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Abstract—Proton Exchange Membrane Fuel cells (PEMFC)
are energy systems that facilitate electrochemical reactions to
create electrical energy from chemical energy of hydrogen.
PEMFC are promising source of renewable energy that can
operate on low temperature and have the advantages of high
power density and low pollutant emissions. However, PEMFC
technology is still in the developing phase, and its large-scale
industrial deployment requires increasing the life span of fuel
cells and decreasing their exploitation costs. In this context,
Prognostics and Health Management of fuel cells is an emerging
field, which aims at identifying degradation at early stages
and estimating the Remaining Useful Life (RUL) for life cycle
management. Indeed, due to prognostics capability, the accurate
estimates of RUL enables safe operation of the equipment and
timely decisions to prolong its life span. This paper contributes
data-driven prognostics of PEMFC by an ensemble of constraint
based Summation Wavelet- Extreme Learning Machine (SW-
ELM) algorithm to improve accuracy and robustness of long-
term prognostics. The SW-ELM is used for ensemble modeling
due to its enhanced applicability for real applications as compared
to conventional data-driven algorithms. The proposed prognostics
model is validated on run-to-failure data of PEMFC stack, which
had the life span of 1750 hours. The results confirm capability
of the prognostics model to achieve accurate RUL estimates.

I. INTRODUCTION

The Fuel cell (FC) technology is gaining popularity among
various renewable energy sources due to their cleanliness, high
efficiency and economical supply of power demand by the
customers [1]. A FC is an electrochemical energy conversion
system that can generate electricity as long as fuel is supplied.
Basically, it converts the chemical energy released during an
electrochemical reaction of hydrogen (fuel) and oxygen to
electrical energy. The classification of FCs depends on the fuel
and the choice of electrolyte. According to literature, among
six major types of FCs, the Proton Exchange Membrane Fuel
cell (PEMFC) are popular due to high power density, quick
start up, low operating temperature and solid non-corrosive
electrolyte [1]. Typically the PEMFC have short life duration
around 2000 hours, whereas 6000 hours are necessary for
some applications (including transportation) [2]. Therefore,
durability and high maintenance costs are among main limiting
factors for commercialization of PEMFC technology [3].
FC aging is an unavoidable process, the optimization of its
service and minimization of life cycle costs / risks require
continuous monitoring of aging process and accurate pre-
diction of life time at which it will be unable to perform
desired functionality. In this context, Prognostics and Health
Management of fuel cells is an emerging field [4], which aims
at extending their life span, while reducing exploitation and

maintenance costs. More precisely, FC prognostics becomes a
major area of focus nowadays. The core process of prognostics
is to identify degradation at cell / stack level at early stages
and to estimate its Remaining Useful Life (RUL) for life cycle
management. This enables, managing operating conditions and
performing timely maintenance or control to prolong the life
span of the fuel cell. However, FCs are highly multiphysics and
multiscale systems and it is not easy to access their internal
parameters to fully understand the aging process. Therefore,
building physics based prognostics models can be very difficult
to achieve. Alternatively, data-driven prognostics model can
learn behavior of degrading FC directly from the data, without
any physical understanding about the aging phenomena.
According to authors knowledge, only two data-driven ap-
proaches have been applied so far for prognostics of PEMFC
namely, Adaptive Neuro-Fuzzy Inference System (ANFIS) [5]
and Echo state network (ESN) [6]. Basically, [5] studied
the prediction of PEMFC stack voltage reduction caused by
degradation under normal conditions (using ANFIS). Though,
results appear to interesting, but still limited to a single
prediction (for 500 hours horizon) which is not reliable in
presence of uncertainty due to monitoring data and modeling
phase. The prediction results for ANFIS model were based
on iterative approach, which suffers from error accumulation
problem. In [6] the application of ESN for RUL estimation
was not clearly demonstrated. Because, the prediction results
of PEMFC stack voltage were based on direct and parallel
structures of ESN, that require prior knowledge of final
horizon step preset by the practitioner. Indeed, for prognostics
applications, the prediction horizon is unknown and cannot be
set a priori. Moreover, both approaches (ANFIS & ESN) were
dependent on several parameter set by the user, also they did
not present any results on sensitivity of the prognostics model
to failure thresholds (FT). Such issues limit the applicability
of a prognostics approach, as for importance of FT see [7].
According to above limitations, this paper contributes with an
ensemble of constraint based Summation Wavelet- Extreme
Learning Machine (SW-ELM) algorithm. SW-ELM is inserted
in the ensemble due to its enhanced applicability as compared
to other data-driven approaches for prognostics of PEMFC.
To account for issues of long-term prognostics, the ensemble
is achieved by selecting those SW-ELM models that satisfy
the constraints. These enable managing the uncertainty of
prognostics and improving the accuracy of RUL estimates.
The paper is organized as follows. Section II elaborates
background of PEMFC cell / stack, data-driven prognostics
and highlight issues of long-term predictions with data-driven
approach. Section III presents the proposed approach of long-



