
Conformance Testing for Timed Recursive
Programs

Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

Abstract This paper is about conformance testing of timed pushdown automata with
inputs and outputs (TPAIO), that specify both stack and clock constraints. TPAIO
are used as a model for timed recursive programs. This paper proposes a novel
method of off-line test generation from deterministic TPAIO. In this context, a first
problem is to resolve the clock constraints. It is solved by computing a deterministic
timed pushdown tester with inputs and outputs (TPTIO), that is a TPAIO with only
one clock, and provided with a location fail. To generate test cases from a TPTIO,
we compute from it a finite reachability automaton (RA), that relates any of its
transitions to a path of the TPTIO. The RA computation takes the TPTIO transitions
as a coverage criterion. The transitions of the RA, thus the paths of the TPTIO
are used for generating test cases that aim at covering the reachable locations and
transitions of the TPAIO.

Key words: Timed Automata; Timed Pushdown Automata; Conformance testing;
Approximated determinization; Analog-clock testing; Reachability automaton.

1 Introduction

Systems are commonly modelled by means of transition systems such as finite au-
tomata, timed automata, etc. System formal verification as well as model-based test

H. M’Hemdi · J. Julliand · P.-A. Masson
FEMTO-ST/DISC, University of Franche-Comté, 16, route de Gray 25030 Besançon, France
e-mail: {hana.mhemdi, jacques.julliand, pierre-alain.masson}@femto-st.fr

H. M’Hemdi
LIP2, University of Tunis El Manar, Tunisia

R. Robbana
LIP2 and INSAT-University of Carthage, Tunisia
e-mail: riadh.robbana@fst.rnu.tn

1

2 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

generation, that are very active research areas, rely on exploiting these models. This
paper is about generating tests from the model of timed pushdown automata [1] with
inputs and outputs (TPAIO).

Timed automata (TA) are equipped with a finite set of real-valued clocks. They
have been introduced by Alur and Dill [2], and have become a standard for mod-
elling real-time systems. Pushdown automata (PA) [3] are equipped with a stack,
and can be used for modelling recursive systems. The model of TPAIO, by includ-
ing both a stack and some clocks, can model recursive systems with inputs and
outputs whose execution is in a real time context.

Test generation from TPAIO could apply to industrial case studies such as that
of [6], that defines automatic synthesis of robust and optimal controllers. These
kinds of controllers operate on variables that are constantly growing in real-time,
such as oil pressure etc. As shown in [16], this system can be modelled as a recursive
timed automaton with a safety critical objective. [4] argues that timed recursive
state machines are related to an extension of pushdown timed automata, where an
additional stack, coupled with the standard control stack, is used to store temporal
valuations of clocks. Therefore, the system of [6] can be modelled by means of a
TPAIO. Also, TPAIO can serve as a model for the verification of real-time distributed
systems, as quoted in [4].

We propose in this paper an approach for computing offline tests from a TPAIO
model. Offline tests, contrarily to online tests that are dynamically computed along
an execution, are first extracted out of the model as a set of abstract executions, to
be subsequently executed on the system. We focus in this paper on testing recursive
deterministic programs without inputs.

We propose a new approach for conformance testing of TPAIO, aiming at cov-
ering its reachable locations and transitions. The idea is to deal successively with
the clock and stack constraints that could prevent a location from being reachable.
Location reachability in TPAIO is decidable [5][1], and time exponential [7].

Our first contribution is the construction of a timed pushdown tester with inputs
and outputs (TPTIO) of the TPAIO, by adapting the determinization method of [11]
(for timed IO automata with no stack) to the TPAIO case. Even in the restricted
framework of deterministic programs, this step is useful as it produces a model
with one single clock reset after each transition, in which locations reachability has
been verified w.r.t. the satisfiability of the clock constraints. Additionally, this will
facilitate a future extension of the method to the case of non-deterministic TPAIO.
Fail verdicts are added as special locations to this determinized TPAIO: they model
the observation of timeouts or of unspecified stack and output actions.

Locations reachability has further to be verified w.r.t. the stack constraints. Finkel
et al. propose in [9] a polynomial method for checking locations reachability in
a PA. It relies on a set of rules that compute, in the shape of a finite automaton,
a reachability automaton (RA) from a PA. As a second contribution we propose,
following them, to adapt the rules to the TPAIO case, with a transition coverage
criterion. We compute an RA whose transitions are all related to one path of the
TPTIO. The paths are used to extract a set of tests out of the original TPAIO: we

Conformance Testing for Timed Recursive Programs 3

expand the paths that reach a final location from an initial one with an empty stack.
This computes a set of test cases from a TPAIO.

To summarize, our contributions are to: (i) define tpioco: a conformance relation
for the TPAIO model; (ii) adapt the determinization method of [11] to obtain a TP-
TIO; (iii) compute an RA where any transition is labelled with a path of a TPTIO, by
adapting the reachability computation of [9]; (iv) generate test cases by covering the
reachable locations and transitions of the TPAIO. To our knowledge these problems,
solved for the TA [11] and PA [9], have not been handled for the TPAIO yet.

The paper is organized as follows. Section 2 presents the TA model and the
timed input-output conformance relation tioco. Our model of TPAIO is presented
in Sect. 3, together with a TPAIO conformance relation. Our TPAIO test genera-
tion method is presented in Sect. 4. We discuss the soundness, incompleteness and
coverage of our method in Sect. 5. We conclude and indicate future works in Sect. 6.

2 Background

This section defines TA and a timed input-output conformance relation.

2.1 Timed Automata

Let Grd(X) be the language of clock guards defined as conjunctions of expressions
x] n where x is a clock of X , n is a natural integer constant and] ∈ {<,≤,>,≥
,=}. Let CC(X) be the language of clock constraints defined as conjunctions of
expressions e] n where e is either x, x− x or x+ x.

