the set of equations (15) if and only if eq. (17) is
satisfied where Kc = [Ky Kz Ki].

In order to define the multimodel constraints, an iterative
procedure is performed as follows:

Step 1: Initialization Designing an output feedback
controller (through Proposition 1) with a set of observers
on a nominal model Gcd (∆c1). At this step, any fixed
value of ∆c = ∆c1 can be used from the set of the 65 LTI
models. The gain Kc is designed considering the following
multimodel constraints:

KcCcd
(
∆′c1
)
ν1 (∆c1) = ω1 (∆c1)

...

KcCcd
(
∆′c1
)
νr1 (∆c1) = ωr1 (∆c1)

(18)

Step 2: Analysis performing a worst-case analysis (e.g.
pole map or µ-synthesis) for a finite number of closed loop
LTI models in the parametric space (65 LTI closed loop
models). If the synthesis meets control specifications for
all the selected LTI models, then stop. Otherwise identify
a worst-case model Gcd

(
∆c(1+i)

)
and continue to Step 3.

Step 3: Multimodel synthesis improving the behavior
of the LTI model identified in Step 2 respecting the
specifications while preserving the closed loop properties
of all the models treated before. The gain Kc is designed
considering the multimodel constraints of the previous step
and those corresponding to Gcd

(
∆c(1+i)

)
:

KcCcd

(
∆′
c(1+i)

)
ν1
(
∆c(1+i)

)
= ω1

(
∆c(1+i)

)
.
..

KcCcd

(
∆′
c(1+i)

)
νr(1+i)

(
∆c(1+i)

)
= ωr(1+i)

(
∆c(1+i)

) (19)

This iterative procedure allows the calculation of the ma-
trices Ky, Kz, Ki required to satisfy robust performance
and a stability when ∆c deviates from the nominal model.

5. RESULTS AND ANALYSIS

The LPV model (4) is used to define a set of 65 LTI
models corresponding to the number of characterized
microspheres. The pole map of the open loop LPV system
is shown in Fig.8. From the set of the 65 LTI models,
the nominal model is selected such that its dominant
pole has the highest real value (i.e. LTI model with the
highest response time). This model is called Gcd (∆c1). It
corresponds to the 8th microsphere of the reference 461
DET 40 d25.

5.1 Simulation

As defined in eq. (9), the triplet {Uo, To,Πo} of the ob-
server is related to the matrices Acd (∆c1) and Ccd (∆′c1)
of a nominal model Gcd (∆c1). Therefore, when the sys-
tem deviates from the nominal conditions (∆c is differ-
ent from ∆c1) the relation (9) is no longer valid. As a



γj (∆ci) = (λj (∆ci)−Πo)
−1
(
UoBcdωj (∆ci)− ToCcd

(
∆′ci
)
νj (∆ci)

)
(16)[

Kz Ky Ki
]

=
[
ω1 (∆c1) · · · ωrq (∆cq)

] [ γ1 (∆c1) · · · γrq (∆cq)

Ccd
(
∆′c1
)
ν1 (∆c1) · · · Ccd

(
∆′cq
)
νrq (∆cq)

]−1

(17)
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Fig. 8. Pole map of the open loop LPV system Gcd (∆c).

consequence, during the Step 3 (Multimodel synthesis),
the eigenstructures of the worst case model Gcd

(
∆c(1+i)

)
can not be assigned exactly to the desired positions. In
order assign precisely the eigenstructures of the worst
case model Gcd

(
∆c(1+i)

)
while preserving the closed loop

eigenstructures of the models treated before, we propose
here to compute a self-scheduled form of the observer.

The order of the controller is equal to the number of
observers. In order to obtain a low order controller, only
dominant poles of the treated LTI models Gcd (∆ci) will
be assigned at each step.

Initialization: The ESA with the observer is applied on
the nominal model Gcd (∆c1). The number of assigned
poles is r1 = 4 (Table 2). Therefore, two observers
have been designed considering lemma 2. The observer is
defined as:

Uo = ToCcd (∆′c1) (ΠoI −Acd (∆c1))
−1

(20)

where To = [1 1]T and Πo = 104 × diag(−2.75,−1.75).

The parameter Πo is related to the response time of the
observer. It is defined such that it’s smaller than the
eigenvalue assigned by the output Z.

The gain Kc = [Ky Kz Ki] is computed considering eq.
(18). The desired closed loop eigenvalues are: −300, −500,
−2× 103 and −3× 103.

Analysis: The worst case analysis (see the pole map in
Fig.9.a) shows that stability is not satisfied in the entire
set. The pole map shows that a single step is not sufficient
to satisfy robust performance and stability and validates
the need of a multimodel assignment (Step 3 ). The worst
case model Gcd (∆c2) is defined such that its closed loop
poles have the highest real value. It corresponds to the
11th ball of the reference 461 WE 20 d36.

