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ABSTRACT 
 

We present the boundary element numerical analysis of spherical depth sensing 
indentation. The study aims to pinpoint some aspects of the deformation process thus 
highlighting simple and sufficiently accurate relations allowing a rapid analysis of 
experimental data. Results mainly concern elastic deformation of hard thin film coatings 
on an elastic-plastic substrate. 

First a well known and useful relation between the penetration and the projected 
contact area in the case of the elastic indentation of an isotropic homogeneous half space 
is shown to remain valid in the elastic-plastic deformation regime as well as in the case of 
a thin film/substrate system. It is also shown that the radius of the pile-up forming during 
unloading on the residual imprint is (approximately three times) larger than the contact 
radius at maximum load. Finally a careful analysis of the stress field evolution during the 
deformation process is presented. 
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LIST OF NOTATIONS 
 
E:   Young’s modulus 
Ef:   film Young’s modulus 
Ei:   indenter Young’s modulus 
ES:   substrate Young’s modulus 
ν:    Poisson’s ratios  
νf:   film Poisson’s ratio 
νi:   indenter Poisson’s ratio 
νS:   substrate Poisson’s ratio 
σy:   yield stress 
σy

S:  substrate yield stress 
R:   indenter radius 
tf:   film thickness 
r:   radial coordinate 
Z:   axial coordinate  
ε p:   plastic strain tensor 
σ p   plastic stress tensor  
F:   maximal applied load 
F*:  applied load of first material yielding 
h:   indenter maximal displacement 
a:   contact radius at maximal load  
a*:   contact radius at first yielding 
δ:   relative approach 
Pm:   mean pressure 
σr

Z:  axial residual stress 
σvM:  von Mises equivalent Stress 
rp:   radius of plastic zone 
zp:   depth of plastic zone 
 
 

1. INTRODUCTION 
 
Depth sensing indentation, often called nano-indentation, is increasingly retained for the 

assessment of mechanical characteristics of various types of media, for which common 
homogeneous mechanical tests cannot be performed or are extremely difficult to perform. 
This is particularly true for coating/substrate systems engineered for contact mechanical 
applications for which the coating generally has high hardness – i.e. a high tensile yield stress. 
The use of depth sensing indentation also enables simulation of the single asperity contact 
problem which is of paramount importance for the understanding and modelling of 
tribological processes such as friction and wear (e.g. Bhushan, 1999; and references therein). 
When analysing monolithic homogeneous materials the continuously recorded load vs. 
indenter displacement plot enables an assessment of mechanical properties such as Young’s 
modulus (E), hardening exponent (n) and yield stress (σy). The contact area between the 
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punch and the specimen is of paramount importance for the analysis of the experiment. It is 
commonly determined indirectly following the methodologies proposed by Oliver and Pharr, 
1992; and, in the specific case of spherical indenter, by Field and Swain, 1993. The Oliver-
Pharr method is based on an elastic contact recovery which avoids the use of the 
experimentally assesse residual imprint geometry. The method exclusively uses the initial part 
of the unloading indentation curve where it is assumed that the onset of material recovery has 
an elastic behaviour. Even in the case of well performed experiments, the corresponding 
material parameters may deviate from those provided by other methods such as the tensile 
test.  

According to some authors piling-up and sinking-in phenomena around the residual 
imprint could be an explanation. A lot of research has been done on the influence of these 
phenomena on the indentation results (e.g. Garrido and Rodriguez, 2005; Bolshakov and 
Pharr 1998). Also suggestions to account for these phenomena have been proposed as the 
replacement of the contact area in the Oliver and Pharr method by the one obtained from post-
test SEM pictures (e.g. McElhaney et al, 1998) or from AFM topography (e.g. Saha and Nix, 
2001; 2002; Stempflé and von Stebut, 2006). By doing so, it is generally assumed that piling-
up occurs during loading and will affect the contact area at maximum load. Using finite 
element modelling, some authors have investigated the formation of piling-up and sinking-in 
with respect to the mechanical properties of the material (e.g. Taljat and Pharr, 2004; 
Mesarovic and Fleck, 1999; Mata et al, 2002).  

It appears that these phenomena are controlled by the non-dimensional parameters 

yE σ  and n where E is the Young modulus, σy the yield stress and n hardening exponent. 