term prognostics based on SW-ELM ensemble. Section IV val-
idates our proposition on PEMFC stack data. Finally, section V
concludes this work.

II. BACKGROUNDS

A. Unit cell (PEMFC) and stack

The scheme of simplified unit cell (PEMFC) is shown in
Fig. 1a. Hydrogen is supplied at the anode side of the mem-
brane, where electrons and protons are split. The protons pass
through the membrane (barrier) and electrons flow through the
external circuit which produces electricity and combine with
oxygen at cathode side. The byproducts of this electrochemical
reaction are heat and water. Fig. 1b shows stacking of multiple
cells in series (via bipolar plates) to increase the voltage of the
stack (Utot) given in Eq. 1.

Fig. 1. a) Scheme of PEMFC & b) PEMFC stack

Utot =

c∑
k=1

Ucellc (1)

where c is the number of cells in the stack. Note with series
connection current will be the same in each cell. Indeed, the
stack is prone to degrade due to factors like material degra-
dation, design and assembly, etc., and the performance decay
induced is strongly associated to the operating conditions (e.g.
operating temperature, current load, etc.,) [5], [8]. Moreover,
the performance of the FCs stack is constrained by the worst
performing cell [9]. Whatever the cause of stack degradation,
it will result a voltage drop. Thus, stack voltage can be
considered as a useful indicator for FC health assessment and
prognostics.

B. From stack monitoring data to RUL

To transform the raw data into relevant behavior models,
the frame of data-driven prognostics is based on following
steps that are necessary to implement PHM of FCs.

• Data-acquisition: is a process of collecting and storing
useful data from the stack, to identify the changes that
can develop faults or can even lead to failures. The
measurements that are economically possible from
PEMFC stack are: current, voltage, air compressor
speed, cooling water temperature, Air / H2 temper-
atures and Electrical Impedance Spectroscopy.

• Data-processing: is a step for extracting and selecting
health indicators that are sensitive to stack condi-
tion, preferably having monotonic trends. Selection of
health indicators can be done by transforming them to
another space or based on highest information content.

• Prognostics Modeling: aims at building an effective
model that is capable of predicting the evolution
of FC stack aging process and estimating unknown
RUL. The data-driven approaches learn the degrada-
tion model from past observations and project current
condition (tcurrent) of equipment up to defined FT,
i.e., failure time (tfail), Fig. 2a, where RUL is defined
by Eq. 2. When new data arrives, prediction is updated
and this process is repeated at frequent intervals.

RUL = tfail − tcurrent (2)

C. Long-term predictions & issues

Long-term predictions (or multi-steps ahead prediction
“msp”) with data-driven (connectionist) approaches can be
achieved in different ways and by using different structure and
algorithms like ANFIS, ESN, etc. [10] studied five structures,
namely the Iterative, Direct, DirRec, Parallel, and MISMO
for performing msp. According to this study, except iterative
approach all other approaches require knowledge of prediction
horizon H . With iterative approach, the msp is performed
by a single model that is tuned to perform a one-step ahead
prediction x̂t+1. This estimated value is used as the regressors
of the model to estimate the following ones and the process is
repeated until the estimation of x̂t+H (see [10] for details).
The prediction obtained in recursive manner result error accu-
mulation with increasing H . Also, due to inherent uncertainties
of deterioration phenomena, unclear future operating condi-
tions, modeling errors, lack of data, and uncertain FTs, RUL
estimation with a single prediction is not sufficient. Therefore,
the unknown RUL (Fig. 2a) should be estimated from several
predictions. However, in the presence of above issues it is not
necessary that all predictions clearly reflect degradation and
intersect the FT as well. Thus, poor predictions will result
large uncertainty of RULs and the final value of estimated
RUL is inaccurate. Fig. 2b illustrates this behavior with a large
tail distribution, which is not useful to further plan of actions.
Thus, it is necessary to ensure good predictions to achieve
accurate RUL estimates, which is the aim of next section.H
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Fig. 2. Long-term prognostics & uncertainty of RUL estimate