Definition 1 (Timed Automaton). A TA is a tuple T = 〈L, l0,Σ ,X ,∆ ,F〉 where L is
a finite set of locations, l0 is an initial location, Σ is a finite set of labels, X is a finite
set of clocks, F ⊆ L is a set of accepting locations and ∆ ⊆ L×Σ×Grd(X)×2X×L
is a finite set of transitions.

A transition is a tuple (l,a,g,X ′, l′) denoted by l
a,g,X ′−−−→ l′ where l, l′ ∈ L are

respectively the source and target locations, a (∈ Σ) is an action symbol, X ′ (⊆ X)
is a set of resetting clocks and g is a guard. The operational semantics of a TA T
is an infinite transition system 〈ST ,sT

0 ,∆
T 〉 where the states of ST are pairs (l,v) ∈

L×(X→R+), with l a location and v a clock valuation. sT
0 is the initial state and ∆ T

is the set of transitions. There are two kinds of transitions in ∆ T : timed and discrete.
Timed transitions are in the shape of (l,v)→δ (l,v+ δ) where δ ∈ R+ is a delay,
so that v+δ is the valuation v with each clock augmented by δ . Discrete transitions
are in the shape of (l,v)→a (l′,v′) where a ∈ Σ and (l,a,g,X ′, l′) ∈ ∆ , and such
that v satisfies g and v′ = v[X ′ := 0] is obtained by resetting to zero all the clocks
in X ′ and leaving the others unchanged. A path π of a TA is a finite sequence of its

4 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

transitions: l0
a0,g0,X0−−−−→ l1

a1,g1,X1−−−−→ l2 · · · ln−1
an−1,gn−1,Xn−1−−−−−−−−−→ ln. A run of a TA is a path

of its semantics. σ = (l0,v0)→δ0 (l0,v0 + δ0)→a0 (l1,v1)→δ1 (l1,v1 + δ1)→a1

(l2,v2)→δ2 ...→an−1 (ln,vn) where δi ∈ R+ and ai ∈ Σ for each 0 6 i 6 n−1 is a
run of π if vi |= gi for 0 6 i < n. A run alternates timed and discrete transitions. Its
trace is a finite sequence ρ = δ0a0δ1a1...δnan of (Σ ∪R+)∗. We denote RT (Σ) the
set of finite traces (Σ ∪R)∗ on Σ . PΣ1(ρ) is the projection on Σ1 ⊆ Σ of a trace ρ

with the delays preserved. For example, if ρ = 5a4b2, then, P{a}(ρ) = 5a42 i.e. 5a6.
Time(ρ) is the sum of all the delays of ρ . For example, Time(5a42) = 11. sT

0 →ρ s
means that the state s is reachable from the initial state sT

0 , i.e. there exists a run σ

from sT
0 to s whose trace is ρ . sT

0 →ρ means that there exists s′ such that sT
0 →ρ s′.

Timed Automata with Inputs and Outputs (TAIO) extend the TA model by dis-
tinguishing between input and output actions. A TAIO is a tuple 〈L, l0,Σin ∪Σout ∪
{τ},X ,∆ ,F〉 where Σin is a set of input actions, Σout is a set of output actions and τ

is an internal and unobservable action. This model is widely used in the domain of
test. It models the controllable (∈ Σin) and observable (∈ Σout) interactions between
the environment and the system. The environment, thus the tester, sends commands
of Σin and observes outputs of Σout . The implementation under test (IUT), sends
observable actions of Σout and accepts commands of Σin.

Let Σ = Σin ∪ Σout and Στ = Σ ∪ {τ}. A TAIO is deterministic if for all lo-
cations l in L, for all actions a in Στ and for all couples of distinct transitions
t1 = (l,a,g1,X1, l1) and t2 = (l,a,g2,X2, l2) in ∆ then g1 ∧ g2 is not satisfiable. It
is observable if no transition is labelled by τ . Reach(T) = {sT ∈ ST | ∃ρ.(ρ ∈
RT (Σ)∧sT

0 →ρ sT} denotes the set of reachable states of a TAIO T . A TAIO T is non
blocking if ∀(s,δ).(s∈Reach(T)∧δ ∈R+⇒∃ρ.(ρ ∈RT (Σout∪{τ})∧Time(ρ)=
δ ∧ s→ρ)). A TAIO is called input-complete if it accepts any input at any state.

2.2 Timed Input-Output Conformance Relation tioco

We first present the conformance theory for timed automata based on the confor-
mance relation tioco [11]. tioco is an extension of the ioco relation of Tretmans [15].
The main difference is that ioco uses the notion of quiescence, contrarily to tioco
in [11] where the timeouts are explicitly specified. The assumptions are that the
specification of the IUT is a non-blocking TAIO, and the implementation is a non-
blocking and input-complete TAIO. This last requirement ensures that the execution
of a test case on the IUT does not block the verdicts to be emitted.

To present the conformance relation for a TAIO T = 〈L, l0,Σin∪Σout ∪{τ},X ,∆ ,
F〉, we need to define the following notations in which ρ ∈ RT (Σin∪Σout):

• T after ρ = {s ∈ ST | ∃ρ ′.(ρ ′ ∈ RT (Στ)∧ sT
0 →ρ ′ s∧PΣ (ρ

′) = ρ)} is the set
of states of T that can be reached by a trace ρ ′ whose projection PΣ (ρ

′) on the
controllable and observable actions is ρ .

• ObsTTraces(T) = {PΣ (ρ) | ρ ∈ RT (Στ)∧ sT
0 →ρ} is the set of observable timed

traces of a TAIO T .

Conformance Testing for Timed Recursive Programs 5

• elapse(s) = {δ | δ > 0∧∃ρ.(ρ ∈ RT ({τ})∧Time(ρ) = δ ∧ s→ρ)} is the set of
delays that can elapse from the state s with no observable action.

• out(s) = {a ∈ Σout | s→a}∪ elapse(s) is the set of outputs and delays that can
be observed from the state s.

