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An open challenge in the important field of femtosecond laser material 

processing is the controlled internal structuring of dielectric materials. 

Although the availability of high energy high repetition rate femtosecond 

lasers has led to many advances in this field, writing structures within 

transparent dielectrics at intensities exceeding 1013 W/cm2 has remained 

difficult as it is associated with significant nonlinear spatial distortion. This 

letter reports the existence of a new propagation regime for femtosecond 

pulses at high power that overcomes this challenge, associated with the 

generation of a hollow uniform and intense light tube that remains 

propagation invariant even at intensities associated with dense plasma 

formation. This regime is seeded from higher order nondiffracting Bessel 

beams, which carry an optical vortex charge. Numerical simulations are 

quantitatively confirmed by experiments where a novel experimental 

approach allows direct imaging of the 3D fluence distribution within 

transparent solids. We also analyze the transitions to other propagation 

regimes in near and far fields. We demonstrate how the generation of plasma 

in this tubular geometry can lead to applications in ultrafast laser material 
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processing in terms of single shot index writing, and discuss how it opens 

important perspectives for material compression and filamentation guiding in 

atmosphere. 

 

 

In 1992, Allen et al demonstrated that light beams with a phase singularity or vortex 

charge (i.e. orbital angular momentum) can transfer mechanical torque1. These waves 

attracted intense interest for optical manipulation of micro and nano-objects2. The 

vortex singularity was identified as a supplementary degree of freedom for optical 

encoding and applications emerged in a diversity of fields such as optical metrology3, 

nonlinear optics4-6, and quantum information7,8. 

 

In this paper, we report on an important novel application of vortex beams to control 

nonlinear propagation of intense femtosecond light beams within dielectrics, and 

demonstrate its relevance for laser material processing. In particular, for the first time 

to our knowledge, ultra-intense light pulses are shown to be able to propagate as a 

“light tube” in dielectrics without deformation, generating a tubular plasma 

distribution that reaches optical breakdown densities. This novel tubular geometry for 

delivery of energy from femtosecond pulses in a propagation-invariant way is 

expected to generate novel breakthroughs in femtosecond laser material processing. 

 

The complex nonlinear dynamics of femtosecond laser pulse propagation in dielectrics 

generally inhibits uniform energy deposition within the material along the beam path. 

The addition of a vortex singularity on a Gaussian beam in the form of a doughnut has 

been shown to introduce some additional propagation control9, associated with 

azimuthal modulation instability, filament formation and soliton dynamics10-12. Several 
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solitonic regimes have been identified, where the beam can either remain doughnut 

shaped or split into several rotating filaments9. However, this solitonic behavior which 

would be essential for material processing stops at higher intensity where strong 

nonlinear losses occur. 

 

In contrast to Gaussian beams, however, nondiffracting Bessel beams have been 

successfully shown to sustain invariant propagation even in presence of nonlinear 

losses and Kerr effect13. This arises physically because of the particular property of 

Bessel beams where conical inward energy flow can compensate for losses and “self-

heal” the beam during propagation14. Experimental results have applied this 

propagation-invariance of zero-order femtosecond Bessel beams to single shot laser 

processing of nanochannels in glass with high aspect ratios from 100:1 to 1000:115,16. 

 

In this paper, we investigate nonlinear femtosecond Bessel beams carrying a vortex 

charge. The concept is shown in Figure 1. The beam structure consists of a primary 

“light tube” of high intensity surrounded by several other concentric tubes at lower 

intensity. This is shown in Figure 1(a). With linear propagation, the intensity 

distribution is quasi-invariant along z17. The radial profile of Bessel beams carrying a 

vortex charge m is well approximated by the Bessel function of order m: 

2
( ) ( sin )mI r J k r  where k  is the wavevector and   is the conical angle. As will be 

discussed below, the conical angle is a parameter of primary importance. For 0m  , 

the tube radius is null and the conical angle is the angle that geometrical rays make 

with the optical axis. For 1m  , geometrical analysis shows that light propagates 

tangentially to the tube and no light crosses the inner part of the tubular main 

intensity region18.  The experimental set up used to generate the beams and image 

their propagation is shown in Figure 1(b) and this is discussed in more detail later.  
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This paper is organized as follows. We first describe propagation-invariant vortex 

solutions to the nonlinear Schrödinger propagation equation, including the Kerr effect 

and nonlinear losses. We then analyze with numerical simulations the domain of 

existence of such solutions that we refer to as propagation-invariant conical vortex 

waves, and we see how nonlinear propagation is attracted toward these propagation-

invariant solutions. To experimentally confirm our numerical results, we needed an 

accurate technique to record beam propagation. Spatiotemporal measurements of 

nonlinear propagation have already been developed within liquids by using a cuvette 

with variable thickness19. Here, for propagation within solids, we have developed a 

novel experimental approach. Based on beam scanning, our setup allows for a direct 

imaging of the 3D fluence distribution within transparent solids in near and far field. 

