Applications using complexity of electro-optic delay dynamics: from chaos to fixed points through limit cycles

L. Larger¹

M. Jacquot¹, Y. Chembo¹, V.S. Udaltsov¹, J.-P. Goedgebuer¹, T. Erneux², P. Colet³, C. Mirasso³, I. Fischer³, ...

¹FEMTO-ST/ Optics, UMR 6174, Univ. of Franche-Comté, Besançon, France ²Optique Théorique Non Linéaire, Université Libre de Bruxelles, Belgium ³IFISC, CSIC & Universitat de les Illes Baleares, Palma, Spain

4th-8th June 2012 / Palma de Mallorca, Spain Conference on Delayed Complex systems

→ □ ► < □ ►</p>

Outline

Introduction: where does it come from

- From Ikeda ring cavity to OE NL delayed feedback
- Modeling point of views

2 Cross-fertilization between fundamental and applications

- Optical chaos communications
- High spectral purity microwave limit cycle in OEO
- Photonic Neuromorphic computing from the steady state

(*) * (*) *)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

- 2 Cross-fertilization between fundamental and applications
- 3 Conclusion: even more is remaining

< 回 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Ikeda dynamics: a bit of history

From an Optics Gedanken experiment to a flexible photonic system

The Ikeda ring cavity

(Ikeda, Opt.Commun. 1979).

Bulk electro-optic setup

(Gibbs et al., Phys.Rev.Lett. 1981).

 Integrated optics Mach-Zehnder setup

(Neyer and Voges, *IEEE J. Quant.Electron.* 1982; Yao and Maleki, *Electr. Lett.* 1994).

 Wavelength & EO intensity (or phase) delay dynamics

(Larger *et al.*, *IEEE J.Quant.Electron.* 1998; Lavrov *et al.*, *Phys. Rev. E* 2009).

< ロ > < 同 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Ikeda dynamics: a bit of history

From an Optics Gedanken experiment to a flexible photonic system

The Ikeda ring cavity

(Ikeda, Opt.Commun. 1979).

Bulk electro-optic setup

(Gibbs et al., Phys.Rev.Lett. 1981).

 Integrated optics Mach-Zehnder setup

(Neyer and Voges, *IEEE J. Quant. Electron.* 1982; Yao and Maleki, *Electr. Lett.* 1994).

 Wavelength & EO intensity (or phase) delay dynamics

(Larger et al., IEEE J. Quant. Electron. 1998; Lavrov et al., Phys. Rev. E 2009).

< ロ > < 同 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Ikeda dynamics: a bit of history

From an Optics Gedanken experiment to a flexible photonic system

The Ikeda ring cavity

(Ikeda, Opt.Commun. 1979).

Bulk electro-optic setup

(Gibbs et al., Phys.Rev.Lett. 1981).

 Integrated optics Mach-Zehnder setup

> (Neyer and Voges, *IEEE J. Quant. Electron.* 1982; Yao and Maleki, *Electr. Lett.* 1994).

 Wavelength & EO intensity (or phase) delay dynamics

(Larger *et al.*, *IEEE J.Quant.Electron.* 1998; Lavrov *et al.*, *Phys. Rev. E* 2009).

< ロ > < 同 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Ikeda dynamics: a bit of history

From an Optics Gedanken experiment to a flexible photonic system

Z BO COMPUTER SYSTEM

BUFFFR

AREA

D/A AMPLIFIER

The Ikeda ring cavity

(Ikeda, Opt.Commun. 1979).

Bulk electro-optic setup

(Gibbs et al., Phys.Rev.Lett. 1981).

 Integrated optics Mach-Zehnder setup

> (Neyer and Voges, *IEEE J.Quant.Electron.* 1982; Yao and Maleki, *Electr. Lett.* 1994).

 Wavelength & EO intensity (or phase) delay dynamics

(Larger et al., IEEE J.Quant.Electron. 1998; Lavrov et al., Phys. Rev. E 2009).

