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Abstract 
 
Coupling between gas and shell is a concern in the experiment used at LNE-CNAM to determine 
the Boltzmann constant kB by an acoustic method. As the walls of real resonators are not 
perfectly rigid, some perturbations occur in the frequency range of the acoustic resonances 
measured within helium gas contained in the cavity. 
As a contribution for a better understanding of this phenomenon, we have built an experiment to 
measure the shell modes of the spherical resonators in use in our laboratory. We report here a 
work in progress to assess these modes using a hammer blow method together with modal 
analysis. The study is carried out with an air-filled, copper-walled, half-litre quasi-spherical 
resonator in the frequency range from 1 Hz to 20 kHz. 
Our results show that the shell modes expand into multiple resonances of similar modal shape, 
including the “breathing” mode. We confirm the observations reported in other works [4,6] of 
shell perturbations at other frequencies than the breathing frequency. 



 
1 Introduction 
 
There are several methods to determine the Boltzmann constant. One of them is an acoustic 
method [1] whereby acoustic resonances are measured within a gas contained in a copper quasi-
spherical resonator [2]. Here, the resonant frequencies of the shell are a concern because they can 
perturb the acoustic modes of the gas in the cavity. When there is coupling between an acoustic 
mode and a shell mode, the acoustic resonance shifts in frequency, decreases in amplitude and 
becomes broader. In the LNE-CNAM acoustic experiment used to determine the Boltzmann 
constant, we detect perturbed acoustic modes by checking the excess half-width of the 
resonance. In practice, when we encounter an acoustic mode with an unexplained excess half-
width, we exclude it from the set used to determine the Boltzmann constant. 
 
The mechanism through which motion of the shell causes broadening of the acoustic resonances 
is still under discussion. Considering only the experimental work, measurements have been made 
at NIST and at INRiM. One technique consists of exciting the shell with a piezo-transducer 
(PZT) and measuring the shell response with a phonograph needle or another PZT [1,3]. The 
other technique consists of recording the excess half-widths of a number of acoustic modes while 
scanning their frequencies, either by changing the temperature [1], as we illustrate below, or by 
changing the gas-mixture [4]. Resonant frequencies are obtained from the first method and direct 
coupling effect from the second. 
 
The model used to determine the corrections to experimental resonance frequencies due to shell 
perturbation [5] predicts a coupling between radial acoustic modes and radial shell motion: the 
so-called “breathing” mode. But, as shown in the next section §1.1, unexplained excess half-
widths of acoustic resonances are not solely observed in the vicinity of the “breathing” 
frequency. Real resonators have a rather complex geometry compared to that used in the model. 
To show these differences, a comparison is made in §1.2 between measured and calculated 
resonant frequencies for a hemisphere. 
 
1.1 Notes on the experimental equipment 
 
Three different quasi-spherical resonators are used in this study. These resonators are 
respectively: BCU2v2, BCU1, and LCU. All are half-litre cavities of approximately 10 mm wall 
thickness and made of copper (BCU series means Boltzmann and copper). The shapes of these 
resonators are briefly described in Fig. 1 and their distinctive features are recalled in the 
respective sections.   
The present work will focus on the resonator named LCU for reasons given later in section §2. 
LCU cannot be disassembled as we do not want to alter the alignment of the hemispheres, and 
hence change the inner shape. So, we have used the north hemisphere of BCU1, whose shape is 
similar to that of LCU, for the separate hemisphere study described in §1.3. BCU2v2, which is 
working in one of our cryostats as an acoustic thermometer, was used to detect shell 
perturbations through acoustic measurements, which is expanded in section §1.2. The results 
obtained with BCU1 and BCU2v2 are presented in the following sections, to explain the reasons 
that justified the in-depth investigation of LCU presented in section §2.  
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Fig. 1. Sketch of the three resonators used in this work: BCU2v2, BCU1 and LCU. The inner 
shape is a tri-axial ellipsoid so, the inner radius is the mean value. To make clear to what extent 
the external shape of BCU2v2 differs from that of a perfect sphere, a line of constant outer radius 
is overlapped on the drawing. Only the north hemisphere of BCU1 was used for the hemisphere 
study in §1.2. 