Quantitative agreement is found with numerical simulations. We discuss our results in 

terms of three broad regimes of propagation: (i) Tubular propagation-invariant where 

the intensity distribution pattern does not vary with the propagation distance, (ii) 

rotating, where several filaments rotate around the optical axis during the 

propagation and (iii) speckle-like, where hot-spots are non-rotating, and appear and 

disappear in space. 

Results 

Propagation-invariant solutions to nonlinear propagation in 
dielectrics  

The key physical effects in the physics of stationary conical vortex waves are 

diffraction, the optical Kerr effect and nonlinear losses. The nonlinear Schrödinger 

equation (NLSE) describing the propagation of a field envelope E in dielectrics is:  

 

2 2 22 2
0

0 02 2

KKnE i
E ik E E E E

z k n

 



   

  (1) 



5 
 

where 0k  is the wavevector, 2
 is the transverse Laplacian operator, 0n  and 2n  are 

respectively the refractive and Kerr indices of the medium, and K  is the cross 

section for multiphoton ionization.  

We seek propagation-invariant monochromatic solutions in the form of a vortex of 

charge m , such that the electric field amplitude is: ( , , ) ( ) exp( ( ) )zE r z a r ik z i r im      . 

( )a r  and ( )r  are to be determined while the longitudinal component of the 

wavevector, 0 coszk k  , is a parameter that can be arbitrarily chosen. Our 

mathematical procedure is summarized in the methods section and more details are 

provided in reference [20]. It follows a similar approach as in references [13,21]. In 

the linear regime ( 2 0n  , 0K  ), equation (1) admits stationary solutions in the form 

of Bessel functions 0( ) ( sin )ma r J k r , also known as "diffraction-free" solutions. In the 

nonlinear regime, we fixed the material parameters 2n  and K  and we used numerical 

integration to find ( )a r  and ( )r . For a fixed zk , or equivalently a fixed conical angle, 

we find a family of solutions characterized by different maximum intensities. Figure 

2(a) compares the radial intensity profiles of the stationary solutions found with 

vortex charge m=3 and conical angle 6.8    in fused silica, for peak intensities from 

1013 W.cm-2 to 1014 W.cm-2. It is apparent that the nonlinear solutions exhibit 

transverse profile very similar to the linear profile except that the intensity rings are 

compressed and with attenuated contrast depending on material parameters and 

effective nonlinear losses. Contrast attenuation usually occurs for solutions reaching 

the highest peak intensity. 

We found numerically that there is a limit in maximal intensity for each cone angle 

and vortex charge, over which no propagation-invariant solution is found. In Figure 

2(b), we show in white (resp. white and light grey) the domain of existence of 

propagation invariant solutions in the parameter space determined by peak intensity 

and conical angle for a vortex charge m=3 (resp. m=1) in fused silica. The location of 

the frontier (red for m=3 and blue for m=1) obviously depends on material 
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parameters and vortex order but remains approximately linear with positive slope. 

The error bars shown correspond to the accuracy to which numerical integration could 

locate the frontiers.  

This shows that increasing cone angle allows stationary solutions to exist in a broader 

range of intensities where propagation-invariant solutions can be found. More 

importantly, this result is qualitatively valid for any kind of nonlinear losses, including 

those occurring by plasma absorption. This is a major result for the effectiveness of 

propagation-invariant conical vortex waves to applications requiring high peak powers 

such as femtosecond laser micromachining. 

 

As with Bessel beams, ideal propagation-invariant conical vortex waves are only 

weakly localized, i.e., their amplitude tails decay as 1 / r  and carry infinite power. As 

will be shown below, a finite power beam carrying a suitably designed spatial phase 

will reshape into apodized versions of propagation-invariant conical vortex waves. 

 

Finite energy solutions and experimental results 

Here, we compare experimental and numerical propagation of finite energy nonlinear 

Bessel vortices with the propagation-invariant solutions found above. 

 Numerical model 

We produce higher order Bessel beams from a Gaussian beam by using a phase mask 

( , ) sinr k r m     17. This is equivalent to the phase applied by an axicon and a 

vortex phase plate of order m . The numerical propagation model is detailed in the 

methods section. Briefly, it takes the canonical form of a unidirectional envelope 

propagation equation (UPPE) written in the spectral domain22, coupled to a plasma 

equation including photoionization, avalanche and recombination (see methods 
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section). In our conditions, temporal variations are negligible and for computational 

efficiency in 3D, we consider the electric field ( , , )E x y z  as independent of time. 

 Experimental setup 

Our experimental setup is shown in figure 1(b). The vortex Bessel beam is generated 

from the image of the SLM phase mask, placed at the focal plane of a high numerical 

aperture microscope objective. This allows us to generate the beam within the bulk of 

solid dielectrics. We have developed a novel beam procedure to image the fluence 

distribution in 3D for quantitative comparison with simulations. It is based on 

progressive precise scanning of the beam within the sample and single shot imaging 

of the sample exit side. The procedure is detailed in the methods section. 