Definition 2 (tioco). Let T = (L, l0,Στ ,X ,∆ ,F) be a specification and I = (LI , lI
0,

Σ I
τ ,X

I ,∆ I ,F I) be an implementation of T . Formally, I conforms to T , denoted I
tioco T iff ∀ρ.(ρ ∈ ObsT Traces(T) =⇒ out(I after ρ)⊆ out(T after ρ)).

It means that the implementation I conforms to the specification T if and only if
after any timed trace enabled in T , each output or delay of I is specified in T .

3 Model and Conformance Relation

This section defines our model: TPAIO, as well as tpioco, a conformance relation
for TPAIO. We show an example of a TPAIO that models a recursive program.

3.1 Timed Pushdown Automata with Inputs and Outputs

A TPAIO T = 〈L, l0,Σ ,Γ ,X ,∆ ,F〉 is a TAIO equipped with a stack. Its operational
semantics is a transition system < ST ,sT

0 ,∆
T > where the locations –called states–

are configurations made of three components (l,v, p) with l a location of the TPAIO,
v a clock valuation in X → R+ and p a stack content in Γ ∗.

Definition 3 (TPAIO). A TPAIO is a tuple 〈L, l0,Σ ,Γ ,X ,∆ ,F〉 where L is a finite
set of locations, l0 is an initial location, Σ = Σin ∪Σout ∪{τ} where Σin is a finite
set of input actions, Σout is a finite set of output actions and {τ} is an internal and
unobservable action, Γ is a stack alphabet (Σout ∩Σin =∅, Σin∩Γ =∅ and Σout ∩
Γ = ∅), X is a finite set of clocks, F ⊆ L is a set of accepting locations, ∆ ⊆
L× (Σin∪Σout ∪Γ +−)×Grd(X)×2X ×L is a finite set of transitions where Γ +− =
{a+ | a ∈ Γ }∪{a− | a ∈ Γ }.
The symbols of Γ +− represent either a push operation (of the symbol a) denoted
a+, or a pop operation denoted a−. A transition is a tuple (l,a,g,X ′, l′) denoted by

l
a,g,X ′−−−→ l′ where l, l′ ∈L are respectively the source and target locations, a∈Σ∪Γ +−

is either a label or a stack action, X ′ (⊆ X) is a set of resetting clocks and g
is a guard. There are two kinds of transitions in the semantics, timed and dis-
crete. Timed transitions are in the shape of (l,v, p)→δ (l,v+δ , p). For a transition
(l,act,g,X ′, l′), there are three types of discrete transitions when v satisfies g: (1)
push when act = a+: (l,v, p)→a+ (l′,v[X ′ := 0], p.a) where a ∈ Γ , (2) pop when
act = a−: (l,v, p.a)→a− (l′,v[X ′ := 0], p) where a∈Γ , (3) output, input or internal
when act = A ∈ Σ : (l,v, p)→A (l′,v[X ′ := 0], p). A TPAIO is normalized if it exe-
cutes separately push and pop operations. Any TPAIO can be normalized since any

6 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

PA can be normalized [14]. Due to the class of application, we consider in the re-
mainder of the paper that the TPAIO are normalized deterministic timed pushdown
automata with outputs and without inputs. We denote a the actions of Γ and A the
actions of Σout .

We define tpioco, our TPAIO conformance relation, as an extension of the tioco
conformance relation [11]. It is the same relation as tioco for TAIO by considering
the whole alphabet to be Σout ∪Γ +− ∪{τ} instead of Σin ∪Σout ∪{τ}. The output
alphabet is Σout ∪Γ +− instead of Σout and there is no input alphabet.

3.2 Modelling of Recursive Programs

Figure 1 shows a program that recursively computes the nth Fibonacci number, with
instructions labels from l0 to l6. We abstract the control flow graph of a recursive
program by a PA, as explained in [8]. Figure 2 shows a TPAIO that abstracts the
program of Fig. 1. Here the time constraints have been added arbitrarily for illus-
tration purposes. The location labels are the instruction labels in the program of
Fig. 1. Fib+1 and Fib+2 are respectively the (push) calls Fib(n− 1) and Fib(n− 2).
Fib−1 and Fib−2 are respectively the (pop) returns from the calls Fib(n− 1) and
Fib(n− 2). Thus Γ = {Fib1,Fib2}. Such an example is a transformational system
in which the tester observes any action of the program. Therefore, we choose that all
the executions of atomic instructions and conditions are in Σout . They are labelled

from A to E as follows: A
de f
= int res1, res2, B

de f
= n 6 1, C

de f
= n > 1, D

de f
= return n

and E
de f
= return res1 + res2. We use the notation !act to denote the output action

act.

int Fib(int n)
l0 : int res1, res2;
if l1 : n 6 1 then

l2 : return n;
else

l3 : res1 = Fib(n−1); //Fib+1
l4 : res2 = Fib(n−2); //Fib+2
l5 : return res1 + res2;

fi
l6 : end.

Fig. 1. A Fibonacci
Computation Program

Fib(n)

l0 l1

l2

l3

l4

l5 l6
!A,x 6 2,{x}

!B,x 6 1,{x}

!C,x 6 1,{x}

!D, x 6 2,{x}

!E, x 6 3,{x}

Fib+1 , x 6 1

Fib+2 ,x 6 1
Fib−1 ,x 6 1

Fib−2 ,x 6 1

Fig. 2. A TPAIO Modelling the Program of Fig. 1

Conformance Testing for Timed Recursive Programs 7

4 Test Generation from TPAIO

This section presents our test generation method from a deterministic TPAIO. We
first present the test generation process and then the three steps of our method.