 
1.2 Perturbations occur away from the “breathing” mode 
 
In a recent experiment, we have made a frequency scan of acoustic radial modes by gradually 
changing the temperature of the spherical resonator BCU2v2. The measurement was conducted 
under constant gas pressure, since Equation (5) in §2.4 of Pitre et al [3] shows that shell 
perturbation is pressure dependant. The sketch of BCU2v2 in Fig.1 shows that this resonator has 
a shape which differs significantly from a homogeneous sphere in its southern part.  
 
The plot in Fig. 2 shows the observed half-widths, while the excess half-widths is plotted in 
Fig. 3, of several acoustic resonances as the temperature was lowered from 273 K to 77 K. The 
test was carried out with helium gas at constant pressure p = 0.6 MPa. According to the 
mechanical characteristics of BCU2v2, the “breathing” mode of the shell is expected to lie 
around 19,16 kHz according to the calculation based on the thin-spherical-shell model [5]. But at 
this frequency, where the “breathing” mode of the sphere is supposed to interfere the most with 
radial modes within the gas, no excess half-width occurs, while some peaks appear at other 
frequencies.  
An outstanding result is evidenced by this experiment: the perturbations are not temperature 
dependant. At 13.7 kHz for instance, the (0,2) and (0,3) modes show excess half-widths of 
several hundred parts in 106. At this frequency, the temperature for the (0,2) mode is 273 K 
while, for the same frequency, the (0,3) mode is at 77 K. 
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Fig. 2 and Fig. 3. Half-widths and excess half-widths of the acoustic modes as the temperature 
of the half-litre sphere BCU2v2 was lowered from 273 K to 77 K. The test was carried out with 
helium gas at constant pressure p = 0.6 MPa. The theoretical breathing frequency of 19.16 kHz is 
tagged with a dotted line. The grey arrows show how the reduction in temperature sweeps the 
frequency of each mode. On Fig. 2, the particular frequency of 13.7 kHz is tagged with a triangle 
for discussion in section §1.2.  



 
1.3 Discrepancy between measured and calculated resonant frequencies of a hemisphere 
 
A comparison was made between calculated and measured resonant frequencies of a half-litre 
copper hemisphere. A hemisphere was preferred because the effect of the seam between the two 
halves of an assembled spherical resonator is hard to model. We have a theoretical model for 
calculating the resonant frequencies of one hemisphere of LCU [5] [7].  Since we are reluctant to 
disassemble LCU, we have used the north hemisphere of resonator BCU1 whose shape is similar 
to that of LCU. As shown on the left-hand drawing of Fig. 4, the exterior of LCU is perfectly 
spherical, while BCU1 has a cylindrical support screwed on the top.  
The resonant frequencies of the hemisphere were calculated using the theoretical model. Then, 
the response of the north hemisphere of BCU1 to a hammer blow was measured by a piezo-
accelerometer glued onto the outer surface. The experimental method is described in detail in 
section §2. Only one spectrum was recorded at a single position of the accelerometer and the 
impact. As shown in Fig. 4 a lack of agreement has been found between our experimental 
determination of the resonant frequencies and these calculations.  
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Fig. 4. Comparison between experimental spectrum and resonant frequencies calculated by Mehl 
[7] for a half-litre copper hemisphere. The experimental data plotted using a solid line is the 
response of BCU1 north hemisphere to a hammer blow. The resonant frequencies calculated for 
the north hemisphere of LCU are shown using black dotted lines. The two hemispheres differ 
slightly, as shown on the left-hand drawings. 
 
1.4 Objectives 
 
On account of the differences found between experimental data and the theory, particularly as 
the two agree well together for low-frequency modes, it was deemed necessary to further 



investigate the natural modes of vibration of the shell experimentally. The objectives of this 
work were to provide experimental data for comparison with the observed excess half-widths of 
the acoustic modes, and to provide suitable data for the validation of future theoretical models. 
 
 
2 Method and Results 
 
2.1 Method 
 
Our method is divided into several stages that we will expand in the following sections. First, we 
collect a variety of data sets of the response of the shell to impacts. Then we build Frequency 
Response Functions (FRFs) from both the response of the accelerometer and the impact of the 
hammer of the shell. Finally, we apply modal analysis techniques to the FRF set to obtain 
estimates of the mode parameters and display the modal shape. 
 