ROTATING

3 🕨 🖌 3

dielectric medium

M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov

EO delay dynamics, DCS12, Palma de Mallorca, Spain

< □ > < 同 >

Introduction: where does it come from Cross-fertilization between fundamental and applications

Conclusion: even more is remaining

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Outline

- 2 Cross-fertilization between fundamental and applications
- 3 Conclusion: even more is remaining

< □ > < 同 > < 回 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

< □ > < 同 > < 回 > < 回 > < 回 >

Physics modeling: all-optical ring cavity

- Main Features
 - dynamics \equiv linear filtering, dielectric medium response
 - scalar DDE, single variable ($\varphi(t)$, or $I(t) \propto |E(t)|^2 = F_{NL}[\varphi(t \tau_D)]$
 - potentially ultra-fast, interferometric mechanical stability
 - relatively low feedback gain (Kerr efficiency)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

< ロ > < 同 > < 回 > < 回 >

Physics modeling: all-optical ring cavity

• Experimental setup • Response time of the Kerr medium • Delay \equiv Cavity round trip • NL function \equiv Input & Feedback interference • Interf. condition ruled by Kerr phase shift • Model $\frac{d\varphi}{dt} = -\omega_{n_2}\varphi(t) + \gamma |E(t)|^2$

$$|E(t)|^2 = A^2 \{1 + 2B\cos[\varphi(t - \tau_R) - \varphi_0]\}$$

- Main Features
 - dynamics \equiv linear filtering, dielectric medium response
 - scalar DDE, single variable ($\varphi(t)$, or $I(t) \propto |E(t)|^2 = F_{NL}[\varphi(t \tau_D)]$
 - potentially ultra-fast, interferometric mechanical stability
 - relatively low feedback gain (Kerr efficiency)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Physics modeling: all-optical ring cavity

• Experimental setup • Response time of the Kerr medium • Delay \equiv Cavity round trip • NL function \equiv Input & Feedback interference • Interf. condition ruled by Kerr phase shift • Model $\frac{d\varphi}{dt} = -\omega_{n_2}\varphi(t) + \gamma |E(t)|^2$

$$|E(t)|^{2} = A^{2} \{ 1 + 2B \cos[\varphi(t - \tau_{R}) - \varphi_{0}] \}$$

Main Features

- dynamics \equiv linear filtering, dielectric medium response
- scalar DDE, single variable ($\varphi(t)$, or $I(t) \propto |E(t)|^2 = F_{NL}[\varphi(t \tau_D)]$)
- potentially ultra-fast, interferometric mechanical stability
- relatively low feedback gain (Kerr efficiency)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

"Signal processing" modeling (system approach)

Nonlinear delayed feedback oscillator

• Experimental setup

- Differential process \equiv linear filter: $H(\omega) = FT[h(t)]$
- Delay ≡ propagation time of a carrier wave travelling at velocity v

• NL function \equiv Tunable interference

Model

$$\tau \frac{\mathrm{d}x}{\mathrm{d}t} + x(t) = F_{\mathrm{NL}}[x(t - \tau_D)] \left(=\beta \cos^2[x(t - \tau_D) + \Phi_0]\right)$$

$$x(t) = \int_{t_0}^{t} h(t-\xi) F_{\mathsf{NL}}[x(\xi-\tau_D)\mathsf{d}\xi]$$

- Main Features
 - $\bullet~$ dynamics \equiv linear (electronic, thus slower) filtering feedback
 - (event.) higher order DDE
 - qualified Telecom devices: stable, reliable, reconfigurable
 - (potent.) high gain (drive voltage vs. half wave -EO- voltage)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

"Signal processing" modeling (system approach)

Nonlinear delayed feedback oscillator

Experimental setup

- Differential process \equiv linear filter: $H(\omega) = FT[h(t)]$
- Delay ≡ propagation time of a carrier wave travelling at velocity v
- NL function \equiv Tunable interference

• Model

$$\tau \frac{\mathrm{d}x}{\mathrm{d}t} + x(t) = F_{\mathrm{NL}}[x(t-\tau_D)] (= \beta \cos^2[x(t-\tau_D) + \Phi_0])$$

$$x(t) = \int_0^t h(t-\xi) F_{\mathrm{NI}}[x(\xi-\tau_D) \mathrm{d}\xi]$$

Main Features

- $\bullet~$ dynamics \equiv linear (electronic, thus slower) filtering feedback
- (event.) higher order DDE
- qualified Telecom devices: stable, reliable, reconfigurable

 J_{t_0}

• (potent.) high gain (drive voltage vs. half wave -EO- voltage)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

