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On the geometry and invariants

of qubits, quartits and octits

M. Planat

Institut Femto-st/CNRS, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, France
michel.planat@femto-st.fr

Abstract

Four level quantum systems, known as quartits, and their relation to two-
qubit systems are investigated group theoretically. Following the spirit of
Klein’s lectures on the icosahedron and their relation to Hopf sphere fibra-
tions, invariants of complex reflection groups occuring in the theory of qubits
and quartits are displayed. Then, real gates over octits leading to the Weyl
group of E8 and its invariants are derived. Even multilevel systems are of
interest in the context of solid state nuclear magnetic resonance.

Keywords: Multilevel systems, quartits, finite groups, invariant theory.

1. Introduction

A four-level system, also denoted a quartit, is a promising concept for the
design of versatile two-qubit states and gates of quantum computation. As
shown for instance in [1], states of nuclear spin 3

2
in a specific GaAs quantum

well device may be used for realizing the logical single and two-qubit gates by
applying selective radio frequency pulses at the resonance frequency between
two energy levels. Thus, quantum computing based on solid state nuclear
magnetic resonance (NMR) with spins 3/2 (corresponding to quartits), spins
7/2 (corresponding to 8-level systems, or octits) and higher order spins, is a
strong motivation for our research.

Multilevel systems with a number d of levels not a prime number (such as
quartits, sextits and so on) are special by the mere fact that the number of
mutually unbiased bases (MUBs) that can be constructed from the machinery
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of finite fields is strictly less than the value d+1 corresponding to a complete
set. It is well known that a complete set of MUBs may be obtained for a
system of m qudits, if the qudit is a p-level system, i.e. d = pm and p a
prime number [2]. It has been shown in previous works [3, 4] that the free
modules and the projective line over the finite ring Z2 × Z3 may be used to
represent the geometry of commutation relations over a sextit system, leading
to a maximum of three MUBs. In the context of MUBs, the sextit system
is relevant because it corresponds to the smallest composite dimension for
which a complete set cannot, in principle, be derived. But the sextit system
cannot be ditinguished from the qubit/qutrit system [4] so that, from the
point of view of quantum computation, it does not add new features.

In contrast, in dimension four, a two-qubit system is not equivalent to a
quartit system. A two-qubit system is obtained by taking tensor products
of ordinary Pauli spin matrices σx, σy and σz, while the quartit system is
generated by the two shift and clock operators (see Example 7 in [5])

X =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









, Z = diag(1, ω, ω2, ω3) = σz ⊗ P, (1)

where ω = exp(2iπ
4
) and P = diag(1, i).

The two-qubit Pauli group P2 is generated by the two-fold tensor products
of ordinary Pauli spin matrices. It is isomorphic to the small permutation
group [64, 266], the group of number 266 in the sequence of small groups with
cardinality 64. It may also be seen as a central product 1: P2

∼= E±
32

∗ Z4

since [64, 266] contain the extraspecial groups E±
32

and the cyclic group Z4 as
normal subgroups, and E±

32
∩ Z4 coincides with the center Z4.

The quartit group Pquartit, generated by matrices X and Z, is isomorphic
to the small group [64, 18]. It may also be seen as a semidirect product:
Pquartit ∼= Z2

4
⋊ Z4 ( or as a central product Z2

4
∗ Z4).

The reason why quartit actions relate to two-qubit actions is made ex-
plicit in [1, 7]. In particular, the standard (entangling) cnot gate is easily
inplemented by applying a suitable r.f. π pulse between two of the levels of
the quartit system (see Sec. 3.3 of [1]). This may be reformulated in the

1In this paper, symbols ×, ∗, ⋊ and . denote the direct, central, semidirect and dot
product of groups, respectively [6]
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group language. The group Ccnot = 〈X,Z, cnot〉 obtained from the quartit
group by adding to it the cnot generator reads Ccnot ∼= P2 ⋊ (Z2 × S4) (of
order 3072). This means that two-qubit Pauli operators arise naturally in
the normal subgroup part of Cnot, as they do in the two-qubit Clifford group
C2 ∼= P2 ⋊ (Z2 × S6) (see (14) of [8]). The fourfold symmetry attached to
the quartit system is visible in the factor group Ccnot/P2, that contains the
symmetric group S4; similarly, the corresponding factor group for the two-
qubit system contains the symmetric group S6 ( see also [9] about the sixfold
symmetry of the two-qubit system).

