Extreme values of the Dedekind Ψ function

Patrick Solé Michel Planat

Abstract

Let $\Psi(n):=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)$ denote the Dedekind Ψ function. Define, for $n \geq 3$, the ratio $R(n):=\frac{\Psi(n)}{n \log \log n}$. We prove unconditionally that $R(n)<e^{\gamma}$ for $n \geq 31$. Let $N_{n}=2 \cdots p_{n}$ be the primorial of order n. We prove that the statement $R\left(N_{n}\right)>\frac{e^{\gamma}}{\zeta(2)}$ for $n \geq 3$ is equivalent to the Riemann Hypothesis.

MsC codes: 11N56, 11A25, 11M06
Keywords: Dedekind Ψ function, Euler totient function, Mertens formula, Nicolas bound, Primorial numbers

I. Introduction

The Dedekind Ψ function is an arithmetic multiplicative function defined for every integer $n>0$ by

$$
\Psi(n):=n \prod_{p \mid n}\left(1+\frac{1}{p}\right) .
$$

It occurs naturally in questions pertaining to dimension of spaces of modular forms [2] and to the commutation of operators in quantum physics [6]. It is related to the sum of divisor function

$$
\sigma(n)=\sum_{d \mid n} d
$$

by the inequalities

$$
\Psi(n) \leq \sigma(n)
$$

and the fact that they coincide for n squarefree. It is also related to Euler φ function by the inequalities

$$
n^{2}>\varphi(n) \Psi(n)>\frac{n^{2}}{\zeta(2)}
$$

derived in Proposition 5 below.
In view of the studies of large values of σ [7] and of low values of φ [4], it is natural to study both the large and low values of Ψ. To that end, we define the ratio $R(n):=\frac{\Psi(n)}{n \log \log n}$. The motivation for this strange quantity is the asymptotics of Proposition 3. We prove unconditionally that $R(n)<e^{\gamma}$, for $n \geq 31$ in Corollary 2 Note that this bound would follow also from the Robin inequality

$$
\sigma(n) \leq e^{\gamma} n \log \log n
$$

for $n \geq 5041$ under Riemann Hypothesis (RH) [7], since $\Psi(n) \leq \sigma(n)$.
In the direction of lower bounds, we prove that the statement $R\left(N_{n}\right)>\frac{e^{\gamma}}{\zeta(2)}$ for $n \geq 3$ is equivalent to RH, where $N_{n}=2 \cdots p_{n}$ is the primorial of order n. The proof relies on Nicolas's work on the Euler totient function [4].

II. Reduction to primorial numbers

Define the primorial number N_{n} of index n as the product of the first n primes

$$
N_{n}=\prod_{k=1}^{n} p_{k}
$$

so that $N_{1}=2, N_{2}=6, \cdots$ and so on. As in [4], the primorial numbers play the role here of superabundant numbers in [7]. They are champion numbers (ie left to right maxima) of the function $x \mapsto \Psi(x) / x$:

$$
\begin{equation*}
\frac{\Psi(m)}{m}<\frac{\Psi(n)}{n} \text { for any } m<n \tag{1}
\end{equation*}
$$

We give a proof of this fact, which was observed in [5].
Proposition 1: The primorial numbers N_{n} are exactly the champion numbers of the function $x \mapsto$ $\Psi(x) / x$.

Proof: The proof is by induction on n. The induction hypothesis H_{n} is that the statement is true up to N_{n}. It is clear that H_{2} is true. Let $N_{n} \leq m<N_{n+1}$ be a generic integer. The number m has at most n distinct prime factors. This, in combination with the observation that $1+1 / x$ is monotonically decreasing as a function of x, shows that $\Psi(m) / m \leq \Psi\left(N_{n}\right) / N_{n}$. Further $\Psi\left(N_{n}\right) / N_{n}<\Psi\left(N_{n+1}\right) / N_{n+1}$. The proof of H_{n+1} follows.

In this section we reduce the maximization of $R(n)$ over all integers n to the maximization over primorials.

Proposition 2: Let n be an integer ≥ 2. For any m in the range $N_{n} \leq m<N_{n+1}$ one has $R(m) \leq$ $R\left(N_{n}\right)$.

Proof: Like in the preceding proof we have

$$
\Psi(m) / m \leq \Psi\left(N_{n}\right) / N_{n}
$$

Since $0<\log \log 6<\log \log N_{n} \leq \log \log m$, the result follows.

