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Abstract— In the Prognostics and Health Management do-
main, estimating the remaining useful life (RUL) of critical
machinery is a challenging task. Various research topics as data
acquisition and processing, fusion, diagnostics, prognostivs and
decision are involved in this domain. This paper presents an
approach for estimating the Remaining Useful Life (RUL) of
equipments based on shapelet extraction and characterization.
This approach makes use in a first step of an history of run-to-
failure data to extract discriminative rul-shapelets, i.e. shapelets
that are correlated with the RUL of the considered equipment.
A library of rul-shapelets is extracted from this step. Then, in
an online step, these rul-shapelets are compared to different test
units and the ones that match these units are used to estimate
their RULs. This approach is hence different from classical
similarity-based approaches that matches the test units with
training ones. Here, discriminative patterns from the training
set are first extracted and then matched to test units. The
performance of our approach is assessed on a data set coming
from a previous PHM Challenge. We show that this approach
is efficient to estimate the RUL compared to other approaches.

I. INTRODUCTION

Remaining Useful Life estimation is one of the main task
in the Prognostics and Health Management (PHM) domain.
The aim of any RUL estimation technique is to provide accu-
rate prediction of the time after which an equipment will not
be able to meet its operating requirements. RUL estimation
is hence very important for industrial purposes as it can help
in adjusting maintenance strategies, maximizing the useful
operational life of equipments, reducing maintenance costs
and avoiding breakdowns that might have critical impacts.

RUL estimation techniques in the literature are separated
into two families : model-based and data-driven approaches.
Techniques combining these two approaches are called hy-
brid methods. Model-based approaches rely on building a
physical model describing the behavior of the equipment.
These approaches are very accurate but the knowledge of
the physical degradation of the system needs to be available,
which is not always the case. In addition, model-based
approaches are specific to an application and cannot be
generalized. Data-driven approaches make use of available
run-to-failure data to build models or extract information
based on a learning process. These approaches are usually
easier to obtain and implement, but are often less accurate
than model-based ones. They hence offer a trade-off between
accuracy and complexity. Most of the data-driven approaches
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in the literature are based on machine learning and statistical
tools. Neural Networks have been widely considered to
model the system and estimate the RUL. These approaches
mainly rely on time series prediction ([1], [2], [3], [4] for
instance). Hidden Markov models [5], ARMA models [6]
have also been considered in the literature. A good survey
of machine learning and statistical techniques for prognostics
can be found in [7].

Recently, similarity-based approaches have been intro-
duced for the RUL estimation problem. In this kind of
approaches, test units (whose remaining lives are to be pre-
dicted) are matched to the library of training units (available
from run-to-failure data) and the most similar instances are
used to estimate the RUL. The authors of [8] have won the
2008 PHM challenge with a similarity based approach that
relied on a modified euclidean distance between training and
test units. In this method, the whole test trajectory is used
to be matched to the library of training units.

Shapelets have been introduced in [9] and [10] for classifi-
cation and early classification of time series. We extend here
the notion of shapelet and define a new kind of shapelets
called rul-shapelets, that correspond to patterns carrying
information about the remaining useful life. In this paper, we
first describe how to extract discriminative rul-shapelets from
a training set of time series representing run-to-failure data
of an equipment. This extraction step produces a library of
rul-shapelets that will be used in the RUL estimation of test
time series. The RUL estimation relies here on finding similar
behaviors between some parts of test time series and the
shapelets that have been extracted because of their correlation
with the remaining useful life. Hence, a major difference with
other traditional approaches is that the estimation is based on
some parts of the test unit (and not the whole test unit or
only last instants), these parts being chosen because of their
high correlation with the RUL.

This approach is compatible with any applications satis-
fying the following assumptions:
• Run-to-failure data is available
• Test components are assumed to go through the same

degradation process as train component
• Sensory data captures the health status evolution.