"Signal processing" modeling (system approach)

Nonlinear delayed feedback oscillator

Experimental setup

- Differential process \equiv linear filter: $H(\omega) = FT[h(t)]$
- Delay ≡ propagation time of a carrier wave travelling at velocity v
- NL function \equiv Tunable interference

• Model $\tau \frac{\mathrm{d}x}{\mathrm{d}t} + x(t) = F_{\mathsf{NL}}[x(t-\tau_D)] (= \beta \cos^2[x(t-\tau_D) + \Phi_0])$

$$x(t) = \int_{t_0}^t h(t-\xi) F_{\mathsf{NL}}[x(\xi-\tau_D)\mathsf{d}\xi]$$

Main Features

- dynamics \equiv linear (electronic, thus slower) filtering feedback
- (event.) higher order DDE
- qualified Telecom devices: stable, reliable, reconfigurable
- (potent.) high gain (drive voltage vs. half wave -EO- voltage)

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

Ikeda-like dynamics: 1st order low pass filter

• Differential equation derivation.

- Fourier and time domains correspondance (d/(dt) ↔ ×i2πf)
- Linear filter described by polynomial fractional

Low pass dynamics

- Differential process: 1st order low pass filter
- 2-time scales only (typ. large delay case $\tau_D \gg \tau$, for Ikeda instabilities, period doubling)

• $z(t) = \beta \cos^2[x(t - \tau_D) + \Phi]$, NL delayed self-feedback driving force

ъ

< □ > < 同 > < 回 > < 回 > < 回 >

From Ikeda ring cavity to OE NL delayed feedback Modeling point of views

integro-Differential Delay Equation: bandpass case

• *i* DDE: the NL delay damped oscillator viewpoint

- Simplest polynomial fractional for a bandpass filter: 2^{nd} order (strongly damped harmonic oscillator $m \gg 1$, $\theta = \frac{2m}{\Omega_0}$, $\tau = \frac{1}{2m\Omega_0}$)
- Higher orders sometimes important (2nd order usually enough qualitatively)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$H(\omega = 2\pi f) = \frac{X(\omega)}{Z(\omega)} = \frac{i\frac{2m}{\Omega_0}\omega}{1 + i\frac{2m}{\Omega_0}\omega - \frac{\omega^2}{\Omega_0^2}} \qquad \leftrightarrow \qquad \frac{1}{\Omega_0^2}\frac{d^2x}{dt^2}(t) + \frac{2m}{\Omega_0}\frac{dx}{dt}(t) + x(t) = \frac{2m}{\Omega_0}\frac{dz}{dt}(t)$$

or
$$\frac{1}{\theta}\int_{t_0}^t x(\xi)\,d\xi + x(t) + \tau\frac{dx}{dt}(t) = z(t) - z(t_0)$$

• $z(t) = \beta F_{NL}[x, t, t - \tau_D]$ NL delayed self-feedback driving force

Outline

2

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Introduction: where does it come from

Cross-fertilization between fundamental and applications

- Optical chaos communications
- High spectral purity microwave limit cycle in OEO
- Photonic Neuromorphic computing from the steady state
- 3 Conclusion: even more is remaining

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

1st attempt: wavelength dynamics and Ikeda model

 $F_{NL}(x) = \beta \sin^2[x + \Phi], x = \pi \Delta / \lambda$ x is varied through λ (wavelength dynamics) or Δ (EO setup)

- Nicely matched exp. & num. bifurcation diagrams (increasing Φ₀)
- Record non linearity strength up to 14 extrema
- FM chaos: operating principles transfered to electronics
 - ightarrow 1st bandpass delay dynamics

(日)

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

1st attempt: wavelength dynamics and Ikeda model

$$F_{NL}(x) = \beta \sin^2[x + \Phi], x = \pi \Delta / \lambda$$

x is varied through λ (wavelength dynamics) or Δ (EO setup)

- Nicely matched exp. & num. bifurcation diagrams (increasing Φ_0)
- Record non linearity strength up to 14 extrema
- FM chaos: operating principles transfered to electronics
 - ightarrow 1st bandpass delay dynamics

< ロ > < 同 > < 回 > < 回 >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

1st attempt: wavelength dynamics and Ikeda model

$$F_{NL}(x) = \beta \sin^2[x + \Phi], x = \pi \Delta / \lambda$$

x is varied through λ (wavelength dynamics) or Δ (EO setup)

- Nicely matched exp. & num. bifurcation diagrams (increasing Φ_0)
- Record non linearity strength up to 14 extrema
- FM chaos: operating principles transfered to electronics
 - ightarrow 1st bandpass delay dynamics

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

(日)

Fundamental issue: Sub-critical Hopf bif. in DDE?