2.2 Measurement of the shell response 
 
The experiment consists of exciting the shell modes of a quasi-spherical resonator with a 
calibrated impact hammer. The resonator is at room temperature and filled with air. We measure 
the response of the shell using three accelerometers glued onto the surface. The frequency range 
of the accelerometers is 0-20 kHz. A FRF is built from 24000 samples recorded at the rate of 
120 kS/s. The location of these accelerometers is shown in Fig. 4. This ring-down method was 
chosen because it is easy to implement, and therefore a large number of data sets, with impacts at 
different locations, can be acquired. Many Frequency Response Functions (FRF) are required to 
achieve an accurate modal analysis. We define these functions as 
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Where Ai(ω) is the Fast Fourier Transform (FFT) of ai(t), the signal from accelerometer i, and 
Fj(ω) the FFT of fi(t), the impact signal j. 
  
The quasi-spherical resonator chosen for this experiment is the LCU copper sphere. Since the 
LCU spectrum shows relatively few peaks that are well separated in frequency, this sphere is a 
good tool for a first experiment. The external shape of this particular resonator lies very close to 
that of a perfect sphere, with an inner diameter of 100 mm and a wall thickness of 10 mm. The 
spherical symmetry is broken only by the two thermometer housings that lie on the outer surface 
and the screw at the top.  
 
The sphere was suspended from a wire in a freely-hanging configuration, as shown in Fig. 6. 
Impacts were made at 30 different locations all over the surface of the sphere (Fig. 5). The 
locations are optimized to excite all modes with the highest amplitude.  
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Fig. 5. A 3D view of the impact locations on LCU. The big dots ai are the locations of the 
accelerometers. The small dots are the impact locations. 

 
 
Fig. 6. Sketch of the experimental set-up. Sphere LCU is suspended from a steel wire. The three 
accelerometers (only two are shown) are glued onto the sphere. 
 



The FRFs obtained for all impacts as well as the coordinates of the impacts were entered into a 
modal analysis software package called MODAN. This software package was developed by one 
of us (E. F.) [8]. Fig. 7 shows the response recorded by three accelerometers located at different 
positions on the shell to the same impact. This figure makes it clear that the response is different 
in magnitude, and to a lesser extent in frequency, when a different location on the sphere is 
chosen. Moldover et al. observed a similar effect with their phonograph needle experiment [1].  
 

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25

Frequency, kHz

A
m

pl
itu

de
, d

B
 (

R
ef

. 
= 

1 
m

.s
-2

N
-1

)

f b
re

at
h

= 
18

.7
 k

H
z

 
 

Fig. 7. Response of the shell to the same impact recorded from three different positions. It is a 
sub-set from the 30 FRFs. Each curve is the plot of the FRF recorded by one of the three 
accelerometers glued onto the sphere. The vertical dotted line shows the frequency of the 
“breathing” mode of highest amplitude at 18.7 kHz. The grey line shows an antiresonance at 4 
kHz caused by the vicinity of the impact to the accelerometer recording this FRF. 
 
2.3 Modal analysis 
 
Several methods are available for modal analysis. We have used a Least Squares Complex 
method in Frequency domain (LSCF) to detect modes from all the FRFs, synthesised in a 
Complex Mode Indicator Function. The mode identification is made manually by choosing the 
best fitting modes from a graphical representation, and is therefore subject to fluctuations. 
Indeed, the frequency can shift by as much as 10 Hz from one identification to another. When 
the process is completed, the software gives estimates of modal parameters: frequency, damping 
and modal shape. The results from one modal analysis of LCU are tabulated in Appendix 1. 
 
The three pictures shown in Fig. 8 are an example of three sequential frames taken from a video 
generated by the MODAN software. The video shows the motion of the shell generated by a 



shell mode at 7,9 kHz. Each closed line represents an ellipse connecting points at the same 
latitude on the shell. We can see that this particular mode “squeezes” the sphere on an axis close 
to the vertical. The left-hand frame shows the two poles “stretching” the sphere while the right-
hand frame shows them “squeezing” the sphere. 
 

