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Abstract

Coupling between gas and shell is a concern irxiperiment used at LNE-CNAM to determine
the Boltzmann constarits by an acoustic method. As the walls of real resmsaare not
perfectly rigid, some perturbations occur in theqfrency range of the acoustic resonances
measured within helium gas contained in the cavity.

As a contribution for a better understanding o$ tpihenomenon, we have built an experiment to
measure the shell modes of the spherical resonetarse in our laboratory. We report here a
work in progress to assess these modes using a éabiow method together with modal
analysis. The study is carried out with an aiefill copper-walled, half-litre quasi-spherical
resonator in the frequency range from 1 Hz to 2@.kH

Our results show that the shell modes expand inttlipte resonances of similar modal shape,
including the “breathing” mode. We confirm the obsgions reported in other works [4,6] of
shell perturbations at other frequencies than teathing frequency.



1 Introduction

There are several methods to determine the Boltantamstant. One of them is an acoustic
method [1] whereby acoustic resonances are measdtieid a gas contained in a copper quasi-
spherical resonator [2]. Here, the resonant fregiesrof the shell are a concern because they can
perturb the acoustic modes of the gas in the cawtyen there is coupling between an acoustic
mode and a shell mode, the acoustic resonance #hiftequency, decreases in amplitude and
becomes broader. In the LNE-CNAM acoustic experimesed to determine the Boltzmann
constant, we detect perturbed acoustic modes bgkoige the excess half-width of the
resonance. In practice, when we encounter an acauside with an unexplained excess half-
width, we exclude it from the set used to deterntireeBoltzmann constant.

The mechanism through which motion of the shellsealbroadening of the acoustic resonances
is still under discussion. Considering only theexpental work, measurements have been made
at NIST and at INRIM. One technique consists ofitexg the shell with a piezo-transducer
(PZT) and measuring the shell response with a pivapd needle or another PZT [1,3]. The
other technique consists of recording the excelsadths of a number of acoustic modes while
scanning their frequencies, either by changingténgperature [1], as we illustrate below, or by
changing the gas-mixture [4]. Resonant frequermiebtained from the first method and direct
coupling effect from the second.

The model used to determine the corrections toraxpatal resonance frequencies due to shell
perturbation [5] predicts a coupling between radiaustic modes and radial shell motion: the
so-called “breathing” mode. But, as shown in the&trsection 81.1, unexplained excess half-
widths of acoustic resonances are not solely obsein the vicinity of the “breathing”
frequency. Real resonators have a rather complemgey compared to that used in the model.
To show these differences, a comparison is madgli@ between measured and calculated
resonant frequencies for a hemisphere.

1.1 Notes on the experimental equipment

Three different quasi-spherical resonators are usedhis study. These resonators are
respectively: BCU2v2, BCUL, and LCU. All are hatfré cavities of approximately 10 mm wall
thickness and made of copper (BCU series meangrBaitn and copper). The shapes of these
resonators are briefly described in Fig. 1 andrtlostinctive features are recalled in the
respective sections.

The present work will focus on the resonator nam@d for reasons given later in section 82.
LCU cannot be disassembled as we do not want ¢o tie alignment of the hemispheres, and
hence change the inner shape. So, we have usertirehemisphere of BCU1, whose shape is
similar to that of LCU, for the separate hemisph&raly described in 81.3. BCU2v2, which is
working in one of our cryostats as an acoustic nffegneter, was used to detect shell
perturbations through acoustic measurements, wisidxpanded in section 81.2. The results
obtained with BCU1 and BCU2v2 are presented infétHewing sections, to explain the reasons
that justified the in-depth investigation of LCUegented in section §2.



BCU2v2 BCUL north LCU
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Fig. 1. Sketch of the three resonators used in this wBKJ2v2, BCU1 and LCU. The inner
shape is a tri-axial ellipsoid so, the inner radauthe mean value. To make clear to what extent
the external shape of BCU2v2 differs from that gieafect sphere, a line of constant outer radius
is overlapped on the drawing. Only the north hetmesp of BCU1 was used for the hemisphere
study in 81.2.

1.2 Perturbations occur away from the “breathingte

In a recent experiment, we have made a frequeramy st acoustic radial modes by gradually
changing the temperature of the spherical resor&@iy2v2. The measurement was conducted
under constant gas pressure, since Equation (®2i4 of Pitre et al [3] shows that shell
perturbation is pressure dependant. The sketclfCaf®2 in Fig.1 shows that this resonator has
a shape which differs significantly from a homogausesphere in its southern part.