4.1 Test Generation Process

The data flow diagram of Fig. 3 shows the three steps of the test generation process
that we propose in this paper:

TPAIO
Construction of a Timed Pushdown
Tester with Inputs and Outputs TPTIO Computation of a Reachability

Automaton

RAGeneration of Test CasesTest Cases

Fig. 3. Test Generation Process from a TPAIO

1. Construction of a TPTIO of a TPAIO: A TPAIO specifies clock constraints. For
this reason, we propose to compute a Timed Pushdown Tester with Inputs and
Outputs (TPTIO) that resolves the clock constraints. The tester obtained is a
TPAIO with one clock, reset each time the tester observes an action, and pro-
vided with a location f ail.

2. Computation of an RA from the TPTIO: pop actions depend on the content of the
stack. This step computes one or many paths between two symbolic locations of
a TPTIO by respecting the stack constraints, i. e. such that the stack is empty in
the target location. The RA is a finite automaton with any of its transition related
to one path of the TPTIO. Such a transition is called a π-transition.

3. Generation of test cases as correct behaviours of the TPAIO, computed from the
TPTIO. There are two sub-steps: (a) generation of test paths of π-transitions that
go from an initial to a final location of the RA; (b) generation of TPTIO test cases,
by adding to the test paths the location f ail and the transitions that lead to it.

8 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

4.2 Construction of a TPTIO from a TPAIO

In [11], Krichen and Tripakis propose a method for conformance testing of non-
deterministic TAIO. They propose an algorithm for generating test cases. They com-
pute a tester that has only one clock, reset each time the tester observes an action.

We propose to adapt the method of [11] for computing a TPTIO from a TPAIO.
Let out(l) be the set of transitions leaving the location l in the TPAIO. A verdict
f ail is emitted if either an unspecified stack or output action is observed, or a stack
or output actions of out(l) is observed earlier or later than specified, or a timeout
occurs. A TPTIO has only one clock which is reset every time the tester observes
an action. As a consequence, all the guards of a TPTIO are satisfiable. We define a
TPTIO of a TPAIO in Def. 4.

Definition 4 (TPTIO). The TPTIO T T = (LT , lT
0 ,Σout ,Γ ,{y},∆ T ,FT) of a TPAIO

T = 〈L, l0,Σout ∪{τ},Γ ,X ,∆ ,F〉 is a TPAIO with only one clock y that is a new
clock w.r.t X where:

• LT ⊆ (L×CC(X ∪{y}))∪{ f ail}) is a set of symbolic locations,
• lT

0 is the initial symbolic location,
• FT ⊆ LT is a set of accepting symbolic locations,
• ∆ T ⊆ LT ×Σout ∪Γ +−×Grd({y})×{y}×LT is a finite set of transitions.

The computation, taken from [11], of a partition where each part is in Grd({y}) is as
follows: let K be the greatest constant appearing in a constraint of a given symbolic
location lT or in a guard of a given transition of T . The following set of intervals is a
partition: {[0,0],]0,1[, [1,1],]1,2[, ..., [K,K],]K,∞[}. Before presenting the method
to compute ∆ T , we need to define the following sets:

• ∆a = {t | t ∈ ∆ ∧∃(l,g,X ′, l′).(t = (l,a,g,X ′, l′))} is the set of transitions of ∆

labelled by a.
• ∆a((l,v),u) = {(l,a,g,X ′, l′) ∈ ∆a | v∧u∧g satisfiable} is the set of transitions

labelled by a whose guards are satisfied by (l,v) where v is in CC(X ∪{y}) and
the clock y is equal to u.

Since our model is that of deterministic TPAIO, ∆a and ∆a(lT ,u) contain at most
one transition. For all intervals u, the coarsest partition is obtained from lT by taking
the union of the intervals that have the same set ∆a(lT ,u). For a symbolic location
lT ∈ LT of T T , a ∈ Σout ∪Γ +−:

• usucc(lT) = lT ′ such that ∃ρ.(ρ ∈ RT ({τ})∧ lT →ρ lT ′) is the symbolic location
reachable from lT by applying a sequence of unobservable actions.

• dsucc(lT ,a) = lT ′ such that lT →a lT ′ is the symbolic location reachable from lT

by applying the action a.

In the initial location lT
0 , all the clocks equal zero, including y. The construction of

the TPTIO repeats the following step: selection of a symbolic location lT ∈ LT and
application of the following possibilities to add new transitions to ∆ T : (i) output
and stack actions: for every action a ∈ Σout ∪Γ +−, for every coarsest partition u,

Conformance Testing for Timed Recursive Programs 9

if ∆a(lT ,u) = ∅ then the transition (lT ,a,u,{y}, f ail) is added to ∆ T . Otherwise
the transition (lT ,a,u,{y},usucc(dsucc(lT ∩u,a))) is added to ∆ T ; (ii) timeout: let
K be the greatest constant appearing in the constraint of lT or in a guard of the
transitions leaving lT . Then, the transition (lT ,−,y > K,{y}, f ail) is added to ∆ T .

The first symbolic location selected is lT
0 . Adding new transitions to a TPTIO im-

plies adding new symbolic locations to the TPTIO. The algorithm terminates when
all the new symbolic locations are selected and treated.

Notice that the number of locations of the TPTIO could scale exponentially with
that of the TPAIO. However, the impact of this blowup can be limited by putting
time constraints on blocks of instructions rather than on single instructions.

Example 1. Figure 4 shows the TPTIO of the TPAIO of Fig. 2 where vi
de f
= 0 6

x− y ≤ i. The label a1|a2|...|an denotes the set of labels {a1,a2,...,an}. F = Fib+1 |Fib−1 |

Fib+2 |Fib−2 |?A|?B|?C|?D|?E, F0 = F \{?A}, F1 = F \{?B,?C}, F2 = F \{?D}, F3 = F \{Fib+1 }, F4 = F \{Fib+2 },

F5 = F \{?E} and F6 = F \{Fib−1 ,Fib−2 }.