 
 
Fig. 8. Display of modal shape with MODAN. The points show the location of impacts. The 
segments are drawn between points of approximately equal latitude. The modal shape function 
plays a video showing the displacement of the points. Shown here is a series of views for the 
7,9 kHz LCU shell mode. The arrows highlight the compression and extension of the sphere 
along a near-vertical axis.  
 
2.4 Results 
 
With the hammer blow technique together with modal analysis we have assessed the shell modes 
in the frequency range 1 Hz to 20 kHz for LCU. The observation of the modal shapes all along 
the spectrum provides an idea of a topology for the modes, depending on the frequency. Three 
frequency ranges have been identified, and are shown in Fig. 9. The first modes to appear are 
“squeezing” modes at frequencies below 10.4 kHz, then “shaking” modes from 10.4 kHz to 18.2 
kHz, and finally “breathing” modes from 18.2 kHz to 20 kHz. For frequencies above 20 kHz, the 
modes are more difficult to describe; moreover their frequencies lie beyond the range of the 
accelerometer employed. Some calculation were made using finite element NASTRAN software 
package as a help to identify visually the modes from MODAN modal shape displays. Fig. 10 
shows the modal shape calculated with this software package for typical “squeezing”, “shaking” 
and “breathing” modes. A “squeezing” mode is a mode showing two poles stretching or 
squeezing the sphere on one axis. A “shaking mode” is a mode where the deformation is more 
complex with a bending or a torsion effect on the poles. A “breathing” mode is an almost 
isotropic mode showing the surface expanding or contracting uniformly. 
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Fig. 9. Topology of the modes for the LCU sphere. The background plot is a typical LCU 
spectrum. Boundaries have been set after observation of all deformation shapes provided by 
MODAN. The frequencies of observed acoustic perturbations, reported in [3], have been tagged 
by dotted lines at 16.87 kHz, 18.10 kHz, 18.47 kHz and 18.77 kHz.  
 

   
“Squeezing” mode “Shaking” mode “Breathing” mode 

 
Fig. 10. Illustration of typical deformation shapes. The deformation shapes for LCU sphere are 
calculated using the software package NASTRAN [9]. These displays are dimensionless. The 
darker is the area, the higher is the relative displacement. 
 
 



 
Jim Mehl gives an alternate classification of the shell modes in [5], together with a plot of the 
shell resonance eigenvalues Λns as a function of the ratio between the inner radius a and the outer 
radius b. This plot is reproduced in Fig. 11 and the ratio for LCU, b/a = 1.2, is tagged with a 
solid line. We give the correspondence between our “squeezing”, “shaking” and “breathing” 
modes and the “bending” and “extensional” categories described in [5].  
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Fig. 11. Correspondence between our “squeezing”, “shaking” and “breathing” modes and the 
classification found in [5]. The background plot is a reproduction of the original fig. 1 contained 
in this paper, where the resonance frequencies Λns are plotted as a function of b/a.  The curves 
are labeled with the mode index n. The intersections between the b/a ratio for LCU and the 
curves give the theoretical mode series from lower to higher frequencies.  
 
 
Now, we compare the frequencies of the shell modes given for LCU by Pitre et al. in [3] to the 
modes identified with our method. The theoretical “breathing” frequency Λ01 calculated from the 
thin-shell model developed by Jim Mehl in [5] is 19 kHz. The experimental “breathing” 
frequency fbreath resulting from a fit to acoustic slopes is  17.42 kHz [3]. The formulas used to 
calculate these frequencies are recalled below:  
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Where a=50 mm is the inner radius, b=60 mm is the outer radius, E=122.9 GPa is the Young’s 

modulus, σ=0.355 is the Poisson coefficient, and ρ=8900 kg/m3 is the density. 

The value of fbreath is found experimentally, from the best-fit to the speed-of-sound data from a 
number of acoustic modes [3]. The formula that describes the effect of the shell breathing mode 
on the frequency of a radial acoustic mode is: 
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Where t is the thickness of the shell and ushell is the longitudinal speed of sound in the shell.  