The plot in Fig. 2 shows the observed half-widthbjle the excess half-widths is plotted in
Fig. 3, of several acoustic resonances as the tatupe was lowered from 273 K to 77 K. The
test was carried out with helium gas at constamtssurep = 0.6 MPa. According to the
mechanical characteristics of BCU2v2, the “breaghimode of the shell is expected to lie
around 19,16 kHz according to the calculation basethe thin-spherical-shell model [5]. But at
this frequency, where the “breathing” mode of tphese is supposed to interfere the most with
radial modes within the gas, no excess half-widthues, while some peaks appear at other
frequencies.

An outstanding result is evidenced by this expeniméhe perturbations are not temperature
dependant. At 13.7 kHz for instance, the (0,2) &@) modes show excess half-widths of
several hundred parts in °LOAt this frequency, the temperature for the (y®)de is 273 K
while, for the same frequency, the (0,3) mode i&7aK.



8 : : 584

Mode 0,27 . 5 Mode 0,3 Mode 0,4 Mode 0,5 Mode 0,6
P B
6 i ~ 446

. 59! ©
N 3 S
ST I "
‘E N 4 5 : : - 309 WE
T:E o “_g ;-"li/ /‘u ;C

Py i ; T _ 273K

7#- 172
77K

0 T T T T T : T T T T T T T T T T T T T T T 34
8 IZA 16 20 24 28 32 36 40 44 48
13.7 kHz f., kHz
1000
800 :
[{e]
o ¢ N
£ : =
'-9 ‘4—: . S
235 600 " o
—_— - —
55 : ..
0 Mode 0,2 . Mode 0,3 §
0w o 84 )
© X 400 e 5
x @ 61 . e
RS * e :
t % : Mode 0,4 Mode 0,5
200 $
0 == .‘y“‘."‘ ~
10

f,, kHz

Fig. 2 and Fig. 3. Half-widths and excess half-widths of the acaustodes as the temperature
of the half-litre sphere BCU2v2 was lowered fron8X7to 77 K. The test was carried out with
helium gas at constant presspre 0.6 MPa. The theoretical breathing frequenc$®16 kHz is
tagged with a dotted line. The grey arrows show liogreduction in temperature sweeps the

frequency of each mode. On Fig. 2, the particukaguiency of 13.7 kHz is tagged with a triangle
for discussion in section 81.2.



1.3 Discrepancy between measured and calculatedaesfrequencies of a hemisphere

A comparison was made between calculated and neghsesonant frequencies of a half-litre
copper hemisphere. A hemisphere was preferred bedhe effect of the seam between the two
halves of an assembled spherical resonator is toandodel. We have a theoretical model for
calculating the resonant frequencies of one herergpbf LCU [5] [7]. Since we are reluctant to
disassemble LCU, we have used the north hemismfieesonator BCU1 whose shape is similar
to that of LCU. As shown on the left-hand drawirfgFg. 4, the exterior of LCU is perfectly
spherical, while BCU1 has a cylindrical supporeseed on the top.

The resonant frequencies of the hemisphere wecellegéd using the theoretical model. Then,
the response of the north hemisphere of BCUL tararher blow was measured by a piezo-
accelerometer glued onto the outer surface. Thererpntal method is described in detail in
section 82. Only one spectrum was recorded at glesposition of the accelerometer and the
impact. As shown in Fig. 4 a lack of agreement bhasn found between our experimental
determination of the resonant frequencies and tbaiselations.
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Fig. 4. Comparison between experimental spectrum anchaesdrequencies calculated by Mehl

[7] for a half-litre copper hemisphere. The expenmal data plotted using a solid line is the
response of BCU1 north hemisphere to a hammer Blbw.resonant frequencies calculated for
the north hemisphere of LCU are shown using blaatted lines. The two hemispheres differ

slightly, as shown on the left-hand drawings.

1.4 Objectives

On account of the differences found between expartal data and the theory, particularly as
the two agree well together for low-frequency modiéswvas deemed necessary to further



investigate the natural modes of vibration of thellsexperimentally. The objectives of this
work were to provide experimental data for compmarigvith the observed excess half-widths of
the acoustic modes, and to provide suitable datthévalidation of future theoretical models.