(l0,v0)

(l1,v0)

(l2,v0) (l3,v0)

(l0,v1)(l6,v0)

(l5,v1) (l4,v1)

(l0,v2)

f ail
F0,y > 0,{y}

?A,y > 2,{y}

−,y > 2,{y}

?A, y 6 2,{y}

f ail
F1,y > 0,{y}

?B|?C,y > 1,{y}

−,y > 1,{y}

?B, y 6 1,{y} ?C, y 6 1,{y}

?D, y 6 2,{y}

f ail
F2,y > 0,{y}
?D,y > 2,{y}

−,y > 2,{y}

Fib+1 ,y 6 1,{y}

F3,y > 0,{y}
Fib+1 ,y > 1

−,y > 1,{y}

Fib−2 , y 6 1,{y}
Fib−1 , y 6 1,{y}

f ail

F6,y > 0,{y}

Fib−2 |Fib−1 ,y > 1,{y}

−,y > 1,{y}

?E, y 6 3,{y}

f ail

F5,y > 0,{y}?E,y > 3,{y}
−,y > 3,{y}

F0,y > 0,{y}

?A,y > 2,{y}

−,y > 2,{y}

?A, y 6 2,{y}

Fib+2 , y 6 1,{y}

f ail
F4,y > 0,{y}

Fib+2 ,y > 1,{y}

−,y > 1,{y}

f ail
F0,y > 0,{y}

?A,y > 2,{y}
−,y > 2,{y}

?A, y 6 2,{y}

Fig. 4. The TPTIO of the TPAIO of Fig. 2

10 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

4.3 Reachability Automaton of a TPTIO Computation

A TPAIO does not only specify clock constraints but also stack constraints. There-
fore, applying the algorithm of [11] for generating analog-clock tests from TPAIO
is not sufficient. It is necessary, for avoiding system deadlocks, to additionally take
the stack content into account. For example, the pop action of a symbol that would
not be on top of the stack would provoke a deadlock. We compute a reachability
automaton for taking the stack constraints into account.

Let (LT , lT
0 ,Σout ,Γ ,{y},∆ T ,FT) be a TPTIO. We propose to compute a represen-

tation of its reachable locations from its initial location. This representation is called
the reachability automaton of the TPTIO. It is a finite automaton whose transition
labels are sequences of transitions of the TPTIO (∈ ∆ T ∗). A π-transition (lT ,π, lT ′)

is a transition that reaches the symbolic location lT ′ from lT and leaves the stack
unchanged at the end, by taking the path π . We propose in Def. 5 the rules R1 to R4
that, applied repeatedly, define the RA.

Definition 5 (RA of a TPTIO). The RA of a TPTIO (LT , lT
0 ,Σout ,Γ ,{y},∆ T ,FT)

is the automaton (LR, lT
0 ,(∆

T)
∗
,∆ R,FT) where LR = LT \ { f ail} and ∆ R ⊆ LR×

(∆ T)
∗×LR is the smallest relation that satisfies the following conditions. Let t1

de f
=

(lT
1 ,a

+,g1,{y}, lT
2), t2

de f
= (lT

2 ,a
−,g2,{y}, lT

3) and t3
de f
= (lT

3 ,a
−,g3,{y}, lT

4) be three
transitions in ∆ T where lT

2 , lT
3 , lT

4 differ from the location f ail.

• R1: (lT , t, lT ′) ∈ ∆ R if t
de f
= (lT ,A,g,{y}, lT ′) and t ∈ ∆ T ,

• R2: (lT
1 , t1.t2, l

T
3) ∈ ∆ R,

• R3: (lT
1 , t1.π.t3, l

T
4) ∈ ∆ R if (lT

2 ,π, l
T
3) ∈ ∆ R and t1 is not a prefix of π or t3 is not

a suffix of π .
• R4: (lT

1 ,π1.π2, lT
3) ∈ ∆ R if (lT

1 ,π1, lT
2) ∈ ∆ R and (lT

2 ,π2, lT
3) ∈ ∆ R and π1 is not a

prefix of π2 and π2 is not a suffix of π1.

We have adapted an algorithm by Finkel et al. [9], that originally computes an
RA from a PA, to compute an RA from a TPTIO. Our modifications are as follows:

1. we compute the path of each transition. Any π-transition in the RA corresponds
to the path π in the TPTIO;

2. the problem addressed in [9] being to check the location reachability, the paths
are ignored and there is only one transition between two symbolic locations lT

and lT ′ . We record as many transitions as required to cover all the transitions
between the two symbolic locations;

3. we consider, by means of the rule R1, the transitions that emit a symbol of Σout
in addition to the push and pop ones;

4. the reflexive transitions are not used in [9] because they don’t cover any new
state. By contrast in the rule R4, we possibly extend an existing π-transition on
its right or on its left by one occurrence of a reflexive transition, provided that it
covers at least one new transition.

Conformance Testing for Timed Recursive Programs 11

The computation of the paths is based on transition coverage. Adding a new π-
transition (lT ,π, lT ′) is performed only if π covers a new transition between lT and
lT ′ of the TPTIO. Thus our algorithm applies the rules R1 to R4 to compute the
smallest set of transitions ∆ R that covers all the transitions.

Example 2. There are two transitions ((l0,v0),π,(l6,v0)) that go from the initial
symbolic location (l0,v0) to the accepting symbolic location (l6,v0):

1. π
de f
= (l0,v0)

A,y62,{y}−−−−−−→ (l1,v0)
B,y61,{y}−−−−−−→ (l2,v0)

D,y62,{y}−−−−−−→ (l6,v0)

2. π
de f
= (l0,v0)

A,y62,{y}−−−−−−→ (l1,v0)
C,y61,{y}−−−−−−→ (l3,v0)

Fib+1 ,y61,{y}
−−−−−−−−→ (l0,v1)

A,y62,{y}−−−−−−→ (l1,v0)
B,y61,{y}−−−−−−→

(l2,v0)
D,y62,{y}−−−−−−→ (l6,v0)

Fib−1 ,y61,{y}
−−−−−−−−→ (l4,v1)

Fib+2 ,y61,{y}
−−−−−−−−→ (l0,v2)

A,y62,{y}−−−−−−→ (l1,v0)
B,y61,{y}−−−−−−→

(l2,v0)
D,y62,{y}−−−−−−→ (l6,v0)

Fib−2 ,y61,{y}
−−−−−−−−→ (l5,v1)

E,y63,{y}−−−−−−→ (l6,v0).