To our knowledge, such studies are not concerned with the case of film-substrate systems. In 
this case, most of the work focuses on the state of stress beneath the indenter. When looking 
for material properties of such systems, the Oliver-Pharr method originally designed for 
isotropic homogeneous materials is still adopted. The composite material parameters obtained 
at different loads are modelled by an empirical law which is extrapolated to zero penetration 
in order to deduce film properties and to high penetration for substrate material parameters. 
Some usually neglected effects are the sensitivity to indentation size effect at low loads 
(Fischer-Cripps, 2002) and to the substrate effect at high loads (Saha and Nix, 2002; Kouitat 
and von Stebut, 2003). 

In the present work we check and substantiate some commonly accepted experimental 
assertions regarding depth sensing indentation of a hard coating on a softer substrate. The 
main steps of the specifically developed numerical tool based on the field boundary element 
method are briefly recalled in section 2. In section 3, for low indentation loads, the validity of 
the link between the relative approach and the projected contact area is analysed. It is shown 
that the elastic film increases the radius of the residual imprint when measured at the summit 
of the pile-up. It is also shown that unloading may be accompanied by plastic flow leading to 
high tensile stresses at the interface between the film and the substrate. 

 
 

2. METHOD OF SOLUTION 
 
Let Γ be the boundary of Ω the geometrical domain filled by the material of the solid 

(figure 1). 
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Figure 1. A sphere with radius R is indenting an elastic film with thickness tf bonded onto an elasto-
plastic substrate. 

Consider the solution of an elastic-plastic problem under the small strain assumption, 
using cylindrical coordinates, the necessary boundary integrals are: 

 
- the displacement boundary integral equation: 
 

p

j ij ij j j

p
ij j ia ,b ab

u ( y ) D ( x, y )d ( x ) T ( x, y )( u ( x ) u ( y ))r d ( x )

U ( x, y )t ( x )r d ( x ) U ( x, y ) ( x )r d ( x )

Γ Γ

Γ Ω

Γ Γ

Γ σ Ω

+ − =

+

∫ ∫

∫ ∫
  (1) 

 
where i, j = r, z; a, b = r, z, θ and differentiation represented by a comma is a cylindrical one 

(see Kuhn et al, 1998). 
p p
ij ijkl kl(x) C (x)σ = ε (i, j = r, θ, z) is the plastic stress tensor and ijklC  

the usual elasticity tensor. The singular influence functions appearing in the above integral 
can be found in the literature (e.g. Balas et al., 1989; Henry and Banerjee, 1988). 

 
- the displacement gradient boundary integral equation: 
 
Let y be a point not located on the boundary Γ. The displacement gradient at y is obtained 

by differentiation of (1): 
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Because of the domain integrals in relations (1) and (2), volume cells are required when 

implementing the method. Since they are limited to that part of the body where plastic flow is 
expected, the method is particularly attractive for the simulation of indentation problems 
(limited plastic volume compared to specimen size). 

As usual, equations (1) and (2) are discretized and systems of equations are obtained with 
unknowns as boundary displacement and traction and plastic stress. Though the solution can 
be obtained by the variable stiffness approach (Henry and Banerjee, 1988), we have adopted 
the radial return algorithm (Bonnet and Mukherjee, 1996) which is an implicit strategy based 
on the concept of consistent tangent operator. As for the unilateral contact boundary condition 
the min function reformulation is adopted and the resulting non-differentiable system of 
equations is solved following the strategy proposed in the context of the finite element 
method by Christensen et al, 1998. 

 
 

3. RESULTS AND DISCUSSION 
 

3.1. Indentation of a Homogeneous Elastic-Plastic Specimen 
 
Let us first, consider a homogeneous flat with known mechanical parameters (Young’s 

modulus, Poisson ratio and yield stress). Spherical indentation of elastic-plastic materials has 
been extensively studied by a number of workers, and is considered herein mainly to validate 
the specifically built numerical tool and emphasize some basic results of ball on flat depth 
sensing indentation. 

Given an elastically deformable punch with radius R (Young’s modulus iE and Poisson 

ratio iν ), the load for the onset of plastic flow as well as the location of the first yield point 
within the sample are known from Hertzian theory of contact. These values resulting from our 
numerical tool are in excellent agreement with theoretical prediction. 

In the plastic regime, agreement is observed with results reported by Edlinger et al., 
1993; in the case of the large indenter radius (500mm) and by Hardy et al., 1971; also 
presented in the book by K.L. Johnson, 1985. In particular, let us point out the presence of an 
elastically strained zone just below the contact area (cf. Figure 2). 