 Quasi-invariant propagation of finite energy beams 

A first set of experiments and numerical simulations investigated propagation of high 

conical angle Bessel vortices, with 6.8    in glass. Figure 3 shows the results for 

several input pulse energies. The subfigures in the first and second rows show the 

numerical and experimental longitudinal fluence distributions. The third row compares 

the transverse cross-sections for a propagation distance of 300 µm from the phase 

mask image in the sample. Aside from the high degree of agreement between 

simulation and experiment, it is apparent that both numerically and experimentally, 

no distortion of the central main ring appears even at high input energies: only the 

contrast between the main ring and the surrounding rings decreases. The transverse 

profile changes only smoothly along the propagation, which shows the propagation is 

quasi-propagation-invariant. 

Experimentally recorded fluences exceed 3 J/cm2, well above material damage 

threshold of dielectrics. (We note that material removal or material modification 

occurs at a timescale much larger than the light propagation scale so that it does not 

affect the intensity distribution23) 
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We have numerically analyzed the quasi-propagation-invariant regime in terms of 

peak intensity and radial position of the main intensity ring for each propagation 

distance. We find that the actual propagation of finite energy pulses follows a family 

of propagation-invariant conical vortex waves, such as those shown in figure 2. This 

property is general for conical waves24. This family is characterized by the same 

conical angle as the one of the input beam. In other terms, high intensity Bessel 

vortices reshape into a set of propagation-invariant solutions during the nonlinear 

propagation. Importantly, unlike solitons, this propagation-invariant solution sustains 

high losses occurring in the main ring. This is because a power flux from the external 

rings toward the main ring compensates the losses. For instance, energy loss at pulse 

energy of 5 µJ in Figure 3 exceeds 20% (see Methods section). 

We observed both numerically and experimentally that the deviation from a quasi-

propagation-invariant regime occurs because of the appearance of nonlinear wave 

mixing, which generates novel spatial frequencies in the beam. As observed in the 

case of zeroth order Bessel beams14,25, the growth of modulation instability or four-

wave mixing is inefficient at high conical angle, such as for the results shown in figure 

3. The value of the conical angle 6.8    was chosen to observe a clear quasi-

stationary propagation regime at high pulse energy over a long distance. To observe 

the departure from propagation-invariant regime, we investigate the nonlinear 

propagation at lower cone angle, where nonlinear wave mixing growth is reached well 

before dense plasma generation limits the peak intensity. 

 Transitions from propagation-invariant to rotating and speckle-like regimes 

Figure 4 compares numerically and experimentally the fluence distribution with 

increasing pulse energies for a vortex of order m=3 and 2.8    in fused silica. The 

role of initial noise or beam inhomogeneity is essential to seed modulation instability 

and four wave mixing. We reproduced numerically the beam inhomogeneity in the 

amplitude profile of the input experimental beam by taking into account a slight 

astigmatism from our laser source, where the horizontal and vertical waists of the 
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input Gaussian beam differ by a factor 1.05. With this, we obtained an excellent 

quantitative agreement with our experimental data. The remaining discrepancies are 

attributed to the use of frozen-time simulations (see Methods section) and to 

incomplete plasma/light interaction model. In the bottom row, we compare numerical 

and experimental cross sections at the propagation distance z= 0.82 mm, where the 

new regimes are developed. In the Supplementary Material, we provide a movie 

(movie1) presenting the full ensemble of experimental fluence cross sections where 

the differences between the regimes are very apparent.  

For a pulse energy of 5 µJ, the main ring splits azimuthally into several peaks that 

rotate around the optical axis. This seems to correspond to the regime observed by 

another group in water26. The sense of rotation is determined by the sign of the 

vortex charge. A second movie (Supplementary Material, movie 2), based on 

experimental results, shows the high degree of symmetry of the rotation during 

nonlinear propagation at 5 µJ for m=3 and m=-3. We note that in the linear case, no 

rotation was observed. Over 20 µJ, although one would expect multifilamentation, a 

novel regime appears, characterized by the fact that no continuous light channel is 

produced. Instead, multiple hot spots appear and disappear during the propagation 

with very limited rotation, resembling a speckle structure. Importantly, although very 

complex, this "speckle-like" regime is highly reproducible from shot to shot. Moreover, 

the same fluence distribution pattern was reproduced between identical experiments 

even when separated by several hours. This suggests that the speckle structure arises 

from inhomogeneity in the initial conditions rather than noise during propagation. 

 Spatial spectrum analysis 

Spatial spectrum provides an efficient tool to understand the propagation dynamics in 

the low conical angle case. Experimentally, the Fourier spectrum was measured at the 

focal plane of a lens inserted in the imaging path of the previous setup (see methods). 

In Fig. 5, we compare numerical and experimental Fourier-transforms of the beam 

shown in figure 4, at the propagation distance z=1 mm. Numerical simulations use 
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exactly the same input conditions as in figure 4. The first column (Fig 5.(a,b)) shows 

the linear regime where the Fourier transform of a Bessel vortex beam appears as 

ring with a radius 0 sinrk k  . 