4.4 Generation of Correct Behaviour Test Cases

Definition 6 (Test Case). Let T = 〈L, l0,Σout ∪{τ},Γ ,X ,∆ ,F〉 be a TPAIO speci-
fication and T T = (LT , lT

0 ,Σout ,Γ ,{y},∆ T ,FT) be the TPTIO of T . A test case is
a deterministic acyclic TPAIO whose locations are either configurations (l,v, p), or
pass, or f ail, or stack f ail.

We first define a test case in Def. 6. We propose to select the executions that reach
a final symbolic location with an empty stack, for producing a set of nominal test
cases. For this, we select the π-transitions in RA that go from an initial symbolic
location to a final one. Any path of each selected transition is then turned into a
test case by adding, from each state it reaches, the corresponding transitions that
lead to f ail in the tester. The last state reached is a final state with empty stack. It
is replaced by the verdict pass. The non-verdict nodes are configurations (location,
clock valuation, stack content) of the semantics of the TPAIO. To model the case
where the pop of a symbol by the IUT is observed, although the symbol should not
be on top of the stack according to the specification, we propose to add the verdict
stack f ail. For each state (l,v, p) in each test case, for every action a− ∈ Γ−, for
every coarsest partition u where ∆a−((l,v),u) 6= ∅, if the symbol a is not on the
top of p, then the transition ((l,v, p),a−,u,{y},stack f ail) is added to the test case.
Thus, the result is a set of test cases, in which the actions are observable (the stack
and output actions). Figure 5 shows the two test cases issued from the π-transition
((l0,v0),π,(l6,v0)) of Example 2. For example, if the tester observes the pop of the
symbol Fib−2 from the state (l6,v0, [Fib1]), then the verdict stack f ail is emitted.
The tests generated then have to be executed on the IUT. As TPAIO are abstractions,
the tests are not in general guaranteed to be instantiable as concrete executions of
the IUT . This is the case in our example of a recursive program whose evaluation
conditions have been abstracted in the TPAIO. To select the concretizable test cases
and to compute their inputs, we propose to use symbolic execution [10], as a mean
for analysing a path and finding the corresponding program inputs. A constraint

12 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

solver may also be invoked while executing a given test case [13]. The satisfiability
of a constraint can be efficiently evaluated by means of SMT solvers such as Z3 [12].
If the constraint is satisfiable, then the test case is concretizable. The solver also finds
a solution for the constraint of this concretizable test case. It represents the concrete
inputs that lead to the execution of the test case being considered. For example,
the test case of Fig. 5(b) represents the trace ACFib+1 ABDFib−1 Fib+2 ABDFib−2 E,
which corresponds to the following successive instructions: int res1,res2; n > 1; res1 =

Fib(n−1); int res1,res2; n−1 6 1; return n−1; res1 = Fib(n−2); int res1,res2; n−2 6 1; return
n− 2 and return res1 + res2. It corresponds to the following path constraint: n > 1 ∧
n− 1 6 1 ∧ n− 2 6 1. This constraint is satisfiable and a solution is n = 2. Thus,
this test case corresponds to Fib(2). In our case, we obtain two test cases which are
concretizable. The other test case (see Fig. 5(a)), corresponds to Fib(0) or Fib(1).

5 Soundness, Incompleteness and Coverage of the Method

This section discusses the soundness, incompleteness and coverage of our method
for generating tests from a TPAIO.

5.1 Soundness

Theorem 1. A symbolic location lT
i is reachable with an empty stack in a TPTIO if

there exists a π-transition (lT
0 ,π, l

T
i) in its RA.

Proof. The proof is by induction and by cases on each rule. The induction assump-
tion is that the RA transitions that are merged into new transitions are sound. We
prove this assumption to be true by proving that the rules R1 and R2, that create RA
transitions only from TPTIO ones, are sound. Then we prove that the rules R3 and
R4 preserve that soundness.

• R1 case: if there is a transition (l1,v1)
(l1,v1)

A,g1 ,{y}−−−−−→(l2,v2)−−−−−−−−−−−−−→ (l2,v2) ∈ ∆ R then
(l2,v2) is reachable from (l1,v1) in the TPTIO because by definition of the TP-
TIO, v1∧g1 is satisfiable.

• R2 case: if there is a transition (l1,v1)
(l1,v1)

a+,g1 ,{y}−−−−−→(l2,v2)
a−,g2 ,{y}−−−−−→(l3,v3)−−−−−−−−−−−−−−−−−−−−−−−−→ (l3,v3)

∈ ∆ R then (l3,v3) is reachable from (l1,v1) in the TPTIO because it is always
possible to pop a after a has been pushed and by definition of the TPTIO, v1∧g1
and v2∧g2 are satisfiable.