The connection of the quartit system to the two-qubit Clifford group is
made more stringent by using (instead of the cnot gate) the entangling gate

S =









1 −1 1 1
1 1 −1 1
1 −1 −1 −1
1 1 1 −1









, that we introduced in several contexts [10, 11].

In some respect, gate S may be seen as a generalization of the single qubit

Hadamard gate H = 1√
2

(

1 1
1 −1

)

. The real gate S encodes the simulta-

neous (entangled) eigenvectors of the triple {σx ⊗ σx, σy ⊗ σy, σz ⊗ σz} [10]
and lies in the automorphism group of the lattices Z4 (see [2] in [11]) and D4

(see [7] in [11]).
The single qubit Clifford group is generated by H and P as C1 = 〈H,P 〉 ∼=

P1 ⋊ D6 (with D6 the 12-element dihedral group) identifies to the rank 2
complex reflection group U9 (number 9 in the Shephard-Todd sequence [8]).
Similarly, it is straigthforward to check that the group CS = 〈X,Z, S〉 ∼=
P2 ⋊ S6, obtained by completing the quartit group with S (instead of cnot)
is a subgroup of index two in C2, identifies to the rank 4 complex reflection
group U31 (number 31 in the Shephard-Todd sequence, see also p. 8, footnote
g in [8]).

2. Invariants involved in the theory of a single qubit

There is a well known connection of invariant theory to Clifford groups
and self-dual codes [12, 13]. In the code context, the genus-n full weight
enumerators of some self dual codes are polynomials in 2n variables invariant
under the Clifford group Cn. Here, we are interested in a explicit connection
of polynomial invariants of C1 and CS to quantum states of the single qubit
and quartits respectively. In this goal, it is useful to recollect the celebrated
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Klein’s lectures about the homogeneous invariants attached to the geometry
of platonic solids [14] and give them an interpretation based on the Bloch
sphere [15]. Among Klein’s invariants, fundamental invariants of C1 (of de-
grees 8 and 24) are polynomials in the two amplitudes of a single qubit state,
as shown in Sec. 2.2. The reasoning is generalized, in Sec. 3, to the fun-
damental invariants of the complex reflection group CS (of degrees 8, 12, 20
and 24), which are polynomials in the four amplitudes of the quartit.

2.1. Invariant ring of a finite matrix group

Beforehand, let us recall some technicalities. An algorithm that calculates
invariant rings of finite linear groups over an arbitrary field K is described in
[17] and implemented in Magma [6] (see also [13, 19, 18]).

It may be applied to any finite matrix group G ≤ GLn(K) of degree n
over K. The group G acts linearly on the polynomial ring K[x1, . . . , xn] of
the variables xi

2. The invariant ring is defined as the set of polynomials left
invariant under the action of G

R = K[x1, . . . , xn]
G := {f ∈ K[x1, . . . , xn]|σ(f) = f, ∀σ ∈ G} . (2)

Primary invariants may be constructed, i.e., homogeneous invariants f1, . . . , fn
that are algebraically independant, such that the invariant ring is a finitely
generated homogeneous module over A = K[f1, . . . , fn].

Then, a (minimal) set of secondary invariants for R, with respect to these
primary invariants, is a (minimal) generating set forR considered as a module
over the algebra generated by the primary invariants.

Given I a homogeneous ideal of the graded polynomial ring P = K[x1, . . . , xn],
then the quotient ring P/I is a graded vector space: P/I is a direct sum of
the vector spaces Vd for d = 0, 1, . . . where Vd is the K-vector space consisting
of all homogeneous polynomials in P/I of weighted degree d. The Hilbert
series of the graded vector space P/I is the generating fonction

HP/I(t) =

∞
∑

d=0

dim(Vd)t
d,

and may be rewritten as a rational function of the variable t.