Optical chaos communication demonstrated, but also ...:

(EU Patent 96, Goedgebuer et al., Phys. Rev. Lett. 98)

Mainly super-critical Hopf bifurcations reported for DDE

• **FM chaos:** design a suitable *F*_{NL} for the sub-critical case

L. Larger et al. Phys. Rev. E, 2004

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Fundamental issue: Sub-critical Hopf bif. in DDE?

Optical chaos communication demonstrated, but also ...:

(EU Patent 96, Goedgebuer et al., Phys. Rev. Lett. 98)

Mainly super-critical Hopf bifurcations reported for DDE

• **FM chaos:** design a suitable *F*_{NL} for the sub-critical case

L. Larger et al. Phys. Rev. E, 2004

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< □ > < 同 >

Fundamental issue: Sub-critical Hopf bif. in DDE?

Optical chaos communication demonstrated, but also ...:

(EU Patent 96, Goedgebuer et al., Phys. Rev. Lett. 98)

Mainly super-critical Hopf bifurcations reported for DDE

• **FM chaos:** design a suitable *F*_{NL} for the sub-critical case

L. Larger et al. Phys. Rev. E, 2004

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Fundamental issue: Sub-critical Hopf bif. in DDE?

Optical chaos communication demonstrated, but also ...:

(EU Patent 96, Goedgebuer et al., Phys. Rev. Lett. 98)

Mainly super-critical Hopf bifurcations reported for DDE

• **FM chaos:** design a suitable *F*_{NL} for the sub-critical case

L. Larger et al. Phys. Rev. E, 2004

Hysteresis in the bifurcation diagram

< 口 > < 同 >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Uni-directional (Master-Slave) chaos commnications:

Self synchronization (replication), chaos masking & unmasking

Convolution product description

Intensity EO delay dynamics (broadband, bandpass)

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Uni-directional (Master-Slave) chaos commnications:

Self synchronization (replication), chaos masking & unmasking

Convolution product description

Intensity EO delay dynamics (broadband, bandpass)

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Uni-directional (Master-Slave) chaos commnications:

Self synchronization (replication), chaos masking & unmasking

- Convolution product description
- Intensity EO delay dynamics (broadband, bandpass)

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

EO intensity chaos communications results

Intensity chaos "spy suitcases".

• Field experiment during OCCULT @ 3Gb/s.

Val 437/07 Nevember 2005(dal: \$0.1038/nature0 4275

LETTERS

Chaos-based communications at high bit rates using commercial fibre-optic links

Apostolos Argyris¹, Dimitris Syvridis¹, Laurent Larger², Valerio Annovazzi-Lodi⁵, Pere Colet⁴, Ingo Fischer⁴†, Jordi García-Ojalvo⁶, Claudio R. Mirasso⁷, Luis Pesquera⁸ & K. Alan Shore⁸

M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov

EO delay dynamics, DCS12, Palma de Mallorca, Spain

< ロ > < 同 > < 回 > < 回 >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Also fundamental nonlinear dynamics issues

• Bifurcation parameter: Φ .

• Dynamics at fixed β .

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Also fundamental nonlinear dynamics issues

(Kouomou et al., Phys. Rev. Lett. 2005, Peil et al., Phys. Rev. E 2009, T.E. Murphy et al., Phil. Trans. R. Soc. A, 2010, Callan et al. Phys. Rev. Lett. 2010, Larger & Dudley, Nature, News & Views, 2010).

Optical chaos communications

Also fundamental nonlinear dynamics issues

Bifurcation:

Bifurcation: map stability of the points

along the 9-oscillation

- Bifurcation parameter: Φ .
- Dynamics at fixed β .