This region, situated just above the first yielding point within the specimen remains 
unchanged during the entire deformation process. This means that the yield zone first expands 
laterally and downwards. Then there is an upwards expansion through the free surface which 
is followed by the fully plastic regime. Compared to other commonly adopted indenter 
geometries, this is another distinctive feature of spherical indentation. 

Regarding the loading/unloading curve, numerical experiments on specimens with 
various mechanical properties have been carried out. In the considered range of deformation, 
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it is observed that even within plastic regime, the product of the relative approach of the two 
bodies in contact, δ, and the radius of curvature of the punch, R, equals the square of the 

projected contact area as given by Hertzian theory of elastic contact, i.e., 
2a

R
δ = . 
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Figure 2. Evolution of the plastic contour in the homogenous medium with the load level applied; a* is 
the radius contact corresponding of the load F* of initiation of plasticity in the homogeneous medium. 

Let us recall that in the limiting case of a rigid punch the relative approach equals the 
punch displacement. According to this result, depth-sensing indentation data can be 
represented in terms of the mean pressure vs. indentation strain (a/R) as shown in Figure 3. 
When free from experimental artefacts related to “contact establishment” the initial part of 
the loading curve is linear and the slope of the approximating line can be used to assess the 
indentation elastic modulus of the material. Indeed, it follows the Hertzian straight line of the 
problem. This is an alternative to the popular Oliver - Pharr methodology for the 
determination of the Young’s modulus and the hardness (mean pressure). It should be 
mentioned that the use of the indentation loading curve for such a purpose has already been 
proposed by Loubet et al., 1986 for the Vickers geometry. 

Let us now investigate how these simple results are modified when a thin hard film is 
present at the specimen surface. 
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Figure 3. Homogenous medium (E = 210 GPa, σy = 0.8 GPa, R = 50 µm). Load/unload plots of the 
mean pressure vs. indentation strain. Solid line: elastic mean pressure. Dashed line: parallel of the mean 
pressure line passing through the first unloading point. (Load of initiation of plasticity in the 
homogeneous medium:  F* = 0.8 mN). 

 
 

3.2. Indentation of a Hard Coating/Softer Substrate System 
 
For the remainder of the analysis, we adopt the following conditions. Young’s modulus 

and the Poisson ratio of the 50 µm radius spherically tipped diamond indenter are 1140 GPa 
and 0.07 respectively. The substrate is considered as an elastic perfectly plastic stainless steel 

with Young’s modulus sE = 210 GPa, Poisson ratio sν = 0.3 and yield stress s
Yσ = 0.8 GPa. 

Its dimensions are chosen such that it can be considered as a half space. The hard film with 

thickness 3 µm, Young’s modulus fE = 2 sE = 420 GPa, and a Poisson ratio fν = 0.3, is 
assumed to deform only elastically within the loading range. The indentation depth remains 
less than 10% of the film thickness for all the maximum, loads applied. 

 
 3.2.1. Load / Unload Resulting Surface Characteristics and Topography 

The useful relation 
2a

R
δ =  has already been demonstrated to remain valid in the case of 

elastic spherical indentation of a film/substrate specimen by Kouitat and von Stebut, 2003. 
Surprisingly, despite the plastic deformation of the substrate, numerical results show that this 
relation is valid upon loading as well as unloading. Therefore, in this case also, the result of 
depth sensing indentation can be represented in terms of mean pressure versus indentation 
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strain as shown in figure 4. Here again, the first part of the loading plot is linear with a slope 
related to a material parameter. Our investigations reveal that it is related to Young’s modulus 
of the film only (cf. figure 4). The initial part of the unloading curve is also linear, but now 
with a slope related to a composite Young’s modulus instead (cf. figure 4). Hence, it is 
possible to extract the film Young’s modulus from spherical depth sensing indentation 
experiment. 
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Figure 4. Film/substrate system (ES = 210 GPa, σy
S = 0.8 GPa, Ef/ES = 2, tf = 3 µm, R = 50 µm). 

Load/unload plots of the mean pressure vs. indentation strain. Solid line: elastic mean pressure with 
film material properties. Dashed line: elastic mean pressure with substrate material properties. 

Let us now consider the residual profile of the indent. Denote by F* the load at first 
yielding in the substrate as obtained from simulation. Figures 5a and 5b show the residual 
indent profile at the free surface and at the interface respectively for different values of the 
maximum load F. 