The rest of this paper is organized as follows. Section II
describes how discriminative shapelets are extracted from
a set of time series representing run-to-failure data. Sec-
tion III explains how these shapelets are used to perform



RUL estimation on test units, and Section IV evaluates the
performance of the proposed approach on a data set available
online.

II. SHAPELET EXTRACTION AND SELECTION

Let T be a training set composed of |T | time series,
T1, . . . ,T|T |. In this set, the time series may have different
lengths. The length of the time series Ti is denoted l(Ti). With
this notation, a time series Ti in the set T can be written
Ti = t i

1, t
i
2, . . . , t

i
l(Ti)

. For sake of clarity, we assume here that
the time series Ti are univariate, i.e. t i

j ∈ R,∀1 ≤ j ≤ l(Ti).
The feature extraction process described in this section can
be extended to multivariate time series by applying it to every
dimension of the time series.

As we focus in this paper on prognostics (estimation
of the remaining useful life of equipments before failure),
time series in the set T represent the monitoring of an
equipement’s behavior from the beginning up to its failure.
In this section, we aim at extracting, from the set T of
time series, features that we will be able to correlate with
the remaining length of a time series (time period between
the instant when the feature is met and the failure of the
equipment).

In the following, we consider features under the form of
time series of small length (relatively to the average length
of the time series in T ), that will be denoted rul-shapelets.

Definition 1: A rul-shapelet is defined by a tuple f =
(S,δ ,µ,σ), where S = s1, . . . ,sl(S) is a time series and δ is a
distance threshold. µ and σ represent respectively the mean
and variance of a Normal distribution that is associated to
the shapelet f . This distribution models the remaining length
of a time series that is matched by f (cf. Definition 2).

Definition 2: A rul-shapelet f = (S,δ ,µ,σ) is said to match
a time series T if there exists a subsequence T ′ of T (whose
length is l(S)) such that the euclidean distance between S
and T ′ is less or equal than δ . In other words, f matches T
if

∃k ∈ [1, l(T )− l(S)+1],s. t.

√√√√l(S)

∑
j=1

(s j− tk+ j−1)2 ≤ δ . (1)

The match is hence defined at a time instant k. If more than
one k satisfies (1), the instant of the match is defined as the
one that leads to the minimal distance.

According to Definition 1 and 2, when a time series Ti is
matched by a rul-shapelet f = (S,δ ,µ,σ) at a time instant
k, we can estimate the probability density function of the
RUL of Ti (from time k) as a Normal distribution N (µ,σ),
i.e. we estimate the length of the time series Ti to follow a
Normal distribution N (k+µ,σ).

In this section, we describe how to extract rul-shapelets
from a set of time-series T and select the ones that convey
sufficient and accurate information about the RUL when it
matches a time series.

A. Shapelet extraction

To extract a rul-shapelet f , we first need to extract a time
series of small length (which represents the feature S of the
rul-shapelet) from the set T , and we then need to estimate
the other three features associated with f : δ ,µ and σ . All
the subsequences of lengths l1, . . . , lN from the set T are
first extracted. The lengths li are parameters chosen by the
user. Depending of the number of time series in T and their
lengths, the number of subsequences extracted here can be
very important. In order to keep a reasonable amount of
shapelets, subsequences of length li,∀1≤ i≤N can be quan-
tized using the K-means algorithm into a smaller number of
subsequences. After this step, a set F = { f1, . . . , f|F |} of
shapelets is obtained. For all these shapelets, only the first
feature S is known for the moment. In this case, f can also
be written f = (S,?,?,?). We explain in the following how
to obtain the other three features.

B. Shapelet selection

Definition 3: Let f = (S,?,?,?) be a rul-shapelet and T a
time series from T . The best-match features (BMF) between
f and T is the pair (d,rul), where :

d = min
1≤ j≤l(T )−l(S)+1

√√√√l(S)

∑
i=1

(si−Ti+ j−1)2

rul = l(T )− arg min
1≤ j≤l(T )−l(S)+1

√√√√l(S)

∑
i=1

(si−Ti+ j−1)2.

