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ABSTRACT

We demonstrate that the acoustic phonons involved in stimulated Brillouin scattering (both forward and back-
ward) in phoxonic waveguide can be completely described by using electrostrictive forces. Numerical calculation
for bridge waveguide in silicon and silica illustrate the model.
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1. INTRODUCTION

Nanostructured phoxonics (x=t,n) crystal waveguides have been investigated recently numerically and exper-
imentally in view of obtaining simultaneous confinement of elastic and optical waves.1,2 Their interaction
can be controlled by optical forces such as radiation pressure,3 which is predicted to scale to large values in
nanoscale waveguides.4 Furthermore, Brillouin scattering is a nonlinear process where two photons generate a
co-propagating acoustic phonon through electrostriction.5 This phenomenon is broadly documented for silica
optical fibers, in both theory and experiment.6 Nevertheless, a general model including electrostriction forces
is still needed to understand the optoacoustic interaction and to design ultra efficient optoacoustic devices. In
this paper, we perform numerical calculations of electrostriction forces for the Brillouin scattering phenomenon
in different phoxonic submicron waveguides. After calculation of the optical guided modes of the waveguide
by using the finite element method, the electrostriction-driven acoustic equation is solved for the displacement
of the elastic wave by setting the acoustic wave vector and scanning the detuning frequency between the two
optical waves. With this model, and according to the phase matching condition, we fully characterize Brillouin
properties of phoxonic waveguides, including backward and forward Brillouin spectra, without the need to resort
to a full band structure computation.7

2. ELECTROSTRICTION FORCE

Brillouin scattering process is a third-order parametric process where a pump photon (k1, ω1) produces a down-
shifted Stokes photon (k2, ω2) and an acoustic phonon (K,Ω). The electrostriction of acoustic wave is obtained
from the interaction of two incident photons with frequency detuning Ω. The incident optical field is

Ek(r, z) = E1
k(r, z)e

i(ω1t−k1z) + E2
k(r, z)e

i(ω2t−k2z), (1)

with k1 = k(ω1) and k2 = k(ω2) satisfying a dispersion relation for guided waves, and Ω = ω1−ω2. It is assumed
that the acoustic frequency is small as compared to optical frequencies. The only source term at frequency Ω is
proportional to exp(i(Ωt−Kz)) with K = k1 − k2. If the two optical waves are co-propagating, this is a Guided
Acoustic Wave Brillouin Scattering8 GAWBS) case with K ≈ 0 and if they are contra-propagative, this is the
Stimulated Brillouin backscattering 9 (SBS) with K = K1.

From band structure computation, conventional SBS treatments in optical fiber determine the Brillouin
gain spectrum from the elasto-optic overlap integral10,11 but the generation of elastic waves by optical waves
is neglected. In our model, the acoustic waves generated by Brillouin scattering are obtained by solving the
acoustic wave equation subject to the optical forces that arise from the distribution of light within the waveguide
cross-section as a result of electrostriction at the detuning frequency.12
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Table 1. Silica and silicon parameter using for electrostriction calculation.
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Figure 1. (a,b) Cross section and finite-element mesh of a bridge waveguide with lateral dimensions equal to 1.5µm x
1µm. (c) Normalized total electric field, (d) Dx, (e)Dy and (f)iDz components of the fundamental TE-like mode for λ
= 1550nm.

The variational problem is solved for the displacements ui, (i = x, y, z) by setting K to a given value and
scanning the detuning frequency Ω. We further calculate the kinetic energy of the elastic resonance (i.e. Brillouin
gain spectrum) as defined by :

EC(Ω) =
1

2
ρΩ2(u2

x + u2
y + u2

z), (2)

with ρ the material density. We consider a bridge waveguide with lateral dimensions equal to 1 µm by 1.5 µm,
as depicted in Fig. 1(a). The solid core, made of silicon (Si) or silica (SiO2), is surrounded by air (n=1). With
these dimensions, the effects of radiation pressure are in principle negligible.13 The different material constants
used in the calculations are presented in Tab. 1. Here, pij and cij are the photoelastic-tensor component and
elastic constant represented in contracted notation, respectively.14

3. NUMERICAL MODELLING

We first compute the optical guided waves using a 2D FEM model. Fig. 1(c-f) display different components
of the fundamental guided optical mode in the silica bridge for λ = 1550 nm. To simulate the real Brillouin
interaction, elastic losses are incorporated in the electrostriction model by considering a complex elastic tensor
cijkl+iΩηijkl where ηijkl is a viscosity tensor.15 This loss model is compatible with the usual assumption that the
Qf product is constant for a given material. The symmetry of the viscosity tensor is the same as that of the elastic
tensor. The viscosity constants are hardly available in the literature for silicon and silica. For silicon wafers, we
estimated Qf = 5.1013Hz from independent experiments performed with bulk acoustic wave resonators. From
measurements of the SBS linewidth in standard optical silica fiber, we estimated Qf = 5.1012Hz. So far, we
have assumed that the loss factor for shear and longitudinal elastic waves is identical, but the model can consider
a fully anositropic viscosity tensor. The outer boundaries of the analysis region are treated as free boundaries.
The analysis region is taken to be sufficiency large so that the effect of these virtual boundaries can be neglected
in practice. The kinetic energy of resonant elastic waves (i.e., the Brillouin gain spectrum) for the GAWBS and
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Figure 2. Computed elastic energy as a function of frequency detuning Ω for the silica bridge waveguide in (a) the GAWBS
and (b) the SBS configurations. The red vertical lines mark the eigenfrequencies of the purely-acoustic problem.
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Figure 3. Computed elastic energy as a function of frequency detuning Ω for the silicon bridge waveguide in (a) the
GAWBS and (b) the SBS configurations. The red vertical lines mark the eigenfrequencies of the acoustic problem.