Within computational precision the lateral pile-up amplitude is identical in both cases. As 
for indentation of the homogeneous substrate alone, relative elastic recovery decreases with 
increasing load. For the coated specimen this holds both at the interface and at the free 
surface. However, the residual depth is slightly more important at the interface than at the free 
surface. As a consequence, a tensile stress along the axis normal to the specimen surface must 
be present in the surface volume below the contact area. Let us point out that in all cases 
retained in the present study, piling up that can only be observed experimentally after 
completion of a closed cycle and is shown numerically to occur essentially during unloading. 

An additional striking feature is the position of the pile-up apex, which for the coated 
specimen, is way beyond that of the contact radius a at preceding maximum load - i.e. at 
roughly 3.5a while it was 1.2a for the uncoated substrate material. 
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Figure 5. Film/substrate system (R = 50 µm, Ef/ES = 2, tf = 3 µm); Profile of the residual indent for 
different maximum load levels F < 300 m (a is the contact radius at maximum load); a) at the free 
surface and b) at the interface. 
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This result implies that for the contact geometry considered (R = 50 µm, tf = 3 µm), 
whatever the adopted approach, experimental determination of the real contact area based on 
the observable diameter of the residual plastic indent is considerably higher than that 
computed at maximum contact load. 

 
3.2.2. Stress Fields 

 
a) Stress Fields in Substrate at Maximum Load 

For convenience the stress values have been normalized with respect to the stress of first 
yielding in the substrate. Figure 6 shows the subsurface stress field in the substrate for a 
maximum contact load F = 100 mN (F/F* = 4.8). According to figure 5b, this corresponds to 
a residual indent depth less than 1/10th the coating thickness. It follows from figure 6 that a 
zone of plasticised material is situated in the substrate right below the interface. 

Some remarks are worthwhile concerning the dimension of the contact radius a at 
maximum applied load during the indentation and the maximum half width (rp) of the 
plastically deformed substrate volume. For the loading conditions considered rp is situated at 
the interface and extends to roughly 5 µm. This is twice that of a, which substantiates the 
above finding about the position of the pile-up apex. If zp is the maximum depth of the plastic 
zone below the interface we find rp > zp. 

 

InterfaceInterface

 

Figure 6. Film/substrate system (R = 50 µm, Ef/ES = 2, tf = 3 µm); F = 100 mN (F/F* = 4.8); Contour 
plot of the normalised von Mises stress σvM/σy

S; case of rp greater than zp. The contact radius at this 
load level is a = 2.4 µm (interface: Z/a = - 1.26). 
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Figure 7. Film/substrate system (R = 50 µm, Ef/ES = 2, tf = 3 µm); F = 300 mN (F/F* = 14.3); Contour 
plot of the von Mises stress; Case with rp less than zp; The contact radius at this level load is a = 3.8 
µm (interface: Z/a = - 0.79). 

Figure 7 is analogous to Figure 6 except for considerably higher contact loads leading to 
a substantially larger plastically deformed volume in the substrate. In this case, the maximum 
half width has shifted into the depth of the substrate and now rp < zp with rp/a = 2.6.  

From the rp/a ratio, it is confirmed that the above numerical results concerning the 
apparent contact radii generated with fairly blunt (50 µm radius) indenters after complete 
unloading are related to the presence of a plastic zone spreading laterally within the substrate 
well beyond the corresponding contact radii at maximum applied load.  

In conclusion, when increasing the contact load, when the Hertzian point (a/2) is located 
within the film, plastic yielding starts in the substrate just below the interface and the plastic 
volume first expands more rapidly along the interface than into depth. For contact loads well 
beyond initial yielding this situation is inverted. 

 
b) Stress Fields during Unloading 

In depth sensing indentation the first part of the unloading plot is commonly used to 
determine the contact stiffness and the resulting elastic modulus (Oliver and Pharr, 1992). 
This implies that, alike unloading in tensile testing; the deformation process is elastic. 

The validity of this assumption is checked numerically for the entire unloading phase of 
an indentation experiment. In figures 8a-f, the von Mises stress field, σvM, is shown after 10, 
20, 30, 40, 50 and 100% unloading from the situation of figure 7. 