2In the sequel of this paper, variables xi are interpreted as the complex amplitudes of
a qudit and are denoted α, β (for a qubit) and α, β, γ, δ (for a quartit).
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If the character char(K) of K does not divide the cardinality |G| of the
group G (the non-modular case), the Hilbert series becomes the Molien series
[17]

Ht =
1

|G|
∑

σ∈G

1

det(1− σt)
.

2.2. Geometry of the invariants of the single qubit Clifford group C1
Let us see how the same results follow from the geometrical approach

[14]. In the computational basis, a single qubit reads as the superposition

|ψ 〉 = α |0 〉+ β |1 〉 , α, β ∈ C, |α|2 + |β|2 = 1, (3)

where the complex amplitudes α = a + ib, β = c + id satisfy the equations
of the 3-sphere S3 : a2+ b2+ c2+ d2 = 1. This state may also be represented
(up to a global phase) in the Bloch sphere picture by using the map [15]

ξ = 〈σx〉ψ = 2 Re(ᾱβ),

η = 〈σy〉ψ = 2 Im(ᾱβ),

ζ = 〈σz〉ψ = |α|2 − |β|2,
(4)

satisfying the equation of the 2-sphere S2 : ξ2 + η2 + ζ2 = 1. Specific points
are the north pole |0 〉, the south pole |1 〉, and a set E of four points of
the equatorial plane located at the intersection of the Bloch sphere with the
reference axes (±1, 0, 0) = 1√

2
(|0 〉 ± |1 〉), (0,±1, 0) = 1√

2
(i |0 〉 ± |1 〉).

The Bloch sphere picture defines the Hopf fibration S3 S1

→ S2, in which
the (great circle) fibre S1 represents the global phase.

The picture of the Bloch sphere may be supplemented by the picture of
the Riemann sphere C ∪ {∞}

(

x′

y′

)

=

(

α β
−β̄ ᾱ

)(

x
y

)

, |α|2 + |β|2 = 1. (5)

Then, following Klein [14], points of the Riemann sphere minus the north
pole (0, 0, 1) are mapped to the equatorial plane ζ = 0, via a stereographic
projection

s(ξ, η, ζ) =
ξ + iη

1− ζ
, (6)
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and the north pole is mapped to the fraction s(0, 0, 1) = 1

0
.

In this representation, a point of the sphere S2 can be seen as a equivalence
class p

q
(so that to fractions p

q
and p′

q′
, such that pq′ − p′q = 1, represent the

same point on the sphere). For this reason, the Riemann sphere may also be
identified to the complex projective line CP1.

As a result, the fraction p
q
of the Riemann sphere picture corresponds

to the qubit α |0 〉 + β |1 〉 of the Bloch sphere picture. The specific points
above are the north pole 1

0
≡ |0 〉, the south pole 0

1
≡ |1 〉, and points of the

set E that are s(±1, 0, 0) = ±1

1
≡ 1√

2
(|0 〉 ± |1 〉) and s(0,±1, 0) = ± i

1
≡

1√
2
(|0 〉 ± i |1 〉).
Having parametrized the 2-sphere as CP1, one can capture the symmetry

of a set of n points S =
{

p1
q1
, · · · , pn

qn

}

, living on it, in a polynomial of the

form [14, 16]

(
α

β
− p1
q1
) · · · (α

β
− pn
qn

), (7)

that has roots exactly at the points of S. This can be rewritten as a homo-
geneous polynomial of degree n

(q1α− p1β) · · · (qnα− pnβ). (8)

The pairs (α, β) which cancel the polynomial (8) are the amplitudes of the
quantum states in (3). For instance, the set of six points listed above may be
seen as the vertices of a octahedron and their symmetry may be expressed
as the polynomial

T := αβ(α− β)(α+ β)(α+ iβ)(α− iβ) = αβ(β4 − α4), (9)

which is invariant under the action of the octahedral group.