• R3 case: if there is a transition (l1,v1)
(l1,v1)

a+,g1 ,{y}−−−−−→(l2,v2)
π−→(l3,v3)

a−,g3 ,{y}−−−−−→(l4,v4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(l4,v4) ∈ ∆ R then (l4,v4) is reachable from (l1,v1) in the TPTIO because (l3,v3)
is reachable from (l2,v2) according to the induction hypothesis, and it is always

Conformance Testing for Timed Recursive Programs 13

(l0,v0, [])

(l1,v0, [])

(l3,v0, [])

(l0,v1, [Fib1])

(l1,v0, [Fib1])

(l2,v0, [Fib1])

(l6,v0, [Fib1])

(l4,v1, [])

(l0,v2, [Fib2])

(l1,v0, [Fib2])

(l2,v0, [Fib2])

(l6,v0, [Fib2])

(l5,v1, [])

pass

(b)

?A,y 6 2,{y}

?C,y 6 1,{y}

Fib+1 ,y 6 1,{y}

?A,y 6 2,{y}

?B,y 6 1,{y}

?D,y 6 2,{y}

Fib−1 ,y 6 1,{y}

Fib+2 ,y 6 1,{y}

?A,y 6 2,{y}

?B,y 6 1,{y}

?D,y 6 2,{y}

Fib−2 ,y 6 1,{y}

?E,y 6 3,{y}

f ail

F0,y > 0,{y}

?A,y > 2,{y}
−,y > 2,{y}

f ail

F0,y > 0,{y}

?A,y > 2,{y}
−,y > 2,{y}

f ail

F0,y > 0,{y}

?A,y > 2,{y}
−,y > 2,{y}

f ail

F1,y > 0,{y}

?B|?C,y > 1,{y}
−,y > 1,{y}

f ail

F1,y > 0,{y}

?B|?C,y > 1,{y}
−,y > 1,{y}

f ail

F1,y > 0,{y}

?B|?C,y > 1,{y}
−,y > 1,{y}

f ail

F3,y > 0,{y}

Fib+1 ,y > 1,{y}
−,y > 1,{y}

f ail

F2,y > 0,{y}

D,y > 2,{y}
−,y > 2,{y}

f ail

F2,y > 0,{y}

D,y > 2,{y}
−,y > 2,{y}

f ail

F6,y > 0,{y}

Fib−2 |Fib−1 ,y > 1

−,y > 1,{y}

f ail

F6,y > 0,{y}

Fib−2 |Fib−1 ,y > 1,{y}
-,y > 1,{y}

f ail

F4,y > 0,{y}

Fib+2 ,y > 1,{y}
−,y > 1,{y}

f ail

F5,y > 0,{y}

?E,y > 3,{y}
−,y > 3,{y}

stack f ail
Fib−2 ,y 6 1,{y}

stack f ail
Fib−1 ,y 6 1,{y}

{(l0,v0, [])

(l1,v0, [])

(l2,v0, [])

pass

(a)

?A,y 6 2,{y}

?B,y 6 1,{y}

?D,y 6 2,{y}

f ail

F0,y > 0,{y}

?A,y > 2,{y}
−,y > 2,{y}

f ail

F1,y > 0,{y}

?B,y > 1,{y}
−,y > 1,{y}

f ail

F2,y > 0,{y}

?D,y > 2,{y}
−,y > 2,{y}

Fig. 5. Two Test Cases of the TPAIO of Fig. 2

possible to pop a after a has been pushed, and by definition of the TPTIO v1∧g1
and v3∧g3 are satisfiable.

• R4 case: if there is a transition (l1,v1)
(l1,v1)

π1−→(l2,v2)
π2−→(l3,v3)−−−−−−−−−−−−−−−→ (l3,v3) ∈ ∆ R then

(l3,v3) is reachable from (l1,v1) in the TPTIO because (l2,v2) is reachable from

14 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

(l1,v1) and (l3,v3) is reachable from (l2,v2), according to the induction hypoth-
esis.

Theorem 2. A location li is reachable with an empty stack in a TPAIO iff there exists
a π-transition ((l0,v0),π,(li,vi)) in the RA of its TPTIO.

Proof. Let g be the guard of a transition (l,a,g,X ′, l′). A transition ((l,v),a,u,{y},
usucc(dsucc((l,v)∩ u,a))) is added to ∆ T where a ∈ Σ ∪Γ +− only if v∧ u∧ g
is satisfiable, by definition of ∆a((l,v),u) in Sect. 4.2. Thus the construction of a
TPTIO from a TPAIO takes the clock constraints into account. It preserves both the
clock and stack constraints of the TPAIO. Thus, Theorem 2 is a direct consequence
of Theorem 1.

Our tests are correct in the sense that only non-conform executions are rejected.

Theorem 3. Let π = (l0,v0, p0)
a0,g0,{y}−−−−−→ (l1,v1, p1)

a1,g1,{y}−−−−−→ . . .(ln−1,vn−1, pn−1)
an−1,gn−1,{y}−−−−−−−−→ (ln,vn, pn)

an,gn,{y}−−−−−→ ln+1 be a path of a test case of a specification T =
〈L, l0,Σout ∪{τ},Γ ,X ,∆ ,F〉 where li ∈ L, vi is a clock constraint in CC(X ∪{y}),
gi ∈ Grd({y}), pi ∈ Γ ∗, ai ∈ Σout ∪Γ +− ∪ {−} for each 0 6 i 6 n and ln+1 ∈
{ f ail,stack f ail}. If a verdict f ail or stack f ail is observed while executing the
implementation I, then I does not conform to the specification T .

Proof. Let ρ = δ0a0δ1a1δ2...δn−1an−1δnan ∈ RT (Σout ∪Γ +−) be the trace of the
path π . (ln,vn, pn) is the current symbolic location after the execution of δ0a0δ1a1δ2
. . .δn−1an−1δn and gn is the coarsest partition computed such that δn ∈ gn. Reaching
f ail or stack f ail is due to one of the following three cases:

• f ail occurs after an unspecified stack or output action an has been observed,
according to item (i) in Sect. 4.2. If ∆an((ln,vn),un) = ∅, then the transition
((ln,vn),an,{y}, f ail) is a transition of the TPTIO. Therefore, an /∈ out(T a f ter
δ0a0δ1a1δ2...δn−1an−1δn), and I does not conform to T .

• f ail occurs after a timeout δn (an = −) has been observed, according to item
(ii) in Sect. 4.2. Therefore, vn +δn /∈ out(T a f ter δ0a0δ1a1δ2...δn−1an−1), and I
does not conform to T .