At 10% unloading (figure 8a), the contour lines of σvM /σy
s indicate an entirely elastic 

process within the specimen. However, it should be noted that the stress decreases more 
rapidly in the formerly plasticized substrate zone. 
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This tendency prevails up to 30% unloading (figure 8c) where a point of zero stress 
appears on the axis of symmetry. At 40% unloading (figure 8d) this point has transformed 
into an elliptical contour line with one end on the axis of symmetry and the other just below 
the interface. Within this elliptical region stresses are higher than in the preceding unloading 
level. At subsequent unloading, the axis of the ellipse increases and its centre moves 
downwards. 
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(c)(c)
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The ends of the contour line are now on the axis of symmetry and at the interface. As can 
be seen in figure 8-f, the region delimited by the ellipse is the final yielded zone upon 
unloading. The correlations between this deformation process and the resulting residual 
profile are under investigation. 
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Figure 8. Film/substrate system (R = 50 µm, Ef/ES = 2, tf = 3 µm); Contour plot of the normalised von 
Mises stress  after a) 10%  unloading, b) 20%  unloading, c) 30%  unloading, d) 40%  unloading, e) 
50%  unloading and f) 100%  unloading; a is the contact radius at maximum load F/F* =14,3 (interface: 
Z/a = - 0.79). 
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c) Residual Axial Stress Perpendicular to the Loaded Surface 
Well understood, if one is to get an idea about the nature of the stress fields in this 

volume, the von Mises stress is insufficient. In figure 9 we present the axial stress component 
of the strained volume normal to the free surface. 
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Figure 9. Film/substrate system; Residual axial stress at the interface (after complete unloading) for 
different maximum levels loads applied F/F* less than 300 mN. F* is the load of first substrate 
yielding; a is the radius of contact corresponding to the level of maximum load applied and σy

s the 
substrate yield stress. a) in the axial direction (Z) and b) in the radial direction (r). 
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In figure 9a we plot in abscissa the normalised residual axial stress component σr
z/σy

s 
perpendicular to the loaded surface (as above with F/F* as parameter) along the axis of 
symmetry Z. For all cases considered, there is a tensile stress maximum in the coating slightly 
above the interface whose intensity increases with increasing level, F/F*. The variation of this 
axial stress component with the distance r/a from the axis of symmetry is shown in figure 9b. 
Clearly, the tensile stress region is situated in the entire contact zone surrounded by a 
compressive strain in the volume below the annular surface area well beyond the edge of the 
contact area. These specific results confirm the conclusion induced above from the difference 
in residual deformation between the free surface and the interface (cf. figure 5). They are in 
perfect agreement with experimental findings of brittle interfacial delamination when 
indenting ill adhered coatings. Also, from acoustic emission monitoring during depth sensing 
indentation of such coatings there is evidence of delamination triggered during the unloading 
part of the indentation plot when the tensile stress component builds up (cf. von Stebut et al, 
1999). 

 
 

CONCLUSION 
 
For loads applied via a 50µm spherically tipped indenter and the specific mechanical 

parameters considered surface profiles generated for the stress-applied as well as for the 
entirely unloaded state show that lateral pile-up will occur on unloading only. 

In the contact zone residual depth profiles at the free surface are attenuated compared to 
those at the interface, which is indicative of tensile type stresses along the normal to the 
interface. 

For the adopted configuration, the onset of plastic flow occurs in the substrate right 
below the interface. The plastic volume generated in the substrate consecutively with 
increasing load first spreads more quickly in the lateral (radial) than in the vertical (axial) 
direction. For higher loads this tendency is inverted and the maximum “width” of the plastic 
zone shifts downwards into the substrate volume. 

In the presence of plastic yielding within the substrate, the apparent contact radius as 
assessed numerically from a plot of the residual profile is considerably higher than that at 
maximum contact load. The former, when measured from the pile-up apex, can be compared 
with that based on the experimentally observable diameter of the residual plastic indent.  

On unloading, entirely elastic recovery of the indented specimen is confirmed 
numerically for at least the first 25% of the unloading plot. Increasing build-up of tensile 
components follows between 50% and 100% unloading in the volume below the contact area 
confirming qualitative indications from the comparison of the profiles at the free surface and 
the interface. 

In the present approach the indenter tip radius adopted is considered to be close to 
realistic asperity radii in contact problems. In metrology, if coating-specific mechanical 
parameters are to be assessed, the tip geometry must be downscaled in order to achieve 
critical stress conditions localised in the coating. 

 
 



On the Deformation of a Hard Coating/Soft Substrate System… 17 

REFERENCES 
 

Balas J, Sladek J, Sladek V (1989) Stress analysis by boundary element methods. Amsterdam, 
Elsevier Science Publishers. 