The tetrahedral group

Refering to the specific points displayed at the previous section, the faces
of the octahedron are centered at the vertices of a cube of coordinates

± ξ = ±η = ±ζ = 1√
3
, (10)

and one can pick up the vertices of a tetrahedron by selecting, among the
eight possible combinations of sign, those for which the product ξηζ is posi-
tive

p

q
=

1 + i√
3− 1

,
1− i√
3 + 1

,
−1 + i√
3 + 1

,
−1 − i√
3− 1

. (11)
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A straightforward calculation leads to the invariant polynomials

α4 ± 2i
√
3α2β2 + β4, (12)

which correspond to a tetrahedron (upper sign) or to a countertetrahedron
(lower sign) (see [14], p 54). One can check that the tetrahedral group
U4

∼= SL(2, 3) (number 4 in the Shephard-Todd sequence)

U4 =

〈

1

2

(

1− i 1− i

−
√
3− 1 1 +

√
3

)

,
1

2

(

1− i i− 1

1 +
√
3 1 +

√
3

)〉

(13)

possesses an invariant ring spanned by the two primary invariants (9) and
(12), corresponding to the Molien Series

MS(U4) =
1

(1− t4)(1− t6)
. (14)

The tetrahedral system is involved in the construction of minimal four-
state quantum tomography. The quantum states correspond to the four
vertices of the tetrahedron and form a SIC POVM (see eq (2.6) in [20] and
Sec. B in [21]). They may be taken as

|ψ 〉 = α |0 〉+ β |1 〉 , σx |ψ 〉 , σy |ψ 〉 , σz |ψ 〉 ,
with α = 1√

2
(1 + 1/

√
3)1/2 and β = 1√

2
exp(iπ/4)(1− 1/

√
3)1/2,

(15)

in agreement with the upper equation (12).

The octahedral group

The octahedral group is not of the reflection type but is isomorphic to U4

[22]. It possesses the invariant polynomial (9) for the vertices and another
invariant polynomial related to the 8 faces of the octahedron centered at the
points given in (10). It is obtained by multiplying together the invariants
(12) so that

W := α8 + 14α4β4 + β8. (16)

The octahedral group O is generated as the derived subgroup C′
1
of the single

qubit Clifford group

O =

〈

iσz,
1

2

(

1− i i− 1
1 + i 1 + i

)〉

, (17)

The Molien series is

MS(O) =
1− t4 + t8

(1− t6)(1− t8)
. (18)

and the invariant ring is spanned by (9) and (16).
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The group U8 and the Clifford group C1
The reflection group U8

∼= Z4.S4 is a subgroup of index two in the Clifford
group C1

U8 =

〈

P,
1

2

(

1− i i− 1
1 + i 1 + i

)〉

, (19)

Its Molien series is

MS(U8) =
1

(1− t8)(1− t12)
, (20)

and the invariant ring is spanned by the invariant W and an invariant of
degree 12

κ := α12 − 33 α8β4 − 33 β4α8 + β12. (21)

There exists the following relationship (eq (53) in [14]) 3

108 T 4 −W3 + κ2 = 0. (22)

Finally, the Clifford group C1 is the reflection group U9. The Molien series
1/(1− t8)(1− t24), is spanned by the three invariants T , W and κ.

In [22], the invariant ring C[α, β]C1 of C1 is found to be isomorphic to the
polynomial ring C[E4,∆12] generated by the Eisenstein series E4 of weight
4 and the cusp form ∆12 of weight 12, but no reference to Klein’s work is
pointed out. The invariant ring of C1 is spanned by the weight enumerator
W of the Hamming code e8 and the weight enumerator G of the Golay code
G24 [12]

G := α24 + 759 α16β8 + 2576 α12β12 + 759 α8β16 + β24, (23)

where T 4 = W3−G
42

.