III. Ψ at PRIMORIAL NUMBERS

We begin with an easy application of Mertens formula [3, Th. 429].
Proposition 3: We have, as $n \rightarrow \infty$

$$
\lim R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)} \approx 1.08
$$

Proof: Writing $1+1 / p=\left(1-1 / p^{2}\right) /(1-1 / p)$ in the definition of $\Psi(n)$ we can combine the Eulerian product for $\zeta(2)$ with Mertens formula

$$
\prod_{p \leq x}(1-1 / p)^{-1} \sim e^{\gamma} \log (x)
$$

to obtain

$$
\frac{\Psi\left(N_{n}\right)}{N_{n}} \sim \frac{e^{\gamma}}{\zeta(2)} \log \left(p_{n}\right)
$$

Now the Prime Number Theorem [3, Th. 6, Th. 420] states that $x \sim \theta(x)$ for x large. where $\theta(x)$ stands for Chebyshev's first summatory function:

$$
\theta(x)=\sum_{p \leq x} \log p
$$

This shows that, taking $x=p_{n}$ we have

$$
p_{n} \sim \theta\left(p_{n}\right)=\log \left(N_{n}\right)
$$

The result follows.
This motivates the search for explicit upper bounds on $R\left(N_{n}\right)$ of the form $\frac{e^{\gamma}}{\zeta(2)}(1+o(1))$. In that direction we have the following bound.

Proposition 4: For n large enough to have $p_{n} \geq 20000$, that is $n \geq 2263$, we have

$$
\frac{\Psi\left(N_{n}\right)}{N_{n}} \leq \frac{\exp \left(\gamma+2 / p_{n}\right)}{\zeta(2)}\left(\log \log N_{n}+\frac{1.125}{\log p_{n}}\right)
$$

So, armed with this bound, we derive a bound of the form $R\left(N_{n}\right)<e^{\gamma}$ for $n \geq A$, with A a constant.
Corollary 1: For $n \geq 4$, we have $R\left(N_{n}\right)<e^{\gamma}=1.78 \cdots$
Proof:
For $p_{n} \geq 20000$, we use the preceding proposition. We need to check that

$$
\exp \left(2 / p_{n}\right)\left(1+\frac{1.125}{\log \left(p_{n}\right) \log \log \left(N_{n}\right)}\right) \leq \zeta(2)
$$

Since the LHS is a decreasing function of n it is enough to check this inequality for the first n such that $p_{n} \geq 20000$.
For $5 \leq p_{n} \leq 20000$, that is $3 \leq n \leq 2262$ we simply compute $R\left(N_{n}\right)$, and check that it is $<e^{\gamma}$.
We can extend this Corollary to all integers >30 by using the reduction of preceding section, combined with some numerical calculations for $30<n \leq N_{4}$.

Corollary 2: For $n>30$, we have $R(n)<e^{\gamma}$.
We prepare for the proof of the preceding Proposition by a pair of Lemmas. First an upper bound on a partial Eulerian product from [8, (3.30) p.70].

Lemma 1: For $x \geq 2$, we have

$$
\prod_{p \leq x}(1-1 / p)^{-1} \leq e^{\gamma}\left(\log x+\frac{1}{\log x}\right)
$$

Next an upper bound on the tail of the Eulerian product for $\zeta(2)$.
Lemma 2: For $n \geq 2$ we have

$$
\prod_{p>p_{n}}\left(1-1 / p^{2}\right)^{-1} \leq \exp \left(2 / p_{n}\right)
$$

Proof: Use Lemma 6.4 in [1] with $x=p_{n}$ and $t=2$.
We are now ready for the proof of Proposition 4
Proof:
Write

$$
\frac{\Psi\left(N_{n}\right)}{N_{n}}=\prod_{k=1}^{n} \frac{1-1 / p_{k}^{2}}{1-1 / p_{k}}
$$

and use both lemmas to derive

$$
\frac{\Psi\left(N_{n}\right)}{N_{n}} \leq \frac{\exp \left(\gamma+2 / p_{n}\right)}{\zeta(2)}\left(\log p_{n}+\frac{1}{\log p_{n}}\right)
$$

Now we get rid of the first \log in the RHS by the bound of [7, p.206]

$$
\log \left(p_{n}\right)<\log \log N_{n}+\frac{0.125}{\log p_{n}}
$$

The result follows.