2 Method and Results
2.1 Method

Our method is divided into several stages that wleewpand in the following sections. First, we
collect a variety of data sets of the responseéhefgahell to impacts. Then we build Frequency
Response Functions (FRFs) from both the responsleeciccelerometer and the impact of the
hammer of the shell. Finally, we apply modal analyechniques to the FRF set to obtain
estimates of the mode parameters and display tlalnsbape.

2.2 Measurement of the shell response

The experiment consists of exciting the shell modésa quasi-spherical resonator with a
calibrated impact hammer. The resonator is at reemperature and filled with air. We measure
the response of the shell using three acceleromgteed onto the surface. The frequency range
of the accelerometers is 0-20 kHz. A FRF is butinf 24000 samples recorded at the rate of
120 kS/s. The location of these accelerometerbasvs in Fig. 4. This ring-down method was
chosen because it is easy to implement, and threraftarge number of data sets, with impacts at
different locations, can be acquired. Many FreqydResponse Functions (FRF) are required to
achieve an accurate modal analysis. We define flnestions as

FRF - Ale) 1)
' F(w)

WhereA(w) is the Fast Fourier Transform (FFT) a&ft), the signal from accelerometerand
Fi(w) the FFT offi(t), the impact signal

The quasi-spherical resonator chosen for this éxeert is the LCU copper sphere. Since the
LCU spectrum shows relatively few peaks that ar# separated in frequency, this sphere is a
good tool for a first experiment. The external shapthis particular resonator lies very close to
that of a perfect sphere, with an inner diametet@¥ mm and a wall thickness of 10 mm. The
spherical symmetry is broken only by the two themater housings that lie on the outer surface
and the screw at the top.

The sphere was suspended from a wire in a freelgihg configuration, as shown in Fig. 6.
Impacts were made at 30 different locations allrave surface of the sphere (Fig. 5). The
locations are optimized to excite all modes with fiighest amplitude.
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Fig. 5. A 3D view of the impact locations on LCU. The bigtsa; are the locations of the
accelerometers. The small dots are the impactitotat
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Fig. 6. Sketch of the experimental set-up. Sphere LC&ugpended from a steel wire. The three
accelerometers (only two are shown) are glued thr@sphere.



The FRFs obtained for all impacts as well as therdioates of the impacts were entered into a
modal analysis software package called MODAN. Holware package was developed by one
of us (E. F.) [8]. Fig. 7 shows the response reedroly three accelerometers located at different
positions on the shell to the same impact. Thisrégnakes it clear that the response is different
in magnitude, and to a lesser extent in frequemdygen a different location on the sphere is
chosen. Moldover et al. observed a similar effath their phonograph needle experiment [1].
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Fig. 7. Response of the shell to the same impact recdrded three different positions. It is a
sub-set from the 30 FRFs. Each curve is the plothef FRF recorded by one of the three
accelerometers glued onto the sphere. The vertiottkd line shows the frequency of the
“breathing” mode of highest amplitude at 18.7 kHihe grey line shows an antiresonance at 4
kHz caused by the vicinity of the impact to theedemometer recording this FRF.

2.3 Modal analysis

Several methods are available for modal analysis. N&ve used a Least Squares Complex
method in Frequency domain (LSCF) to detect modes fall the FRFs, synthesised in a
Complex Mode Indicator Function. The mode idendificn is made manually by choosing the
best fitting modes from a graphical representatiamd is therefore subject to fluctuations.
Indeed, the frequency can shift by as much as 1@rd¢ta one identification to another. When
the process is completed, the software gives ewsrat modal parameters: frequency, damping
and modal shape. The results from one modal asatydiCU are tabulated in Appendix 1.

The three pictures shown in Fig. 8 are an exampthree sequential frames taken from a video
generated by the MODAN software. The video shoves rtfotion of the shell generated by a



shell mode at 7,9 kHz. Each closed line represant®llipse connecting points at the same
latitude on the shell. We can see that this pdearamode “squeezes” the sphere on an axis close
to the vertical. The left-hand frame shows the potes “stretching” the sphere while the right-
hand frame shows them “squeezing” the sphere.

\-

\

Fig. 8. Display of modal shape with MODAN. The points shtive location of impacts. The
segments are drawn between points of approximaigpal latitude. The modal shape function
plays a video showing the displacement of the goiBhown here is a series of views for the
7,9 kHz LCU shell mode. The arrows highlight thenpoession and extension of the sphere
along a near-vertical axis.