• stack f ail occurs after a pop action an has been observed, acceptable by the
specification (∆an((ln,vn), un) 6=∅), but in a context where the symbol a should
not be on top of the stack pn. Therefore, I does not conform to T .

Thus for every non-conformance detected by a test case, there is a non-conformance
between the implementation and the specification (TPAIO).

5.2 Incompleteness

The equivalence relation used to compute a TPTIO from a TPAIO can lead to a
loss of precision. It should be possible to build more precise test cases than the

Conformance Testing for Timed Recursive Programs 15

ones computed by our method. Consider for example the TPAIO of Fig. 6(a). The
TPTIO of Fig. 6(c) is more precise than the one of Fig. 6(b). The trace 0a+2a−

leads to the symbolic location (l2,0 6 x− y < 4) in the TPTIO of Fig. 6(b). It leads
to the symbolic location (l2,0 6 x− y 6 3) in the TPTIO of Fig. 6(c), but not to
the symbolic location (l2,0 < x− y < 4). We remark that the symbolic location
(l2,0 6 x− y 6 3) is more precise than (l2,0 6 x− y < 4).

l0

l1

l2

a+,0 6 x < 1

a−,x 6 3

(l0,x = y)

(l1,0 6 x− y < 1)

(l2,0 6 x− y < 4)

a+,0 6 y < 1,{y}

a−,y 6 3,{y}

(l0,x = y)

(l1,x = y = 0)

(l2,0 6 x− y 6 3)

a+,y = 0,{y}

a−,y 6 3,{y}

{(l1,0 < x− y < 1)}

(l2,0 < x− y < 4)

a+,0 < y < 1,{y}

a−,y 6 3,{y}

(a) (b) (c)

Fig. 6. Two TPTIO (b) and (c) of a TPAIO (a) (without f ail location). (c) is more precise than (b)

5.3 Coverage

In Sect. 4.3, we have presented a method for computing an RA from a TPTIO. The
algorithm that computes the RA takes into account the coverage of the transitions of
the TPTIO. It adds a new π-transition (lT ,π, lT ′) only if π covers a new transition
w.r.t the other π’-transitions (lT ,π ′, lT ′). The paths of all the π-transitions that go to
a final symbolic location of the RA cover all the transitions of the TPTIO. But since
some test cases might be unconcretizable, the set of concrete test cases is not guar-
anteed to cover all the transitions of the TPAIO. When all the tests are concretizable
(it is the case in our example), then all the reachable locations and all the reachable
transitions of the TPAIO are covered.

6 Conclusion and Further Works

We have presented a method to generate test from TPAIO. To our knowledge, this
had not been treated before in the literature. Our method proceeds by computing
reachable locations and transitions, and generating off-line tests from a deterministic
TPAIO that models a timed recursive program. The tester observes the stack and
output actions, as well as the delays. Our method first adapts the tester computation
method of [11] for TA to the TPAIO case. We obtain a TPTIO that is a TPAIO
with only one clock. Its locations are defined as being either rejecting (f ail) or

16 Hana M’Hemdi, Jacques Julliand, Pierre-Alain Masson, and Riadh Robbana

symbolic locations. In a second step, we adapt another algorithm presented in [9]
for PA, for computing the RA of the TPTIO. We compute the paths of the TPTIO
associated to each transition of the RA. The computation of the RA takes into account
the coverage of all the transitions of the TPAIO. By using the paths of transitions of
RA and TPTIO, test cases are generated. If they are concretizable, they cover all the
reachable locations and transitions of the TPAIO.

Our work is currently for deterministic timed pushdown automata with outputs.
We intend as a future work to generalize to non-deterministic timed pushdown au-
tomata with inputs and outputs, to target general timed recursive systems. Also,
at this stage of our work, we have developed a proof-of-concept prototype to ex-
perimentally validate our approach, in which the test generation process have been
automated. We intend as a future work to develop this tool, in order to be able to
perform larger scale experiments.

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: LICS, pp. 35–44
(2012)

2. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Autebert, J.M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In:

Handbook of Formal Languages, vol. 1, pp. 111–174. Springer (1997)
4. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines. In: TIME

2010, pp. 61–68. IEEE (2010)
5. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems with con-

tinuous variables and unbounded discrete data structures. In: Hybrid Systems II, LNCS, vol.
999, pp. 64–85 (1995)

6. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.: Automatic synthesis of robust
and optimal controllers — an industrial case study. In: HSCC ’09, pp. 90–104. Springer (2009)

7. Chadha, R., Legay, A., Prabhakar, P., Viswanathan, M.: Complexity bounds for the verification
of real-time software. In: VMCAI’10, LNCS, vol. 5944, pp. 95–111. Springer (2010)

8. Dreyfus, A., Héam, P.C., Kouchnarenko, O., Masson, C.: A random testing approach using
pushdown automata. STVR 24(8), 656–683 (2014)

9. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown
systems (ext. abs.). In: Infinity, ENTCS, vol. 9, pp. 27–37 (1997)

10. Godefroid, P.: Test generation using symbolic execution. In: IARCS, pp. 24–33 (2012)
11. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. FMSD 34(3), 238–304

(2009)
12. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, LNCS, vol. 4963, pp.

337–340 (2008)
13. Păsăreanu, C.S., Rungta, N., Visser, W.: Symbolic execution with mixed concrete-symbolic

solving. In: ISSTA’11, pp. 34–44. ACM (2011)
14. Sénizergues, G.: L(a) = l(b)? decidability results from complete formal systems. In: ICALP,

LNCS, vol. 2380, pp. 1–37. Springer (2002)
15. Tretmans, J.: Testing concurrent systems: A formal approach. In: Concurrency Theory, LNCS,

vol. 1664, pp. 46–65. Springer (1999)
16. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: ATVA’10, LNCS, vol. 6252, pp.

306–324. Springer (2010)