Figures 5 (c,d) show the spatial spectrum for an input pulse energy of 1 µJ. A slight 

increase of the ring radius is characteristic of the propagation-invariant regime at high 

intensity, where, in the near-field, lobe compression occurs (see Fig 2.a). As the input 

pulse energy further increases, self-phase modulation and four-wave mixing modify 

the spatial spectrum and generate one or more rings with radii close to the initial one. 

For input pulse energies higher than 5 µJ, we observe the generation of spectral 

components with transverse wavevectors smaller than 0rk  in a complex pattern. 

These waves are generated by nonlinear wave mixing. They were removed when Kerr 

index was numerically set to zero and they disappeared in experiments when the 

pulse duration was temporally stretched. These spectral components arise from a 

combination of four-wave mixing and self-phase modulation. Simulations showed that 

the nonlinear propagation radially modulates the beam resulting in the generation of 

several concentric rings in the far field, as for the case of zeroth order nonlinear 

Bessel beams27. When intensity perturbations are added to the input beam, 

modulation instability splits these rings azimuthally. This effect is more and more 

visible as the input pulse energy increases. 

We note that in the rotating regime, between ~ 5 and ~ 20 µJ, the number of hot 

spots does not necessarily correspond to the vortex order: it evolves with 

propagation. The actual number of peaks depends on the growth rate of each 

azimuthal mode10. 

At energies higher than 20 µJ, a number of azimuthally modulated rings are observed 

in the far field. They interfere in the near field and generate a highly complex, 

"speckle-like" pattern. The high degree of nonlinear cascading has already been 

observed to be deterministic28. Besides, it makes the propagation extremely sensitive 

to nonlinear coefficients and a relatively small quantitative discrepancy is therefore 
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observed here between simulations and experimental results, while the qualitative 

behavior of speckle-like propagation is still present in both.  

 

Discussion. Applications to laser material processing 

The propagation-invariant regime of Bessel Vortices opens numerous novel 

possibilities in the field of laser material processing. Indeed, we observed that this 

regime can be reached over a very wide range of parameters. Figure 6(a) shows a 

typical result of the longitudinal distribution of free-electron plasma in the 

propagation-invariant regime. Here, it corresponds to the case of the beam 

represented in figure 3 with a pulse energy of 5 µJ (i). The plasma distribution is 

longitudinally quasi-invariant over a range of 150 µm. The plasma cross section, 

shown in inset, peaks on the main intensity ring of the propagation-invariant Bessel 

vortex beam. 

The tubular regime allows plasma generation on a very wide range of plasma 

densities and we note that density and geometrical parameters of the plasma tube 

can be controlled by six independent parameters (pulse energy, pulse duration, input 

Gaussian beam waist, cone angle, vortex order, laser central wavelength). 

Figure 6(b) shows an image by optical transmission microscopy of the damage 

induced in 150 µm-thick glass slide (Corning 0211, see Methods section) by a single 

pulse with cone angle 6.8    in samples, vortex order m=3 and energy 35 µJ. The 

differences in refractive index and dispersion coefficient have a negligible impact on 

the propagation. Corning 0211 has a smaller bandgap (~4.2eV) and the ionization 

avalanche threshold arises at lower intensity than in fused silica. The important 

difference between these materials is the thermal expansion coefficient (8.4×10-6 K-1 

for Corning 0211 and 0.5×10-6 K-1 for fused silica). 

The damage produced in glass is highly homogeneous with the shape of a cylinder 

extending from one side of the sample to the other. A pulse duration of 1 ps was 
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chosen since the damage observed through optical transmission is much more visible 

than the one left by 100 fs, as already observed in previous work16. The damage 

produced in fused silica under identical conditions as those for Corning 0211 was 

qualitatively similar but the index modification is smaller. Figure 6 (c) shows the cross 

section of a similar damage, obtained at pulse energy of 20 µJ. The picture is obtained 

under transmission microscopy and it is apparent that the central core of the damage 

is brighter than the other part of the transparent sample, thus indicating that the 

refractive index has increased by material compression and melting. Importantly, no 

light from the laser pulse has illuminated this central core. This core actually guides 

visible light and the near field image is shown in Figure 6(d). From the numerical 

aperture of the coupled light, we estimate the refractive index change to be ~8x10-4. 

By using a similar approach as reference 23, we estimate the stopping distance of the 

shockwave to ~100 nm inside and outside the plasma tube23. A model of cylindrical 

heat diffusion shows that laser deposited energy on the plasma tube is enough to 

overcome the melting temperature over the tube diameter. We note that the much 

high thermal expansion coefficient of 0211 glass compared to fused silica generates a 

higher thermal stress. This explains the higher material modification observed in 

Corning 0211 glass. 

Our approach provides means to write waveguides with a single shot in media where 

waveguide writing by Gaussian beams usually generates negative index modification. 