IV. LOWER BOUNDS

We reduce first to Euler's φ function.
Proposition 5: For $n \geq 2$ we have

$$
n^{2}>\varphi(n) \Psi(n)>\frac{n^{2}}{\zeta(2)}
$$

Proof: The first inequality follows at once upon writing

$$
\frac{\varphi(n) \Psi(n)}{n^{2}}=\prod_{p \mid n}\left(1-1 / p^{2}\right)
$$

a product of finitely many terms <1. Notice for the second inequality that

$$
\frac{\varphi(n) \Psi(n)}{n^{2}}=\prod_{p \mid n}\left(1-1 / p^{2}\right)>\prod_{p}\left(1-1 / p^{2}\right)
$$

an infinite product that is the inverse of the Eulerian product for $\zeta(2)$.
Theorem 1: Under RH the ratio $R\left(N_{n}\right)$ is $>\frac{e^{\gamma}}{\zeta(2)}$ for $n \geq 3$. If RH is false, this is still true for infinitely many n.

Proof:
Follows by Proposition 5], combined with [4, Theorem 2].
In view of this result and of numerical experiments the natural conjecture is
Conjecture 1: For all $n \geq 3$ we have $R\left(N_{n}\right)>\frac{e^{\gamma}}{\zeta(2)}$.
The main result of this note is the following.
Theorem 2: Conjecture 1 is equivalent to RH.
Proof: If RH is true we refer to the first statement of Theorem 1 If RH is false we consider the function

$$
g(x):=\frac{e^{\gamma}}{\zeta(2)} \log \theta(x) \prod_{p \leq x}(1+1 / p)^{-1}
$$

Observing that $\log \theta\left(p_{n}\right)=\log \log N_{n}$, we see that $g\left(p_{n}\right)<1$ is equivalent to $R\left(N_{n}\right)>\frac{e^{\gamma}}{\zeta(2)}$. We need to show that there exists an $x_{0} \geq 3$ such that $g\left(x_{0}\right)>1$ or equivalently $\log g\left(x_{0}\right)>0$. Using once again the identity $1-1 / p^{2}=(1-1 / p)(1+1 / p)$, and [1] Lemma 6.4], we obtain, upon writing

$$
-\log \zeta(2)=\sum_{p \leq x} \log \left(1-1 / p^{2}\right)+\sum_{p>x} \log \left(1-1 / p^{2}\right),
$$

the bound

$$
\log g(x) \geq \log f(x)-2 / x
$$

where f is the function introduced in [4, Theorem 3], that is

$$
f(x):=e^{\gamma} \log \theta(x) \prod_{p \leq x}(1-1 / p)
$$

We know by [4, Theorem 3 (c)] that, if RH is false, there is a $0<b<1$ such that $\lim \sup x^{-b} f(x)>0$ and hence $\lim \sup \log f(x) \gg \log x$. Since $2 / x=o(\log x)$, the result follows.

V. Conclusion

In this note we have derived upper and lower bounds on the Dedekind Ψ function. We show unconditionally that the function $\Psi(n)$ satisfies the Robin inequality. Since $\psi(n) \leq \sigma(n)$ this could be proved under $R H$ [7] or by referring to [1]. Of special interest is Conjecture 1 which is shown here to be equivalent to RH. We hope this new RH criterion will stimulate research on the Dedekind Ψ function.

Acknowledgements: The authors thank Fabio Anselmi, Pieter Moree, and Jean-Louis Nicolas for helpful discussions.

REFERENCES

[1] Choie, YoungJu, Lichiardopol, Nicolas, Moree, Pieter, Solé, Patrick On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), no. 2, 357-372.
[2] J. A. Csirik, M. Zieve and J. Wetherell, On the genera of $X_{0}(N)$, unpublished manuscript (2001); available online at http://www.csirik.net/papers.html
[3] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford (1979).
[4] Nicolas, Jean-Louis Petites valeurs de la fonction d'Euler. J. Number Theory 17 (1983), no. 3, 375-388.
[5] Michel Planat, Riemann hypothesis from the Dedekind psi function, hal.archives-ouvertes.fr/docs/00/52/64/54/PDF/RiemannHyp.pdf
[6] Michel Planat, Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ? J. Phys. A: Math. Theor. 44 (2011) 045301-16.
[7] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. (9) 63 (1984), $187-213$.
[8] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94.

