Square-wave oscillations with different duty cycles
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Figure 1: Square-wave oscillations. By changing the feedback phase ®, the plateau lengths can be tuned.

A fundamental property of nonlinear dynamical systems controlled by a delayed feedback is their tendency to
exhibit 27 -periodic square-wave oscillations of equal plateau lengths (7 is the delay) [1]. The question was
recently raised whether an optical system could exhibit stable square-wave oscillations with different plateau
lengths [2]. We have experimentally found these regimes using a single optoelectronic oscillator (OEO) with a
bandpass feedback [3]. See Fig. 1. The period is close to 7 (and not 27). The response of the OEO is accurately
described by the following delay differential equations (time s =t/7 ) [4]

y ==, ex’ = —x — §y + B [cos® (z(s — 1) + ) — cos?(P)] . (1)
Here e = 1072 and 6 = 8.43 x 10~2 are fixed parameters. Stable long time 1-periodic square-wave solutions have
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Figure 2: Numerical solution for ® = —x/4 + 0.1, 8 = 1.2 and analytical bifurcation diagrams.

been obtained numerically (see Fig. 2a). Taking advantage of the small values of ¢ and §, we have determined
analytically the bifurcation diagram of these square-waves. Fig. 2b and Fig. 2c show the extrema of z and the
length of the shortest plateau as a function of 5. As sy — 0, the solution disappears through a bifurcation point.
We have found numerically that this point is not connected to the Hopf bifurcation points of the zero solution
but is an isolated bifurcation point.
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