Hollow beams were previously used for this application in a regime with much smaller 

pulse energy, multishot illumination regime with continuous translation29. Here, an 

important novel step is that the high value of deposited energy in single shot allows 

the generation of material waves.  Figure 6(e) shows schematically the propagation 

directions of inward and outward propagating cylindrical material waves generated 

from the tubular plasma. These waves are shockwaves, pressure waves and heat 

waves. The exact thermodynamical pathway yielding mechanical compression and 

material modification highly varies with radial energy distribution and material 

constants for heating, diffusion, thermal expansion and cooling after the plasma 
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excitation. We found a variety of different damages depending on material and 

illumination parameters.  

The tubular, propagation-invariant regime effectively de-couples light propagation 

from energy deposition within dielectric media. Our results are of primary importance 

because they open the way to control thermodynamics of materials under extreme 

conditions. Specifically, materials can be compressed and/or heated inside the hollow 

part of the beam, over arbitrary long distances, even if the material in the central 

core is of different composition as the dielectric where light propagates. In addition to 

very novel perspectives for laser material stress modification, high speed laser drilling 

and cutting of transparent materials, the multimegabar pressures generated by the 

explosion of dense plasmas from femtosecond pulses30 can be applied to the synthesis 

of novel material phases in non-negligible amounts.  

In conclusion, we have shown numerically and experimentally the existence of tubular 

propagation-invariant waves at high power in dielectric solids based on femtosecond 

Bessel beams with topological vortex singularity. Accurate numerical simulations and 

novel experimental approach of beam imaging allowed us to exhibit the transition 

from propagation-invariant to rotating and "speckle-like" regimes by a combination of 

four wave mixing and modulation instability. We anticipate that the impact of our 

results will also be important for filamentation in gases and specifically for long-range 

filamentation and microwave guiding by filaments in atmosphere31. We expect that 

propagation-invariant conical vortex waves and the subsequent novel degree of 

control on plasma geometry will have a dramatic impact in several new fields in 

physics such as plasma guiding with plasma tubes, high-aspect ratio laser material 

processing, femtosecond laser waveguide writing and material compression. 
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Methods 

Experimental setup 

Bessel vortex beam. The experimental setup is based on shaping the beam of a 130 

fs Ti:Sa laser with a spatial light modulator (SLM). The SLM plane is imaged through a 

telescope with a first lens L1 of focal length f1=1m and a microscope objective (MO1, 

x20) placed in a 4f configuration. In the image of the SLM, light amplitude distribution 

is demagnified by a factor 110. As described in reference 32, the SLM phase mask 

applies a combination of the target phase and a reference phase so that the 

diffraction orders are spatially separated in the focal plane of lens L1. Spatial filtering 

allows us to filter out all undesired diffraction orders. The Bessel vortex beam onsets 

from the focal plane of the microscope objective. 

Sample imaging and positioning. The samples (1 mm thick) were mounted on a 3 

axis motorized XYZ stage (bidirectional repeatability 0.14 µm) and a two axis tilt 

clear-aperture piezo-mount. To image both the sample and the femtosecond beam, 

we placed a x50, NA 0.8 microscope objective (MO2) after the sample, on a separate 

translation stage (bidirectional repeatability 0.14 µm) to follow the sample z position 

along the optical axis. A CCD camera is placed in the focal plane of a f3=200 mm lens 

to image the sample with a magnification factor 55. Under white light illumination, the 

depth of field of sample imaging is less than 0.5 µm. The sample tilt compensation 

was then adjusted over the whole sample area (20x10 mm2) yielding a planarity 

better than 1 µm over 20 mm (50 µrad).  

Fluence distribution imaging. For beam imaging, we use the same imaging system 

as for sample imaging. A high dynamical range (16 bits) CCD camera was 

electronically synchronized with the laser and imaged a single laser shot. Light 

intensity was attenuated by neutral densities placed before the camera and the 

camera gain was maintained to zero. Careful calibration of neutral densities, imaging 

setup transmission and camera response provides camera signal conversion in 

physical fluence (J/cm2). 
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Imaging a plane inside the sample would be an indirect measurement of the fluence 

distribution in this plane since amplitude and phase can be affected by nonlinear 

propagation after this plane. Our imaging procedure makes use of the fact that the 

nonlinear propagation regime in fused silica has a finite extent, smaller than the 

sample thickness. In addition, we limit ourselves to pulse energies where we 

measured the propagation in air was linear. We image the fluence distribution only at 

the sample exit side: we reconstruct the 3D fluence distribution by translating the 

beam within the sample and always image the fluence at the sample exit side. 

The image of the SLM is first placed at the exit side of the sample, by translating the 

sample toward the laser source. The sample is illuminated by a single pulse and an 

image is recorded by our imaging system. Then, the sample is transversally shifted in 

plane by x =50 µm in order to illuminate a fresh part of the sample and moved along 

the optical axis by a distance z =2 µm for the high cone angle case and 5 µm for the 

low angle one. The imaging microscope objective MO2 is translated axially by the 

same amount to image the sample exit side. The fluence distribution measured at the 

exit side then corresponds to the one at a propagation distance n z  within the 

sample, where n is the sample index of refraction. 

The spatial integration of fluence provides the pulse energy at each propagation 

distance, after correction of Fresnel losses. The ratio between the pulse energy before 

and after the high-intensity region provides the energy loss.  