2.4 Results

With the hammer blow technique together with madadlysis we have assessed the shell modes
in the frequency range 1 Hz to 20 kHz for LCU. Tdiiservation of the modal shapes all along
the spectrum provides an idea of a topology fornttueles, depending on the frequency. Three
frequency ranges have been identified, and are showrig. 9. The first modes to appear are
“squeezing” modes at frequencies below 10.4 kHem tlshaking” modes from 10.4 kHz to 18.2
kHz, and finally “breathing” modes from 18.2 kHz26 kHz. For frequencies above 20 kHz, the
modes are more difficult to describe; moreoverrtiiquencies lie beyond the range of the
accelerometer employed. Some calculation were raaig finite element NASTRAN software
package as a help to identify visually the modesnfMODAN modal shape displays. Fig. 10
shows the modal shape calculated with this softyakage for typical “squeezing”, “shaking”
and “breathing” modes. A “squeezing” mode is a mat®wing two poles stretching or
squeezing the sphere on one axis. A “shaking mala’mode where the deformation is more
complex with a bending or a torsion effect on tlwep. A “breathing” mode is an almost
isotropic mode showing the surface expanding otraoting uniformly.
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Fig. 9. Topology of the modes for the LCU sphere. The pemknd plot is a typical LCU
spectrum. Boundaries have been set after obsemvafi@ll deformation shapes provided by
MODAN. The frequencies of observed acoustic pettioins, reported in [3], have been tagged
by dotted lines at 16.87 kHz, 18.10 kHz, 18.47 ladd 18.77 kHz.
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Fig. 10. lllustration of typical deformation shapes. Theatefation shapes for LCU sphere are
calculated using the software package NASTRAN T9jese displays are dimensionless. The
darker is the area, the higher is the relativeldgment.



Jim Mehl gives an alternate classification of thelsmodes in [5], together with a plot of the
shell resonance eigenvalugs as a function of the ratio between the inner radiand the outer

radiusb. This plot is reproduced in Fig. 11 and the rdtio LCU, b/a= 1.2, is tagged with a

solid line. We give the correspondence between“sgueezing”, “shaking” and “breathing”
modes and the “bending” and “extensional” categodiescribed in [5].

Higher frequencies

Extensional mode (breathing)

Bending mode (shaking) \

Extensional mode (breathing)

Bending mode (shaking) 3
\

Ans lr
Bending mode (squeezing) /’/J

Bending mode (squeezing) 7
0 1 1 1

Bending mode (squeezing) -0 |

1'. 5 | 2.0
b/a
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Lower frequencies (b/a=1.2)

Fig. 11. Correspondence between our “squeezing”, “shakimgl ‘dreathing” modes and the
classification found in [5]. The background plotiseproduction of the original fig. 1 contained
in this paper, where the resonance frequentigsare plotted as a function bfa. The curves
are labeled with the mode index n. The intersestibatween thd/a ratio for LCU and the
curves give the theoretical mode series from lawdrgher frequencies.

Now, we compare the frequencies of the shell mgie=n for LCU by Pitre et al. in [3] to the
modes identified with our method. The theoretidakathing” frequencyo; calculated from the
thin-shell model developed by Jim Mehl in [5] is Kz. The experimental “breathing
frequencyfyreah resulting from a fit to acoustic slopes is 17k# [3]. The formulas used to
calculate these frequencies are recalled below:

N\, is the root of:

[(gA° —-1)(qB® —1) + AB] - (L+ gAB)(B - A) = zero (2)



Where:
4= - 0)/a-20) 3

A=ka, B=kb, and

27t

k = 4
' [EQ-0)/pa-20)0+ 0)] 2 @

Wherea=50 mm is the inner radiub=60 mm is the outer radiuE=122.9 GPa is the Young's
modulus,c=0.355 is the Poisson coefficient, gmei8900 kg/niis the density.
The value offyeam is found experimentally, from the best-fit to thigeed-of-sound data from a

number of acoustic modes [3]. The formula that dess the effect of the shell breathing mode
on the frequency of a radial acoustic mode is:

Afelastic ~ Kp (5)
fory 1= (fon ! forean)
5a
K= 2 (6)
6tO Ughell

Wheret is the thickness of the shell angle is the longitudinal speed of sound in the shell.

If there is a good agreement between the theoleticaathing” frequency and our range of

“breathing” modes, on the other hand we are un#blexplain the experimental “breathing”

frequency found in such paper. Nevertheless, Ritral. have pointed out that - when this
experimental frequency is applied to correct adowkdta - very consistent results are found with
different gases for all acoustic modes.