(Kouomou et al., Phys. Rev. Lett. 2005, Peil et al., Phys. Rev. E 2009, T.E. Murphy et al., Phil, Trans. R. Soc, A, 2010. Callan et al. Phys. Rev. Lett. 2010, Larger & Dudley, Nature, News & Views, 2010).

M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov EO delay dynamics, DCS12, Palma de Mallorca, Spain

[WM]

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Further setup evolutions motivated by applications

Electro-optic phase delay dynamics

- Setup, physical principles.
 - DPSK optical modulation
 - Temporally nonlocal non linearity
 - Intrinsically high speed
- Φ M in the optical spectrum.

(Lavrov et al., Phys. Rev. E 2009).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Further setup evolutions motivated by applications

Electro-optic phase delay dynamics

- Setup, physical principles.
 - DPSK optical modulation
 - Temporally nonlocal non linearity
 - Intrinsically high speed
- Φ M in the optical spectrum.

< □ > < @ >

(Lavrov et al., Phys. Rev. E 2009).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Further setup evolutions motivated by applications

Electro-optic phase delay dynamics

- Setup, physical principles.
 - DPSK optical modulation
 - Temporally nonlocal non linearity
 - Intrinsically high speed

• Φ M in the optical spectrum.

(Lavrov et al., Phys. Rev. E 2009).

M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov

09). < □ ▷ < ⓓ ▷ < ▤ ▷ < ▤ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ < ≥ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ` □ ` □ `

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

Field experiment @ 10 Gb/s

Emitter setup packaged on a A4-alumni board

"Lumière" brothers ring network in Besançon, France (22km)

Athens, Greece, metropolitan fiber network (116km)

Receiver setup packaged on a A4-alumni board

(Lavrov et al., IEEE J. Quant. Electron. 2010).

Modeling

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

The dynamics

• Integro-differential (linear bandpass filter) nonlinear delay equation

$$\frac{1}{\theta} \int_{t_0}^t \varphi(\xi) \, \mathsf{d}\xi + \varphi(t) + \tau \frac{\mathsf{d}\varphi}{\mathsf{d}t}(t) = \beta \cdot \left[f_{(t-\tau_D)}(\varphi^*) \right]$$

• Non linearity via imbalanced interferometer (temporal non locality)

standard DPSK demodulator

$$f_t(\varphi) = \{1 + \cos[\varphi(t) - \varphi(t - \delta T) + \Phi_0]\}$$

generalized multiple wave interferometer

$$f_t(\varphi) = F_0 \left| 1 + \sum_k \alpha_k \, e^{i[\varphi(t) - \varphi(t - \delta T_k) + \Phi_k]} \right|^2$$

< 一 →

→ ∃ > < ∃ >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Dynamical issues: crenelated envelop bifurcations

Temporal bif. diagrams ightarrow

 $\leftarrow \text{Time traces}$

Spectral bif. diagram \rightarrow

← Flat chaotic rf spectrum

(Lavrov et al., Phys. Rev. E 2009; Weicker et al., Phys.Rev. E 2012).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Chaos comm. & data packet compatibility...

An EO delay dynamics performing a Map?

- Continuous amplitude, but discrete time dynamics: required for packet routing of clocked Telecom data
- Seed the EO setup with a pulsed laser
- Experimental Bifurcation diagram with clear period-3 windows
- Dimension $D_N \equiv$ pulses / delay
- D_N independent maps

(Larger et al. Phys. Rev. Lett. 2005, Grapinet et al., Chaos 2008; Grapinet et al., Electron. Lett. 2008

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady st

< ロ > < 同 > < 回 > < 回 >

Outline

2

Introduction: where does it come from

- Cross-fertilization between fundamental and applications
 Optical chaos communications
 - High spectral purity microwave limit cycle in OEO
 - Photonic Neuromorphic computing from the steady state
- 3 Conclusion: even more is remaining

< ロ > < 同 > < 回 > < 回 > < □ > <

A brief OEO history, and principles

Large delay resonant (narrow band) dynamics

- Common history with Ikeda setups, at the origines (Neyer and Voges, Appl. Phys. Lett. A, 1981).
- Stochastic description of delay-induced spectral purity (Pomeau, C.R. Acad. Sc. Paris 1986).
- Time-Frequency metrology interest in the US (NASA, JPL) (Yao and Maleki, Electron.Lett., 1994).
- Start-Up company OEwaves created in 2000
- Unconventional optoelectronic approach in TF, only recently recognized as a high potential approach (together with high *Q*-factor optical resonators) (Fortier et al., Nature Photon., 2011).
- Principle summary: large delay \equiv high energy storage time