(2)
In other words, d is the minimum euclidean distance between
S and a subsequence of T of the same length and rul is
the remaining time before the end of T when this minimum
distance d is met. In the following, d will also be denoted
best-match distance and rul best-match RUL.

We can, according to Definition 3, compute the BMF
between a rul-shapelet f and every time series of the set
T .

Definition 4: For a rul-shapelet f = (S,?,?,?) and a set T
of time series, we define the best-match features list between
f and T as the list :

L f = 〈bm f1 = (d1,rul1), . . . ,bm f|T | = (d|T |,rul|T |)〉, (3)

where bm fi,1 ≤ i ≤ T is the BMF between f and the ith

time series of T . This list of pairs is then ordered so that
the di are in an increasing order (d1 ≤ d2 ≤ ·· · ≤ dT ).

We are now interested, for a rul-shapelet f = (S,?,?,?),
in finding the parameters δ ,µ and σ such that when f
matches a time series T (i.e. the best-match distance between
f and T is lower than δ ), we have a high confidence in
estimating that the remaining time (from the instant of the
match) before the end of the series T follows a Normal
distribution N (µ,σ). For that purpose, we use the best-
match features list L f between f and the set of time series
T . From this list, we first extract the list of best-match
RULs: R = 〈rul1, . . . ,rul|T |〉. This list R is normalized so



that its average value equals 0 and its variance equals 1. We
compute the index i (2≤ i≤ |T |) defined by:

i = arg min
2≤ j≤|T |

var(rul1, . . . ,rul j), (4)

where var denotes the statistical variance. This equation
also means that we are searching for the i first elements
of R of minimum variance. In order to select only the
most discriminative rul-shapelets, the shapelets such that the
minimal partial variance (computed at Equation 4) is above
a threshold τ can be discarded. When the values of R are
normalized, the variance of the whole list is 1 (whatever
the considered rul-shapelet). As τ gets close to 0, the more
discriminative are the shapelets.
Then, the parameters of the selected rul-shapelet f are
computed as : 

δ = di
µ = (rul1 + · · ·+ ruli)/i
σ = var(rul1, . . . ,ruli)1/2,

(5)

where the values rul j correspond to the ones before
normalization of R.

Example 1:
Figure 1 shows the steps described above to estimate the

parameters of a rul-shapelet f . On this exemple, a training set
of 100 time series is used. Figure 1-(a) shows the values of the
best-match RULs between f and the 100 time series. Note that
these values are ordered according to the best match distances
as explained above. The right part of Figure 1 shows the
partial variances var(rul1, . . . ,rul j),2 ≤ j ≤ 100. From these
values, the index i = 11 is chosen according to Equation (4).
The 11st best-match distance (d11 in the best-match features
list) is selected as the paramter δ and the 11 first values of the
left image are selected (shown by red triangles) to estimate µ

and σ according to Equation (5).

After these steps, the set F = { f1, . . . , f|T |} of rul-
shapelets is filled, i.e. every fi is defined with its four
parameters.

III. SHAPELET-BASED RUL ESTIMATION

In this section, we explain how we perform RUL
estimation using a set of rul-shapelets F obtained as
described in the previous section. The context is the
following: we are monitoring the behavior of a component
and our aim is to predict when this component is likely
to face a failure, based on previous experiences. The
monitoring of the component is modeled by a time series
U = u1, . . . ,ul(U). No information is given about the last
monitoring instant l(U): it can be at an early stage of the
life of the component, a late stage or any stage in between.