Multimodel synthesis: the ESA with the observer is
applied to the LTI models Gcd (∆c1) and Gcd (∆c2). The
number of assigned poles is r1 = 4 and r2 = 2 (Table 2).
Therefore, four observers have been designed, as assigning
r1 + r2 = 6 eigenstructures requires the use of (6-2)
observers. The observer is defined such as:

Uo =

[
Uo (∆c1)

Uo (∆c2)

]
, To =

[
To1

To2

]
, Πo =

[
Πo1 02×2

02×2 Πo2

]
with:

Uo (∆c1) = To1Ccd
(
∆′c1
)

(Πo1I −Acd (∆c1))−1
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Fig. 9. Pole map obtained during the first step (a) and the third

step (b).

Uo (∆c2) = To2Ccd
(
∆′c2
)

(Πo2I −Acd (∆c2))−1

where: To1 = To2 = [1 1]T and Πo1 = Πo2 = 104 ×
diag(−2.75,−1.75).

The gain Kc = [Ky Kz Ki] is computed considering eq.
(18) and (19). The desired closed loop eigenvalues are:
−300, −500, −2 × 103 and −3 × 103 for Gcd (∆c1) and
−300, −400 for Gcd (∆c2).

Table 2 shows closed loop assigned eigenvalues of the mod-
els Gcd (∆c1) and Gcd (∆c2) during step 1 (analysis) and
step 3 (multimodel synthesis). In step 3, the eigenvalues
of the model Gcd (∆c2) are assigned precisely and the
eigenvalues of the model Gcd (∆c1) are the same as the
ones assigned in step 1, preserving the performance of the
nominal model.

The worst case analysis (Fig.9.b) shows that control spec-
ifications are satisfied for all the LTI models. The dynamic
output feedback controller is of order 4.

The nonlinear coupled model (1) is simulated with this
self-scheduled controller. The force output Fcd is used as
feedback signal. The reference gripping force Fcr is 20µN.
Fig.10.a and .b show the controlled gripping force Fcd
obtained by the self-scheduled controller designed in step 1
and step 3 respectively. A voltage saturation Vin = 140 V
is applied at the input of the open loop model. Instabilities
and large errors are clearly visible in Fig.10.a. These
results confirm the worst case analysis and the paramount
need of a robust controller. Thanks to final controller,
among the 65 closed loop models, the worst response time
is 7.9 ms, there is no overshoot and no static error.

One of the main advantages of the control strategy is that
it allows obtaining a low order controller. With traditional
LPV/H∞ designs, the order of the controller is equal to
the order of the open loop system + the order of weighting



Table 2. Eigenvalues of Gcd (∆c1) and Gcd (∆c2)

controlled by the controllers derived from step 1 and

step 3. The sign ‘*’ defines the assigned eigenvalues.

Steps
Closed loop eigenvalues
of Gcd (∆c1)

Closed loop eigenvalues
of Gcd (∆c2)

Step 1 −300∗ 2.085× 103

−500∗ 4.43
−2× 103∗ −2.43×103 +1.82×104i
−3× 103∗ −2.43×103−1.82×104i
−3.75×103 +2.05×104i −2.73×103 +8.57×103i
−3.75×103−2.05×104i −2.73×103−8.57×103i
−1.75× 104 −6.96× 103

−2.75× 104 −6.09× 104

Step 2 −300∗ −300∗

−500∗ −400∗

−2× 103∗ −876.5
−3× 103∗ −915.7 + 1.18× 104i
−628 + 2.29× 104i −915.7− 1.18× 104i
−628− 2.29× 104i −2.84× 103 + 2× 104i
−760.6 + 1.06× 104i −2.84× 103 − 2× 104i
−760.6− 1.06× 104i −5.13× 103

−1.75× 104 −1.75× 104

−2.75× 104 −2.75× 104
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Fig. 10. Step responses (20µN gripping force reference) of the

controlled microgripper when gripping 65 different expancel

microspheres: results from step 1 (a) and step 3 (b). The step

responses satisfying control specifications are in solid line.

functions. With the coupled microgripper, the order of the
controller would be at least equal to 6 (in the case of the
use of a single first order weighting function).

6. CONCLUSION

This paper has dealt with stability and robustness issues of
gripping force control at the microscale, using a nonlinear
electrostatic microgripper with an integrated force sensor
and a set of soft microspheres. The diameter and both
the stiffness and the damping of the microspheres have
been identified experimentally and have been considered
uncertain parameters for the controller synthesis. The
gripping force control has been achieved through the
design of a robust self-scheduled controller based on an
eigenstructure assignment methodology and a worst case
analysis. The control methodology allows designing a low
dimensional dynamic control scheme suitable for a real
time implementation. Results emphasize the importance

of the controller for safety manipulation tasks at the
microscale which is of primary importance for a range of
biological application.
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