Far field imaging. Far field images were obtained by inserting a supplementary lens 

(f2=125 mm) between MO2 and L3 to perform an optical Fourier-transform. 

Samples. We used high purity grade synthetic fused silica Lithosil® Q1 from Schott. 

The samples were 1 mm thick with a total thickness variation (TTV) less than 10 µm. 

For laser processing and results shown on figure 6, we used Corning 0211 glass, with 

thickness 150 µm. 
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Modelling 

Direct numerical simulations for beam propagation. The propagation model 

takes the canonical form of a unidirectional envelope propagation equation written in 

the spectral domain for the electric field envelope ˆ( , , )x yE k k z :22 
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63.54 10n    cm2/W the nonlinear coefficient 

for the optical Kerr effect, and 546.8 10K
   cm7/W4 the cross section for 

multiphoton absorption of order 5K  . 

In addition, the effects of high intensity are of interest for potential applications of 

conical vortex waves to laser energy deposition over a tubular structure. We therefore 

considered the generation of an electron-hole plasma, with density  described by the 

rate equation: 
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where   denotes the cross section for inverse Bremsstrahlung from Drude model 

(electron effective mass coefficient is 0.64), 1.3c   fs represents a phenomenological 

collision time, 7.1gU   eV denotes the material bandgap, 222.1 10nt    cm-3 is the 

initial neutral density of molecules and 150r   fs the recombination time. 

The last term in Eq. (2) represent plasma absorption and defocusing. Propagation 

distances are too short for dispersive effects to be relevant. Our beam propagation 

model therefore considers the electric field ( , , )E x y z  as time-independent and the 

electron density ( , , )x y z  is determined as a function of intensity by solving Eq. (3) 
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for a pulse with maximum intensity 2| ( , , ) |E x y z  and fixed Gaussian pulse shape 

2 2exp( 2 / )pt t  with 110pt   fs. The input beam is a Gaussian beam ( 0 35r  µm) 

carrying a vortex charge m  and a linear spatial phase equivalent to that induced by 

an axicon: 

 2 2
0 0 0( , , 0) exp / ( sin )E r z E r r i k r m          (4) 

Eigenvalue problem for propagation-invariant conical vortex waves. From 

previous works on nonlinear Bessel beams13,14, we know that the key ingredients in 

the propagation equation for finding propagation-invariant states in the form of 

nonlinear Bessel beams are the nonlinear losses and the focusing/defocusing 

nonlinearity. We note that, for the present study, UPPE-based model provides the 

same results as Nonlinear Schrödinger equation (NLS) -based numerical model, which 

justifies the use of the NLS equation here. We rewrite our model in the form of a NLS 

equation suitable for the analysis of stationary solutions, i.e., with a diffraction 

operator expanded in cylindrical coordinates. 

 
2 2

2 2
2 2 2

0

1 1
[ (| | ) (| | )]

2

E i
E if E g E E

z k r r r r 
    

         
 (5) 

where 2 2
0 2 0 0(| | ) ( / ) | | / 2 cf E k n n E       and 2 2 2(| | ) | | /2 / 2K

Kg E E   . 

Without loss of generality, we looked for propagation-invariant solutions in the case 

0  , i.e., we considered only one physical effect of each type, namely, the optical 

Kerr effect and multiphoton absorption losses. We seek propagation-invariant beams 

carrying angular momentum, in the form  ( , , ) ( )exp ( ( ) )E r z a r i r m z      , with 0   

resulting in the set of ordinary differential equations for ( )a r  and ( ) /q r d dr  
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where dots means differentiation with respect to r. Equations (5) and (6), together 

with boundary conditions: ( ) 0a r   as 0r  ;  ( ) 0a r   as r  ;  ( ) 0q r   as 0r  , 

represent an eigenvalue problem for the eigenvector ( )a r  and eigenvalue  . In 

practice, a continuous spectrum of solutions exists for 0  , allowing us to 

equivalently fix the axial phase shift   from the cone angle  , through 

2
0( / 2) sink  . We then solve numerically equations (5) and (6) with boundary 

conditions compatible with the behavior of a Bessel beam: 

 1

2 2 2 ( 1) 1
0

( 0) ,

( 0) ,

( 0) ( / 2( 1))

m
m

m
m

K m K
K m

a r a r

a r ma r

q r k mK a r



  

 

 

   

  (7) 

and we record the maximum intensity of the conical vortex wave for all solutions that 

decay back to zero as a Bessel beam. In this way, we map the region of existence of 

stationary conical Bessel waves in the plane ( , )peakI  . 

  



19 
 

 

References  

 

1. Allen, L. et al. Orbital angular momentum of light and the transformation of 
Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185-8189 (1992). 