3. Invariants involved in the theory of a single quartit

Let us define a quartit state as

|ψ 〉 = α |0 〉+ β |1 〉+ γ |2 〉+ δ |3 〉 , (24)

3Primary invariants T and W , the secondary invariant κ and relation (22) follow
from Magma with the following code “R:=InvariantRing(U8); PrimaryInvariants(R); Sec-
ondaryInvariants(R); Algebra(R); Relations(R);”
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with α, β, γ, δ ∈ C and the sum of squared amplitudes equal to unity.
Formally, one can map a quartit state to a two-qubit state as |0 〉 ≡ |00 〉,

|1 〉 ≡ |01 〉, |2 〉 ≡ |10 〉 and |3 〉 ≡ |11 〉, so that

|ψ 〉 = α |00 〉+ β |01 〉+ γ |10 〉+ δ |11 〉 , (25)

with α, β, γ, δ ∈ C and the sum of squared amplitudes equal to unity. This
key identification is carried out in [1]. Although a quartit is not, strictly
speaking, equivalent to two qubits, both systems are close to each other as
soon as the suitable gate action is performed (as shown in the introduction).
Experimentally, it is much convenient to have at one’s disposal a four-level
system (such as the NMR spin 3

2
state) than a two-qubit system. In the

present context of the second Hopf fibration, it is true that a quartit is for-
mally similar to a two-qubit system, and the resulting polynomial invariants
also are the same.

The quantum states are now the inhabitants of the 7-sphere S7 of unit
radius. The latter can be mapped to the 4-sphere S4 by using ,instead of
complex numbers, the quaternions

Q1 = α+ βj, Q2 = γ + δj, with Q1, Q2 ∈ H, (26)

where H denotes the (non-commutative) field of quaternions. The multipli-
cation rules are i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and ji = −k,
kj = −i and ik = −j. The conjugate of a quaternion Q1 is Q̄1 = α− βj and
the norm is |Q1|2 = Q1Q̄1.

In the second Hopf fibration S7 S3

→ S4, the coordinates of a point of the
target space are (ξ, η, u, v, ζ) = 〈σi〉ψ (i = 1..5) where

σ1 = σx =

(

0 1
1 0

)

, σ2,3,4 =

(

0 i, j, k

−(i, j, k) 0

)

, σ5 = σz =

(

1 0
0 −1

)

, (27)

are quaternion Pauli matrices [15]. Explicitely

ξ = 2 Re(ᾱγ + β̄δ), η = 2 Im(ᾱγ + β̄δ),

u = 2 Re(αδ − βγ), v = 2 Im(αδ − βγ),

ζ = |Q2

1
| − |Q2

2
| = α2 − β2 + γ2 − δ2.

(28)

The notable point is the sensitivity of the second Hopf map to entanglement.
Separable states satisfy the condition αδ = βγ and therefore are mapped onto
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a subset u = v = 0 of pure complex numbers in H. Conversely, the maximally
entangled states correspond to a subset of pure quaternions ξ = η = ζ = 0
in H.

It is known that the projective Hilbert space of two non-entangled qubits
is the product of two 2-dimensional spheres S2, each sphere being the Bloch
sphere attached to a specific qubit. In terms of the second Hopf fibration, one
sees that the space S4 maps to a unit sphere S2 (such that u = v = 0) which
is the Bloch sphere for the first qubit. The second Bloch sphere is recovered
from the fibre. The projective Hilbert space for maximally entangled states
is known to be S3/Z2, i.e. a 3 sphere such that two opposite points are
identified. This has a counterpart in the Bloch sphere picture in the fact
that opposite points on S3 corresponds to the same maximally entangled
state [15].

The Riemann sphere C ∪ ∞ may be generalized to the one-point com-
pactification H ∪∞ of the quaternion numbers, which may be identified to
the projective line HP1 ∼= S4 over the quaternions. To proceed further, one
can map points of HP1 to the plane ζ = 0, via a 4-dimensional stereographic
projection

s(ξ, η, u, v, ζ) =
ξ + iη + ju+ kv

1− ζ
with s(0, 0, 0, 0, 1) =

1

0
. (29)

but the generalization of Klein’s approach is not straigthforward since a
homogeneous polynomial corresponding to (7) should display four variables
α, β, γ and δ instead of two. Fortunately, the invariant theory of finite linear
groups summarized in Sec. 2.1 may be applied and results made explicit by
using Magma [6].