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 >

iDDE modeling for the microwave delay oscillator

• derived Ikeda-like dynamics for the complex envelope with a Bessel function as

$$\dot{\mathcal{A}}(t) = -\mu \mathcal{A}(t) - 2\mu\gamma \, e^{-i\sigma} J_1[2|\mathcal{A}(t-\tau_D)|] \, e^{i \arg \mathcal{A}(t-\tau_D)}$$

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< □ > < 同 > < 回 > <

iDDE modeling for the microwave delay oscillator

- microwave harmonic asumption: $x(t) = \frac{1}{2}A(t) \cdot e^{i\Omega_0 t} + c.c.$
- derived Ikeda-like dynamics for the complex envelope with a Bessel function as

$$\dot{\mathcal{A}}(t) = -\mu \mathcal{A}(t) - 2\mu \gamma \, e^{-i\sigma} J_1[2|\mathcal{A}(t-\tau_D)|] \, e^{i \arg \mathcal{A}(t-\tau_D)}$$

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

(日)

Phase noise modeling

Predicting the phase noise spectral profile

• Envelope equation including the noise sources

$$\dot{\mathcal{A}}(t) = -\mu \mathcal{A}(t) - \mu [1 + \eta_{\rm m}(t)] \mathcal{A}(t - \tau_D) + \xi_{\rm a}(t)$$

• Derived phase dynamics ($\mu = \Delta \Omega/2 = m\Omega_0$):

$$\dot{\psi}(t) = -\mu[\psi(t) - \psi(t - \tau_D)] + \frac{\mu}{2Q}\eta_{\rm m}(t) + \frac{\mu}{|\mathcal{A}_0|}\xi_{\rm a,\psi}(t)$$

Translate the phase dynamics into the Fourier domain

$$\Psi(\omega)|^{2} = \mu^{2} \left| \frac{(2Q)^{-1} \tilde{\eta_{m}}(\omega) + |\mathcal{A}_{0} \tilde{\xi}_{\mathbf{a},\psi}(\omega)|^{-1}}{i\omega + \mu [1 - e^{-i\omega\tau_{D}}]} \right|^{2}$$

(Chembo et al., IEEE J. Quantum Electron. 2009).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

(日)

Phase noise modeling

Predicting the phase noise spectral profile

Envelope equation including the noise sources

$$\dot{\mathcal{A}}(t) = -\mu \mathcal{A}(t) - \mu [1 + \eta_{\rm m}(t)] \mathcal{A}(t - \tau_D) + \xi_{\rm a}(t)$$

• Derived phase dynamics ($\mu = \Delta \Omega/2 = m \Omega_0$):

$$\dot{\psi}(t) = -\mu[\psi(t) - \psi(t - \tau_D)] + \frac{\mu}{2Q}\eta_{\rm m}(t) + \frac{\mu}{|\mathcal{A}_0|}\xi_{{\rm a},\psi}(t)$$

Translate the phase dynamics into the Fourier domain

$$\Psi(\omega)|^{2} = \mu^{2} \left| \frac{(2Q)^{-1} \tilde{\eta_{m}}(\omega) + |\mathcal{A}_{0} \tilde{\xi}_{\mathbf{a},\psi}(\omega)|^{-1}}{i\omega + \mu [1 - e^{-i\omega\tau_{D}}]} \right|^{2}$$

(Chembo et al., IEEE J. Quantum Electron. 2009).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

< ロ > < 同 > < 回 > < 回 > < 回 > <

Phase noise modeling

Predicting the phase noise spectral profile

Envelope equation including the noise sources

$$\dot{\mathcal{A}}(t) = -\mu \mathcal{A}(t) - \mu [1 + \eta_{\rm m}(t)] \mathcal{A}(t - \tau_D) + \xi_{\rm a}(t)$$