2. Grier, D. G. A revolution in optical manipulation. Nature 424, 810-816 (2003). 
3. Fürhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral 

interferometry. Opt. Lett. 30, 1953-1955 (2005). 
4. Firth, W. J. & Skryabin, D. V. Optical solitons carrying orbital angular 

momentum. Phys. Rev. Lett. 79, 2450-2453 (1997). 
5. Courtial, J., Dholakia, K., Allen, L. & Padgett, M. J. Second harmonic 

generation and the conservation of orbital angular momentum with high-order 
Laguerre-Gaussian modes. Phys. Rev. A 56, 4193-4196 (1997). 

6. Soljačić,M. & Segev, M. Integer and fractional angular momentum borne on 
self-trapped necklace-ring beams. Phys. Rev. Lett. 86, 420-423 (2001). 

7. Mair, A., Vaziri, A. Weihs, G. & Zeilinger, A. Entanglement of the orbital 
angular momentum states of photons. Nature 412, 313-316 (2001). 

8. Allen, L. Barnett S. M. & Padgett, M. J. Optical Angular Momentum (Institute 
Of Physics Publishing, 2003). 

9. Desyatnikov, A. S., Torner, L. & Kivshar, Y. S. Optical Vortices and Vortex 
Solitons. Prog. Optics, 47, 291-391 (2005). 

10. Vuong, L. T. et al. Collapse of optical vortices. Phys. Rev. Lett. 96, 133901 
(2006). 

11. Maleshkov, G., Neshev, D. N., Petrova, E. & Dreischuh, A. Filamentation and 
supercontinuum generation by singular beams in self-focusing nonlinear 
media. J. Opt. 13, 064015 (2011). 

12. Polynkin, P., Ament, C. & Moloney, J. V. Self-Focusing of Ultraintense 
Femtosecond Optical Vortices in Air. Phys. Rev. Lett. 111, 023901 (2013). 

13. Porras, M. A., Parola, A., Faccio, D., Dubietis, A. & Di Trapani, P. Nonlinear 
unbalanced Bessel beams: stationary conical waves supported by nonlinear 
losses. Phys. Rev. Lett. 93, 153902 (2004). 

14. Polesana, P., Franco, M., Couairon, A., Faccio, D. & Di Trapani, P. 
Filamentation in Kerr media from pulsed Bessel beams. Phys. Rev. A 77, 
043814 (2008). 

15. Bhuyan, M. K. et al. High aspect ratio nanochannel machining using single 
shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 081102 (2010). 

16. Bhuyan, M. K. et al. Single shot high aspect ratio bulk nanostructuring of 
fused silica using chirped controlled ultrafast laser Bessel beams. Appl. Phys. 
Lett. 104, 021107 (2014). 

17. Paterson, C. & Smith, R. Higher-order Bessel waves produced by axicon-type 
computer-generated holograms. Opt. Commun. 124, 121-130 (1996). 

18. Berry, M. V. & McDonald, K. T. Exact and geometrical optics energy 
trajectories in twisted beams, Journal of Optics A: Pure and Applied Optics 
10, 035005 (2008). 

19. Jarnac, A. et al. Whole life cycle of femtosecond ultraviolet filaments in water, 
Phys. Rev. A 89, 033809 (2014). 

20. Jukna, V. et al. Filamentation with nonlinear Bessel vortices, Opt. Express, in 
print (sept 2014). 

21. Porras, M. A. and Ruiz-Jiménez, C. Non-diffracting and non-attenuating 
vortex light beams in media with nonlinear absorption of orbital angular 
momentum, J. Opt. Soc. Am. B in print (sept. 2014)  

22. Couairon, A. et al. Practitioner's guide to laser pulse propagation models and 
simulation. Eur. Phys. J. Spec. Top. 199, 5-76 (2011). 

23. Gamaly, E. G. The physics of ultra-short laser interaction with solids at non-
relativistic intensities. Phys. Rep. 508, 91-243 (2011). 



20 
 

24. Polesana, P. et al. Observation of conical waves in focusing, dispersive, and 
dissipative Kerr Media. Phys. Rev. Lett. 99, 223902 (2007). 

25. Faccio, D. et al. Nonlinear light-matter interaction with femtosecond high-
angle Bessel beams. Phys. Rev. A 85, 033829 (2012). 

26. Shiffler, S., Polynkin, P. & Moloney, J. Self-focusing of femtosecond 
diffraction-resistant vortex beams in water. Opt. Lett. 36, 3834-3836 (2011). 

27. Gadonas, R. et al. Self-action of Bessel beam in nonlinear medium. Opt. 
Commun. 196, 309-316 (2001). 

28. Majus, D., Jukna, V., Valiulis, G. & Dubietis, A. Generation of periodic 
filament arrays by self-focusing of highly elliptical ultrashort pulsed laser 
beams. Phys. Rev. A 79, 033843 (2009). 

29. Long, X., Zhao, W., Stoian, R.  Hui, R.  & Cheng, G.  Writing of stressed 
waveguides with tubular depressed cladding using femtosecond hollow 
beams. Opt. Lett. 37, 3138 (2012). 

30. Juodkazis, S. et al. Laser-induced microexplosion confined in the bulk of a 
sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 
166101 (2006). 