Conclusion

This study shows that shell modes expand into plaltiesonances of similar modal shape. The
geometry of real resonators is more complex thah wked to build theoretical models. A real
resonator has holes for the screws, housings tonaoodate thermometers, plugs that contain
transducers etc. This non-homogeneous shell iftgederacy and the result is a series of modes
of similar shape. An interesting result is that theeathing” mode also is affected. We have
observed a series of similar “breathing” modes @veglatively large frequency range of 2 kHz,
centred around 18.7 kHz. Therefore, to consider “breathing” mode as a singular mode
appearing at one sharp frequency is no longer Iplesfir real resonators.

Compared to previous results with the same spt8rehat the perturbed frequencies measured
at 16.87 kHz and 18.10 kHz, are in the range of-nagoial modes of the shell, while those
recorded at 18.47 kHz and 18.77 kHz are in the e@amig“breathing” modes. With a main
breathing mode measured at 18.7 kHz, we find a ggrdement with the theoretical breathing
frequencyAo1=19 kHz calculated with [5].

To summarise, we have developed a hammer blow igpoanwith which we can directly
measure the frequencies of the shell modes of gealsi-spherical resonators. By using modal
analysis techniques we are able to assess the wnigrfgutors and deformation shapes of these
modes. What we still cannot assess is the amplivfiderce or displacement of a single mode.
This is due to the ring-down technique employedhwihich the energy put into the system is
dissipated into many shell modes. In order to find displacement of a given point on the
surface associated to one mode, one has firsttéondime the contribution of each mode and, for
one particular mode, how the force is distributikdeer the shell.

The technique has scope for improvement. In pdsaticithe number of impacts must be
increased for future measurements because theietio of data is mainly visual. In the
current experiment, in which 30 impacts were mesut was almost impossible to distinguish
between multi-poles modes. Therefore, no completaparison between the modes calculated
with NASTRAN and those obtained with MODAN could bede. Moreover, a more accurate
identification of the modes would be achievabledsting different modal analysis methods and
selecting the best results, but this is very timestiming.
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Appendix 1 Modal parameters obtained with MODAN for LCU spher
The modal parameters of natural frequency calcdifitam the set of FRFs are tabulated

Mode Frequency Damping Mode Frequency Damping

n° (Hz) factor (%) MPC* (%) n° (H2) factor (%) MPC® (%)

1 7651.51 0.44 36.10 26 13300.34 0.20 59.56
2 7655.21 0.67 26.94 27  13437.60 0.11 20.34
3 7662.66 0.36 48.67 28 13507.76 0.09 64.11
4 7722.15 0.36 69.31 29 13590.92 0.14 72.39
5 7752.19 0.15 38.78 30 13607.58 0.10 62.75
6 7898.27 0.20 78.69 31 13690.30 0.11 94.47
7 7904.49 0.15 17.77 32 16026.11 0.12 19.11
8 8202.69 0.09 4.57 33 16101.18 0.44 91.07
9 8202.92 0.09 4.67 34  16325.61 0.58 50.16
10 8204.29 0.11 13.91 35  16693.21 0.19 13.74
11 8245.33 0.08 95.96 36 16837.15 0.46 5.89

12 10000.41 0.64 51.07 37 16838.44 0.44 7.41

13 10013.38 0.58 15.60 38 16864.39 0.21 14.94
14 10092.29 0.55 6.80 39  17209.33 0.37 41.31
15 10112.70 0.61 32.22 40 17320.54 0.12 52.58
16 10423.63 0.14 91.13 41 17529.74 0.23 84.00
17 10585.16 0.12 88.87 42 17614.15 0.27 28.37
18 10655.20 0.10 88.50 43 17639.12 0.20 77.94
19  10835.95 0.12 80.31 44 18405.42 0.42 76.16
20 12465.17 0.21 48.13 45 18513.09 0.04 28.81
21 12599.66 0.86 12.36 46  18682.74 0.23 63.92
22 12612.11 0.92 19.47 47 18717.32 0.19 54.86
23 12653.86 0.57 2.44 48  19253.22 0.35 33.93
24 12960.05 0.12 30.51 49  20279.10 0.40 33.42
25 13148.55 0.31 44.41 50 21295.24 0.35 34.57

& The Modal Phase Collinearity (MPC) is an indicaibthe accuracy of the mode obtained. The
higher it is, the more reliable is the identificati
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