• Derived phase dynamics ($\mu = \Delta \Omega/2 = m \Omega_0$):

$$\dot{\psi}(t) = -\mu[\psi(t) - \psi(t - \tau_D)] + \frac{\mu}{2Q}\eta_{\rm m}(t) + \frac{\mu}{|\mathcal{A}_0|}\xi_{{\rm a},\psi}(t)$$

Translate the phase dynamics into the Fourier domain

$$|\Psi(\omega)|^2 = \mu^2 \left| \frac{(2Q)^{-1} \tilde{\eta_m}(\omega) + |\mathcal{A}_0 \tilde{\xi}_{\mathbf{a},\psi}(\omega)|^{-1}}{i\omega + \mu [1 - e^{-i\omega\tau_D}]} \right|^2$$

(Chembo et al., IEEE J. Quantum Electron. 2009).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Phase noise spectra measurement

Excellent agreement theoretical prediction vs. measure

- Noise floor: -146 dBc/Hz
- Height of the first spurious delay mode peak: 120 dB
- Width at half maximum of the first spurious delay mode peak: 35 mHz

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Typical nonlinear dynamics OEO instabilities

• Bifurcation of the microwave delay oscillator

Stability analysis: 2^{nd} bifurcation @ $\gamma = 2.3$ with crenelated envelope (first at $\gamma = 1$: microwave oscillation)

Chembo et al., IEEE J. Quantum Electron. 2008). M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ <

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Outline

Introduction: where does it come from

Cross-fertilization between fundamental and applications

- Optical chaos communications
- High spectral purity microwave limit cycle in OEO
- Photonic Neuromorphic computing from the steady state

3 Conclusion: even more is remaining

< 回 > < 回 > < 回 >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

From Neural Networks to RC

Neural Network Computing

Artificial intelligence, network of coupled oscillators, learning, actual demonstration via "conventional computer" simulations

Cognitive brain research, bio-inspired computing principles

biologic neural network, time trajectories corresponding to pulse train solutions

Echo State Network (ESN), Liquid State Machines (LSM), RC

Novel architecture exhibiting universal computational potential

Basic architecture

Input Data [wim] Input (Linear Connection)

the Reservoir, a static Complex Nonlinear Dynamics (typ. NL network)

Read-Out

(Linear Connection)

(Jaeger et al., Techn.Report GMD 2002 & Science 2004;

Maass, Neural Comput. 2002; Jäger and Maass, & Principe, Neural Networks 2007).

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Delay Dynamics as a Reservoir

Spatio-Temporal viewpoint of a DDE

• Discrete time variable: Delay time step

Virtual Spatial variable: internal delay waveform

Node network \equiv fine sampling within a delay

3 1 4 3

< □ > < 同 >

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

Standard test: spoken digit recognition

Data base of 500 Spoken digits, TI46

 Conventional pre-processing

 Processing with the EO nonlinear single delay reservoir

(Appeltant et al., Nat. Commun. 2011; Larger et al., Opt. Expr. 2012; Paquot et al., Scient. Rep. 2012; Martinenghi et al. Phys. Rev. Lett. 2012)

Photonic Neuromorphic computing from the steady state

Standard test: spoken digit recognition

Data base of 500 Spoken digits, TI46 Conventional pre-processing Processing with the EO nonlinear

single delay reservoir

Optical chaos communications High spectral purity microwave limit cycle in OEO Photonic Neuromorphic computing from the steady state

First demonstrated photonic LSM

- Simple Ikeda-like electro-optic architecture
- Pre- and post-processing performed externally
- Excellent experimental results on a benchmark test

Spoken Digit Recognition with Word Error Rate < 0.2% (set size limited, 500 spoken digits data base)

Many remaining degrees of freedom for optimization

Work in progress within the 3 apps, and even more

Chaos secure communications

hybrid analog / digital emitter / receiver architecture

Microwave optoelectronic oscillator

Multiple delays feedback, cubic phase fedback term, optical ring resonators topologies,...

Reservoir Computing

Plasticity issues, multiple delayed feedback, mutually coupled nonlinear delay dynamics,...

- Broadband chaos for high speed RNGs
- And many theoretical issues in delay dynamics stability, solutions,...

★ □ ► ★ □ ►

Aknowledgements

M.W. Lee, P. Lacourt, S. Poinsot, M. Peil, M. Grapinet, R. Lavrov EO delay dynamics, DCS12, Palma de Mallorca, Spain