A. Extracting the rul-shapelets that match U

The first step of the RUL estimation described in this
section is to find the rul-shapelets in F that match the
test time series U , and the time instant of the match when
applicable. Let f = (S,δ ,µ,σ) be a rul-shapelet of F . The

best-match distance between f and U is computed (i.e. the
mimimum euclidean distance between S and a subsequence
of U of same length as S). If this best-match distance is
lower than δ then, according to Definition 2 f matches U .
The time instant idx f of the match (i.e. the time index of the
beginning of the subsequence of U that leads to the minimal
distance) is stored together with f . If the best-match distance
between f and U is greater than δ , then f is discarded.
The same operation is repeated for all the rul-shapelets of
F , leading to a set Match(U) = {( f1, idx1), . . . ,( fk, idxk)},
where fi,1≤ i≤ k is a rul-shapelet and idxi the time instant
when fi matches U .

B. RUL estimation

Every rul-shapelet in Match(U) conveys an information
about the RUL of U given by the probability density
function of the Normal distribution. Given a rul-shapelet
fi = (si,δi,µi,σi) in Match(U), we can define the likelihood
that the RUL of U is equal to r,r ∈ N according to the
information brought by fi as

L (U,r, i) =
1

σi
√

2π
e−

1
2 (

r−µi
σi

)2
(6)

Taking into account all the information brought by the rul-
shapelets of Match(U), the likehood that the RUL of U is
equal to r is given by

L (U,r) =
k

∑
i=i

L (U,r, i). (7)

Note that weights can also be inserted in Equation (7) to
favor for instance rul-shapelets that match U at late time
instants (as late time instants are closer to failures than early
ones). We use in this paper a weight that correspond to the
ratio between the instant when the shapelet is matched and
the length of the time series where it is matched. Ratios
around 1 mean that the shapelet is matched close to the last
instants.

Fianlly, the RUL of U can be estimated by :

RUL(U) = argmax
r∈N

L (U,r). (8)

Figure 2 gives an example of the probability density
function obtained following the method described in this
section. The estimated RUL here is equal to 156.

IV. EXPERIMENTAL RESULTS

A. Turbofan data set

The data used to assess the performance of our approach
is the Turbofan engine degradation simulation data set [11]
available on the NASA prognostic data repository1. We use
here the first experiment of this data set. It is composed of
100 training time series that represent 100 comlete run-to-
failure monitoring of the same engine model and 100 test
time series that represent only a partial monitoring (up to
a certain time) of 100 similar engine models. The lengths
of the time series in the training set vary between 128 and

1http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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Fig. 1. (a) Best-match RULs obtained between a rul-shapelet and a set of 100 time series, ordered according to the best-match distances (Equation 2) -
(b) Partial variances of the best-match RULs of (a). The index of the minimum partial variance is equal to 11 here.
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Fig. 2. Example of the probability density function obtained by the
proposed method of RUL estimation.

362. Our goal is to predict the RUL of the 100 testing
time series. Each time series is multivariate : 21 measures
(including temperature, pression and speed at various points)
are available at every time instant. We have selected only
seven sensors according to the study of [8] that pointed out
these sensors as the most significative ones. The values given
by these sensors are corrupted by noise. We used a third-
order polynomial curve to smooth these values and keep only
the trends of the time series. The 100 time series given by
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Fig. 3. Evolution of the measures of sensor 1 for the 100 training time
series. These curves are obtained after smoothing with a polynomial curve.

sensor 1 after smoothing are shown in Fig. 3.

B. Results

Two different approaches are considered here : the first
one consists in working directly with the 7-dimensional
time series and the second one consists in computing a 1-
dimensional time series (health indicator) by using a linear
regression on the original time series. This second method
was proposed in [8]. The seven values available at each time
instant are converted by linear regression into a unique value
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Fig. 5. Histograms of the prediction errors (actual RUL − predicted RUL) obtained by applying (a) an estimation approach based on [8], the proposed
approach on (b) the 7-dimensional time series and on (c) the health indicator obtained after linear regression on the original time series.