 
If there is a good agreement between the theoretical “breathing” frequency and our range of 
“breathing” modes, on the other hand we are unable to explain the experimental “breathing” 
frequency found in such paper. Nevertheless, Pitre et al. have pointed out that - when this 
experimental frequency is applied to correct acoustic data - very consistent results are found with 
different gases for all acoustic modes. 
 



 
 
Conclusion 
 
This study shows that shell modes expand into multiple resonances of similar modal shape. The 
geometry of real resonators is more complex than that used to build theoretical models. A real 
resonator has holes for the screws, housings to accommodate thermometers, plugs that contain 
transducers etc. This non-homogeneous shell lifts degeneracy and the result is a series of modes 
of similar shape. An interesting result is that the “breathing” mode also is affected. We have 
observed a series of similar “breathing” modes over a relatively large frequency range of 2 kHz, 
centred around 18.7 kHz. Therefore, to consider the “breathing” mode as a singular mode 
appearing at one sharp frequency is no longer possible for real resonators. 
Compared to previous results with the same sphere [3], that the perturbed frequencies measured 
at 16.87 kHz and 18.10 kHz, are in the range of non-radial modes of the shell, while those 
recorded at 18.47 kHz and 18.77 kHz are in the range of “breathing” modes. With a main 
breathing mode measured at 18.7 kHz, we find a good agreement with the theoretical breathing 
frequency Λ01 =19 kHz calculated with [5]. 
 
To summarise, we have developed a hammer blow technique with which we can directly 
measure the frequencies of the shell modes of real, quasi-spherical resonators. By using modal 
analysis techniques we are able to assess the damping factors and deformation shapes of these 
modes. What we still cannot assess is the amplitude of force or displacement of a single mode. 
This is due to the ring-down technique employed, with which the energy put into the system is 
dissipated into many shell modes. In order to find the displacement of a given point on the 
surface associated to one mode, one has first to determine the contribution of each mode and, for 
one particular mode, how the force is distributed all over the shell. 
 
The technique has scope for improvement. In particular, the number of impacts must be 
increased for future measurements because the exploitation of data is mainly visual. In the 
current experiment, in which 30 impacts were measured, it was almost impossible to distinguish 
between multi-poles modes. Therefore, no complete comparison between the modes calculated 
with NASTRAN and those obtained with MODAN could be made. Moreover, a more accurate 
identification of the modes would be achievable by testing different modal analysis methods and 
selecting the best results, but this is very time-consuming. 



 
Acknowledgements 
 
The authors acknowledge J. B. Mehl whose work stimulated this study. They have received 
valuable support from J.-L. Le Carrou from LAM-Université Pierre & Marie Curie- Paris VI 
(France), who checked and prepared the data prior to analysis using the MODAN software. D.T. 
is indebted to P. A. Giuliano Albo from INRiM, Turin (Italy), for providing notes about gas and 
shell coupling [10] and as well as constant comments about the work. He gratefully 
acknowledges P. Gélat from NPL, Teddington (UK), for helpful discussions and R. Gavioso 
from INRiM, Turin (Italy), for sharing unpublished results. We thank Mark Plimmer, from LNE-
CNAM, Saint-Denis (France) and Robin Underwood from NPL, Teddington (UK) for carefully 
reading the manuscript. 
 
  
References 
 
 [1]  M. R. Moldover, J. P. M. Trusler, T. J. Edwards, J. B. Mehl, R. S. Davis: Measurement of 

the Universal Gas Constant R using a spherical acoustic resonator, Journal of research of 
the National Bureau of Standards, 93(2), 85-144, (1988) 

[2] L. Pitre, C. Guianvarc’h, F. Sparasci, A. Richard and D. Truong: Progress towards an 
Acoustic/Microwave Determination of the Boltzmann Constant at LNE-INM/CNAM, Int. J. 
Thermophys., 25, 1730-1739, (2008) 

[3]  L. Pitre, M. Moldover, W. L. Tew: Acoustic thermometry: new results from 273 K to 77K 
and progress towards 4K, Metrologia, 43, 142-162 (2006) 

[4] R. M. Gavioso, G. Benedetto, R. Cuccaro, C. Guianvarc’h, D. Madonna Ripa, P. A. Giuliano 
Albo: Shell perturbation of an acoustic thermometer determined from speed of sound in gas 
mixtures,  submitted to Int. J. Thermophys. 