31. Châteauneuf, M., Payeur, S., Dubois, J. & Kieffer, J.-C. Microwave guiding in 
air by a cylindrical filament array waveguide. Appl. Phys. Lett. 92, 091104 
(2008). 

32. Froehly, L., Jacquot, M., Lacourt, P.-A., Dudley, J. M. & Courvoisier, F. 
Spatiotemporal structure of femtosecond Bessel beams from spatial light 
modulators. J. Opt. Soc. Am. A 31, 790-793 (2014). 

 

Acknowledgments  

We acknowledge Luca Furfaro, Roland Salut, Amaury Mathis and Pierre-Ambroise 
Lacourt for their very valuable support. We acknowledge funding from Region 
Franche-Comte, French ANR, contract 2011-BS04-010-01 NANOFLAM. This work has 
been performed in cooperation with the Labex ACTION program (contract ANR-11-
LABX-01-01). 

Author contribution statement  

CX and VJ equally contributed to this work. VJ, CM and AC developed the semi-
analytical approach. VJ, CM, AC and TI developed numerical codes and performed the 
numerical simulations. AC and FC developed the original idea and conducted the 
research along with TI and JD. CX, RG, JD, FC developed the experimental setup. CX 
and IO acquired the experimental data that were processed by CX. The manuscript 
was jointly written by all co-authors. 

 

Supplementary Information: Movie 1: Experimental propagation in linear, propagation 
invariant, rotating and "speckle-like" regimes. This data is the same as the one shown 
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Figure 1 

 
 
 
Figure 1. Experimental concept. (a) Conical structure of Bessel vortex beams (b) 
Experimental setup. (SLM) Spatial Light Modulator. (L1, L2, L3) are convex lenses. MO: 
Microscope objective. The dashed vertical line in the sample shows the position of the 
image of the SLM within the sample. Its relative position in the sample can be varied 
by translating the sample. MO2 is translated in equal amount to image the sample exit 
side. Lens L2 is inserted to record the far field. 
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Figure 2 

 

Figure 2. Monochromatic propagation-invariant solutions. (a) Transverse 

intensity profile of 4 stationary solutions corresponding to the same conical angle 

6.8°, with peak intensities of 10 (dashed red), 50 (dotted red), 100 TW.cm-2 (solid 

red) and linear regime (solid black line). (b) Domains of existence and absence of 

stationary solutions to equation (1), in the parameter space cone angle versus peak 

intensity. The frontiers between the two domains for vortex charge m=3 and m=1 are 

respectively shown in red and blue. Stationary Bessel vortices exist for m=3 (resp. 

m=1) in the region shown in white (resp. white and light grey regions). 
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Figure 3 

 

Figure 3. Stationary regime of Nonlinear Bessel Vortices. The fluence 

distribution, in J.cm-2, is recorded for different input pulse energies. The cone angle is 

6.8°, vortex charge m=3, and pulse duration is 120 fs. First two rows show the 

longitudinal fluence distribution. (top row) Numerical simulations (central row) 

Experimental results. (Bottom row) Comparisons of simulations and experiments for 

the transverse cross sections at z=0.3 mm where the highest intensity is reached in 

the linear regime. 
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Figure 4. 

 

Figure 4. Linear, stationary, rotating and "speckle-like" regimes. They are 

reached during the propagation for low conical angle (2.8°) and vortex charge m=3, 

when energy is progressively increased. (Top row) Numerical simulations starting 

from slightly distorted beam transverse profile. (Central row) Experimental results. 

(Bottom row) Comparison of the transverse numerical and experimental fluence 

profiles at a propagation distance z=0.82 mm, where each regime is fully developed.  
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Figure 5 

 

Figure 5. Spatial spectra of linear, stationary (1 µJ), rotating (5 µJ & 10 µJ), 

and speckle-like (20 µJ) regimes. We compare the far-field fluence distribution for 

numerical (top) and experimental (bottom row) results at propagation distance 

z=1 mm. All parameters are identical to those used for figure 4. 
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Figure 6 

 

Figure 6. Applications to laser material processing. (a) Tubular plasma 

generated in the stationary regime. We show the longitudinal free-electron plasma 

density distribution, corresponding to the case of figure 3, at a pulse energy of 5 µJ. 

The inset shows the cross section of the plasma distribution at a distance of 300 µm 

(b) longitudinal view under transmission optical microscopy of a tubular damage 

produced in glass by single shot, high energy, stationary Bessel vortex, with m=3, 

pulse energy 35 µJ and pulse duration 1 ps. The damage extends from one sample 

side to the other. (c) Transverse section of the damage observed in identical 

conditions the same beam at pulse energy of 20 µJ. The bright central region shows 

high index modification of the core of the tubular region. Remarkably, no light from 

the laser pulse has crossed this volume. (d) Image of near-field output guided light in 

the structure shown in (c), at an input wavelength of 632 nm. A ratio exceeding 20 dB 

is observed between the bright peak and the peripheral dark field outside.  

(e) Schematic view of the propagation direction of mechanical and thermal waves 

expanding outward and inward (arrows) from the excited tubular sheet volume 

(circle).  

 