the SBS processes in silica and silicon bridge are presented in Fig. 2 and Fig. 3, respectively. We superimpose
on the Brillouin gain spectrum the eigenfrequencies solution obtain without the optical force term, i.e., from
the homogeneous problem. The frequencies of elastic resonances calculated by our electrostriction model clearly
correspond to eigenfrequency solutions, but with added information on the detailed spectral distribution of the
Brillouin gain. It should be noted that our model is valid for all types of phoxonic waveguides, optical fibers,
and can be useful to explain the broadening of Brillouin spectrum that is experimentally observed.16,17

It comes as a very good surprise that the case of silicon seems to be favourable over the case of silica (Fig. 3).
Indeed, Brillouin scattering in silica optical fibers is broadly documented and not too difficult to observe. The
literature generally attributes this fact to the good p12 = 0.27 value that is highly favorable for longitudinal
acoustic waves. In the case of silicon, p12 = - 0.01 is very small. However, p11 = - 0.1 favors shear acoustic waves
in silicon. Combined with the much higher relative permittivity and the lower loss of silicon, this fact explains
the computation results. We can further obtain the modal distribution of acosutic phonons at any frequency
the for silica bridge waveguide. The strongest scattering peak in Fig. 2a appears at 2.99 GHz. This frequency is
directly related to the dimensions of the waveguide. This elastic resonance contains only the contribution of the
transverse deformation uT = (u2

x + u2
y)

0.5 represented in Fig. 4.

The calculated backscattering Brillouin gain spectrum in the silica bridge waveguide shows two important
elastic resonances at 9.81 GHz and 5.71 GHz. The real part of displacement distribution and the corresponding
kinetic energy are presented in Fig. 5(a,b). As can be seen, the kinetic energy of the elastic mode at 9.81 GHz
is stronger over the core region where the optical mode distribution is at a maximum. This configuration is
radically different from the GAWBS case, where the deformation is stronger in the bridge cladding than in the
core (Fig. 4).

The frequency of the elastic resonance at 9.81 GHz is directly related to the phase matching condition
(K = 2K1). In this case, the longitudinal displacement uL dominates the total deformation, as seen in Fig. 5(a).
As a comparison, the total displacement of the elastic resonance at the frequency of 5.71 GHz is dominated by
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Figure 4. Spatial distribution of the transverse deformation (uT ) and the kinetic energy (EC) of the elastic mode at 2.99
GHz in the silica bridge waveguide for the GAWBS configuration.

the transverse components as can be seen in Fig. 5(d-f). The transverse component was verified to be 0.76 of
the longitudinal component. This elastic resonance originates from Rayleigh surfaces waves overlapping with the
guided optical mode.18 This wave do not exist in bulk glass and standard silica optical fiber because the photonic
waveguide defined by the germanium doped core region is surrounded by a large silica cladding.19 Fig. 6(a,b)
show the Brillouin gain spectrum for the GAWBS and SBS configurations respectively, as the waveguide scale
factor vary between 0.8 to 2. The appearance of multiple peaks in the 10 GHz region for small dimensions
is clearly apparent. For the SBS configuration, we demonstrate the optical excitation of different phonons in
the dispersion band diagram as the dimensions are varied. This result is radically different from the GAWBS
configuration where the frequency resonance decreases linearly with the core dimension. In contrast, this result
is very similar to photonic crystal fiber where the small core exibits the generation of high frequency resonances
directly related to the core dimension.20,21 For large scale factors (up to 5), the Brillouin backscattering gain
spectrum becomes a simple Lorentzian, the frequency resonance of which perfectly respects the phase matching
condition.5

4. CONCLUSION

We have presented a Brillouin scattering model where electrostriction forces are included. Whereby, we have
identified the phonons that are exited by photons in phoxonic waveguides in forward and backward Brillouin con-
figuration. Based on the finite element method, the spatial distribution of the elastic wave properties strengthens
the understanding of this type of optoacoustic interaction. We have demonstrated that silicon waveguides seem
to be favor Brillouin scattering over silica waveguides. The combination of large relative permittivity and high
simultaneous confinement of photons and phonons explains the computation result. The calculation of elec-
trostriction forces in phoxonic waveguides involves the simultaneous control of photons and acoustic phonons,
thereby potentially improving the performance and overcoming some limits of current integrated devices.
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