The invariant ring of complex reflection group CS ≡ U31 attached to a
quartit is spanned by invariants of degrees 8, 12, 20 and 24 in the four
variables x1 = α, x2 = β, x3 = γ and x4 = δ. The smallest degree invariant
is

inv8 := Σ8 + 14 Σ4,4 + 168 Σ2,2,2,2, (30)

in the notations of [12, 13], i.e. Σ8 =
∑

4

i=1
x8i , Σ4,4 =

∑

j>i x
4

ix
4

j and Σ2,2,2,2 =
∏

4

i=1
x2i .

Invariant inv8 also represents the genus-two complete weight enumerator
of the code e8 ⊗ F4 [12], and indeed generalizes Klein’s invariant (16).

With the same type of notations, higher order invariants are as follows

inv12 := Σ12 − 33 Σ8,4 + 330 Σ4,4,4 + 792 Σ2,2,2,6,

10



inv20 := Σ20 − 19 Σ16,4 − 494 Σ12,8 + 380 Σ12,4,4 + 7296 Σ10,6,2,2

+1710 Σ8,8,4 + 133380 Σ8,4,4,4 + 102144 Σ6,6,6,2,

inv24 := Σ24 + 759 Σ16,8 + 2576 Σ12,12 + 212520 Σ12,4,4,4 + 340032 Σ10,6,6,2

+22770 Σ8,8,8 + 1275120 Σ8,8,4,4 + 4080384 Σ6,6,6,6.

(31)

Note that inv12 and inv24 generalize κ in (21) and G in (23), and that inv24
is the genus-2 Hamming weight enumerator of the Golay code G24.

4. On the Weyl group of E8 generated from octits

A relevant example of an eight-level (spin 7

2
) system, here also denoted a

octit, is the 133Cs in an anisotropic environment [23]. Real gates over a octit
are especially interesting because they allow to generate the largest finite
complex reflection group U31

∼= W (E8), of order 696729600, where W (E8)
denotes the Weyl group of Lie algebra E8 (see also [10, 11] for a similar
approach of E8). One obtains

U31 = 〈X8, I ⊗ I ⊗ σz, S3〉 , (32)

where I is the 2 × 2 identity matrix, X8 is the 8 × 8 shift matrix and S3

is a generalization of matrix S, that encodes the eigenstates of the triple of
observables σz ⊗ {σx ⊗ σx, σy ⊗ σy, σz ⊗ σz}

S3 =
1

2

























0 0 0 0 1 1 1 −1
1 1 1 −1 0 0 0 0
0 0 0 0 1 1 −1 1
1 −1 1 1 0 0 0 0
1 1 −1 1 0 0 0 0
−1 1 1 1 0 0 0 0
0 0 0 0 1 −1 1 1
0 0 0 0 −1 1 1 1

























. (33)

The Molien series for U31 reads

∏

m=2,8,12,14,18,20,24,30

1

1− tm
, (34)

leading to invariants of degrees given by the indices in the product. The
invariants of smallest degree are found as

I2 = Σ2, I8 = Σ8 + 56 Σ4,2,2 − 42 Σ4,4 − 168 Σ2,2,2,2.

(35)
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Higher order invariants could not be obtained, due to a lack of memory, even
on a 32 MB segment of the cluster at our university.

5. Conclusion

Complex reflection groups of the Shephard-Todd sequence happen to be
the natural players in the context of the multilevel approach of quantum
computation. Although their construction is well documented in mathemat-
ics and the coding theory of self dual codes, due to the identification of the
invariants to the complete weight enumerators, their introduction for ap-
proaching the design of qubits, quartits and octits seems to be novel. The
largest complex reflection group E8 naturally appears from the relevant real
gates acting over a octit. It is fascinating that fingerprints of the radii of
the Gosset cirles over E8 already appeared in an experimental solid state
system (Ising chain) [24, 25]. The Gosset polytope of the E8 lattice may be
embedded in the Hopf sphere S7 of a two-qubit system, as shown in [26].
The organic relationship of even Euclidean lattices to entanglement is also
explored in [11].
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