[5]  J. B. Mehl: Spherical acoustic resonator: effect of shell motion, J. Acoust. Soc. Am., 78(2), 
782-788, (1985). 

[6]  M.B. Ewing and A.R.H. Goodwin: Speeds of sound, perfect-gas heat capacities, and acoustic 
virial coefficients for methane determined using a spherical resonator at temperatures 
between 255 K and 300 K and pressures in the range 171 kPa to 7.1 Mpa,  
J. Chem. Thermodynamics, 24, 1257-1274, (1992). 

[7]  J. B. Mehl: LCU shell response 2009-06-28 (unpublished), 15 pages of notes describing 
finite-element calculations of modes for the LCU hemisphere, from the author to L. P. 

[8]  E. Foltête, G. M. L. Gladwell and G. Lallement: On the reconstruction of a damped vibrating 
system from two complex spectra, part 2: experiment, Journal of Sound and Vibration, 
240(2), 219-240, (2001) 

[9]  M. Ouisse: Notes de calcul: préparation de la campagne de mesure LCU 2009-09-15 
(report), 14 pages reporting on finite-element calculations of the first 44 modes of LCU 
sphere using NASTRAN software, from the author to D. T. 

[10]  P. A. Giuliano Albo: Gas-Shell coupling: shell motion 2009-07-02 (notes), 3 pages of notes 
describing a simple classification of modes obtained with finite-element calculations using 
SALOME-MECA software, from the author to D. T. 



 
 
Appendix 1 Modal parameters obtained with MODAN for LCU sphere. 
The modal parameters of natural frequency calculated from the set of FRFs are tabulated 
 
                 

Mode 
n° 

Frequency 
(Hz) 

Damping 
factor (%) 

MPCa (%)  
Mode 

n° 
Frequency 

(Hz) 
Damping 
factor (%) 

MPCa (%) 

         

1 7651.51 0.44 36.10  26 13300.34 0.20 59.56 
2 7655.21 0.67 26.94  27 13437.60 0.11 20.34 
3 7662.66 0.36 48.67  28 13507.76 0.09 64.11 
4 7722.15 0.36 69.31  29 13590.92 0.14 72.39 
5 7752.19 0.15 38.78  30 13607.58 0.10 62.75 
6 7898.27 0.20 78.69  31 13690.30 0.11 94.47 
7 7904.49 0.15 17.77  32 16026.11 0.12 19.11 
8 8202.69 0.09 4.57  33 16101.18 0.44 91.07 
9 8202.92 0.09 4.67  34 16325.61 0.58 50.16 
10 8204.29 0.11 13.91  35 16693.21 0.19 13.74 
11 8245.33 0.08 95.96  36 16837.15 0.46 5.89 
12 10000.41 0.64 51.07  37 16838.44 0.44 7.41 
13 10013.38 0.58 15.60  38 16864.39 0.21 14.94 
14 10092.29 0.55 6.80  39 17209.33 0.37 41.31 
15 10112.70 0.61 32.22  40 17320.54 0.12 52.58 
16 10423.63 0.14 91.13  41 17529.74 0.23 84.00 
17 10585.16 0.12 88.87  42 17614.15 0.27 28.37 
18 10655.20 0.10 88.50  43 17639.12 0.20 77.94 
19 10835.95 0.12 80.31  44 18405.42 0.42 76.16 
20 12465.17 0.21 48.13  45 18513.09 0.04 28.81 
21 12599.66 0.86 12.36  46 18682.74 0.23 63.92 
22 12612.11 0.92 19.47  47 18717.32 0.19 54.86 
23 12653.86 0.57 2.44  48 19253.22 0.35 33.93 
24 12960.05 0.12 30.51  49 20279.10 0.40 33.42 
25 13148.55 0.31 44.41  50 21295.24 0.35 34.57 
         
         

 
a The Modal Phase Collinearity (MPC) is an indicator of the accuracy of the mode obtained. The 
higher it is, the more reliable is the identification. 
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