TABLE I
PERFORMANCE EVALUATION (PERCENTAGE OF CORRECT, EARLY AND LATE PREDICTIONS AND SCORE) OF THE PROPOSED APPROACH AND

COMPARISON WITH [8].

Method correct pred. (%) early pred. (%) late pred. (%) Score of Eqn (11)
Proposed approach (7 sensors) 53 25 22 807.47

Proposed approach (health indicator) 54 33 13 651.01
Estimation based on Wang et al. [8] 55 22 23 791.02
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Fig. 4. Health indicators obtained by linear regression for the 100 training
time series. These curves are obtained after smoothing with a third-order
polynomial curve.

between 0 and 1 that represent the health of the system (value
1 means good health). The health indicators obtained by
linear regression are shown in Figure 4. We will compare
the effectiveness of both methods in this section.

For each of these approaches, we have built a library
of rul-shapelets as explained in Section II that we used to
perform the estimation of the RUL of the 100 time series of
the test set, using the method explained in Section III. We
used 5 differents lengths for the rul-shapelets : 10,20,30,40
and 50. The threshold τ (Section II-B) is set to 0.35.

As late predictions can have more harmful impact than
early ones, a prediction is considered correct if

di f f = Actual RUL−Predicted RUL ∈ [−10,13]. (9)

This interval was defined by the PHM competition.
Figure 5 represents the histograms of the prediction error

when the proposed RUL estimation technique is applied for
three different approaches : (a) an estimation approach based
on [8], (b) the proposed approach using the 7 dimensional
time series and extracting rul-shapelets on each dimension
and (c) the proposed approach using the health indicator time
series obtained by linear regression. We can observe that the
prediction errors are more concentrated around zero for the
most right histogram.

A score can also be computed to evaluate the performance
of the predictions. The following score S was defined by the



PHM competition :

S =
100

∑
k=1

Sk, (10)

where

Sk =

{
e−di f f k/10−1 if di f f k ≤ 0
edi f f k/13−1 if di f f k > 0,

(11)

where di f f k is the difference between the actual RUL and
the estimated RUL for the kth time series of the testing set.

Table I sums up the performance of the proposed approach
and compares it to the method of [8]. For all the different
methods the percentage of correct, early and late predictions
are given, together with the score given in Equation (11). In
the method proposed by Wang et al. [8], the RUL estimation
depends on a parameter that determines the number of
nearest neighbours kept. A train trajectory is kept if the
euclidean distance between this training trajectory and a test
one is less than α times the minimum distance between the
test trajectory and all the training ones. We fixed this α here
to 3 as it gives the best results.

From this table, we can see that using the health indicator
approach yields better results than working directly with the
sensors. In addition, a better score is obtained using the
shapelet-based approach than the one based on [8].

Another advantage of the rul-shapelet based RUL esti-
mation is that the number of parameters in this method
is low and they are quite intuitive to fix. Indeed, only the
lengths of the shapelets and the threshold τ (to discard non
discriminating shapelets) need to be fixed. The lengths of the
shapelets depend on the application (size of the training time
series) and do not have a huge impact on the performance
when reasonnably chosen. The threshold τ is intuitive to fix :
a very low τ(≤ 0.1) will lead to discard a lot of shapelets
and might lead to select too few shapelets while a higher
τ(≥ 0.5) may lead to select too many shapelets that are less
discriminating.

V. CONCLUSION

We have proposed in this paper a RUL estimation tech-
nique based on shapelet extraction. The shapelet extraction
process aims at selecting, from a training set of run-to-failure
data, patterns (under the form of small time series) that

can be correlated with the remaining time before failure.
These extracted patterns convey each an information about
the remaining life of the equipment from the instant they
are met. These patterns are then used in an online step to
estimate the RUL of test units (units for which the remaining
useful life is not known). Hence, the RUL estimation is
based here on matching discriminative patterns (in terms of
RUL estimation) from the training units to test units. This
approach was tested on a Turbofan data set and the prediction
results showed efficient performance.
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