Bhushan B (1999) Principles and Applications of Tribology. John Wiley and Sons. 
Bolshakov A, Pharr GM (1998) Influence of pile-up on the measurement of mechanical 

properties by load and depth sensing indentation techniques, Journal of Materials 
Research, vol.13, N°4, pp.1049-1058. 

Bonnet M, Mukherjee S (1996) Implicit BEM formulations for usual and sensitivity problems 
in elasto-plasticity using consistent tangent operator concept. International Journal of 
solids and structures, vol.30, n 30, pp.4461-4480. 

Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of 
algorithms for frictional contact problems. International Journal for numerical methods 
in engineering vol.42, n°1, pp.145-173. 

Edlinger ML, Gratacos P, Montmitonnet P, Felder E (1993) Finite element analysis of 
elastoplastic indentation with a deformable indenter. European Journal of Mechanics. A. 
Solids, vol.12, n°5, pp.679-698. 

Field JS, Swain MV (1993) A simple predictive model for spherical indentation. Journal of 
Materials Research, vol.8, n°2, pp.297-306. 

Fischer-Cripps AC (2002) Nanoindentation, Mechanical Engineering Series, Springer-
Verlag, New York, pp.197. 

Garrido MA, Rodriguez J (2005) Pile-up effect on nanoindentation tests with spherical-
conical tips, Scripta Materialia, vol.52, n°7, pp.593-598. 

Hardy C, Baronet CN, Tordion GV (1971) The Elasto-plastic Indentation of half-space by a 
rigid sphere, International Journal for numerical methods in engineering, vol.3, pp.451-
462. 

Henry DP, Banerjee PK (1988) A variable stiffness type boundary element formulation for 
axisymmetric elastoplastic media. International Journal for numerical methods in 
engineering, vol.26, n°5, pp.1005-1027. 

Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge UK. 
pp.171. 

Kouitat Njiwa R, von Stebut J (2003) Boundary element numerical analysis of elastic 
indentation of a sphere into a bi-layer material. International Journal of Mechanical 
Sciences, vol.45, pp.317-324. 

Kuhn G, Partheymüller P, Köhler O (1998) Regularization and evaluation of Singular 
Domain Integrals in Boundary Element methods; Singular Integral in BEM Evalued by V 
Sladek and J Sladek. Computationnal Mechanics Publication, pp.223-261.  

Loubet JL, Georges JM, Meille G (1986) Vickers indentation curves of elastoplastic 
materials. Microindentation Techniques in Materials Science and Engineering, ASTM 
STP 889, PJ Blau and BR Lawn Eds, American Society for Testing and Materials, 
Philadelphia, pp.72-89. 

Mata M, Anglada M, Alcala J (2002) Contact deformation regimes around sharp indentations 
and the concept of the chararcteristic strain. Journal of Materials Research, vol.17, n°5, 
pp.964-976. 



N. Oumarou, R. Kouitat Njiwa, Ph. Stempflé et al. 18 

McElhaney KW, Vlassak JJ, Nix WD, (1998) Determination of indenter tip geometry and 
indentation contact area for depth sensing indentation experiments, Journal of Materials 
Research, vol.13, n°5, pp.1300-1306. 

Mesavoric SD, Fleck NA (1999) Spherical indentation of elastic-plastic solids. Proceedings 
of the Royal Society London A 445, pp.2707-2728. 

Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic 
modulus using load and displacement sensing indentation experiments. Journal of 
Materials Research, vol.7, n°6, pp.1564-1583. 

Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical 
properties by nanoindentation. Acta Materiala, vol.50, pp.23-38. 

Saha R, Nix WD (2001) Soft films on hard substrates – Nanoindentation of tungsten films on 
sapphire substrates. Materials Science and Engineering, A 319-321, pp.898-901. 

Stempflé Ph, von Stebut J (2006) Nano-mechanical behaviour of the 3rd body generated in 
dry friction–Feedback effect of the 3rd body and influence of the surrounding 
environment on tribology of graphite. Wear 260, pp.601-614. 

Taljat B, Pharr GM (2004) Development of pile-up during spherical indentation of elastic-
plastic solids. International Journal of solids and structures, vol.41, n°14, pp.3891-3904. 

von Stebut J, Lapostolle F, Bucsa M, Vallen H (1999) Acoustic emission monitoring of single 
cracking events and associated damage mechanism analysis in indentation and scratch 
testing. Surface and coatings technology vol.116-119, pp.160-171. 
 
 