III. PROPOSED APPROACH FOR PROGNOSTICS

Data-driven prognostics approaches have the advantage of
better applicability, when there is absence of prior knowledge
or human experts. They learn systems behavior directly from
data and do not require any specific knowledge about the
system. However, as mentioned in section I only two data-
driven connectionist techniques have been applied so far for
prognostics of PEMFC, i.e., ANFIS and ESN. This paper



presents data-driven prognostics PEMFC by an ensemble of
constraint based Summation Wavelet- Extreme Learning Ma-
chine (SW-ELM) algorithm. The proposed approach is based
on following hypothesis.

• Stack voltage drop is a useful prognostics indicator.

• Stack aging process is irreversible degradation.

A. SW-ELM and constraints

Basically, SW-ELM in an improved variant of Extreme
Learning Machine (ELM) algorithm to train single layer feed
forward neural network (SLFN Fig. 3) [11], that avoids slow it-
erative tuning (e.g. ANFIS) and requires one-pass for learning.
Unlike ESN and ANFIS, ELM has only two parameters to be
set by the user. However, the solution with ELM algorithm vary
for each run due to random parameters initialization of SLFN
(i.e., weights & bias). Also the complexity of hidden layer
and the choice of activation function influence performance
of ELM, which is the case of ESN as well. To address these
issues SW-ELM and constraints are given as follows.
SW-ELM is a combination of neural network and wavelet
theory, and appears to be an effective prediction approach [12].
SW-ELM is a one-pass algorithm like ELM, also it benefits
from an improved parameter initialization to minimize the
impact of random weights and bias (of input-hidden layer)
and an improved structure with dual activation functions. Also
SW-ELM works on actual scales of the data (see Fig. 3).

Output target

Om

Σ

x1
x2

bk

wk1
w

( )1 .11 1 1f w x bθ= +

Inverse hyperbolic sine

Output layer

Adjusted weights, 

bias (wk,bk)

Input data

Inv. hyperbolic sine

Morlet wavelet

�: linear method

x1 xnx2

1 Ñk

Σ fxn

x2 wk2
wkn

( )2 .11 1 1f w x bψ= +

Morlet wavelet

Hidden layer

Output layer

Input layer

Fig. 3. Machine learning view of SW-ELM

Let note n and m the numbers of inputs and outputs, N the
number of learning data samples (xi, ti), where i ∈ [1 . . . N ],
xi = [xi1, xi2, ..., xin]T ∈ <n and ti = [ti1, ti2, ..., tim]T ∈
<m, and Ñ the number of hidden nodes, each having activation
functions (f1 & f2). To minimize the difference between
output oj and target tj , there exist βk, wk and bk such that:

Ñ∑
k=1

βkf̄ [(θ, ψ) (wk.xj + bk)] = tj , j = 1, 2, ..., N (3)

where f̄ is the average output from two different activa-
tion functions θ and ψ. wk = [wk1, wk2, ..., wkn]T ∈ <n is
an input weight vector connecting the kth hidden to input
layer neurons, (wk.xj) is the inner product of weights and
inputs, and bk ∈ < is the bias of kth hidden neuron.
Also, βk = [βk1, βk2, ..., βkm]T ∈ <m is the weight vector to
connect kth hidden neuron to output neuron. In matrix form

Eq. 3 can be written as Havgβ = T , where T is target matrix
and Havg is hidden layer output matrix expressed as:

Havg (w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ ) =

f̄ (θ, ψ)

 (w1.x1 + b1) . . . (wÑ .x1 + bÑ )
... · · ·

...
(w1.xN + b1) . . . (wÑ .xN + bÑ )


N×Ñ

(4)

β =
[
βT
1 · · ·βT

Ñ

]
Ñ×m

and T =
[
tT1 · · · tTN

]
N×m

(5)

Finally, the least square solution of the linear system Havgβ =
T , with minimum norm of output weights β is:

β̂ = H†avgT =
(
HT

avgHavg

)−1

HT
avgT (6)

where H†
avg shows the Moore-Penrose generalized inverse

for the hidden layer output matrix Havg [13]. The SW-ELM
algorithm can be synthesized as follows (see details in [12]).

Algorithm 1 Brief learning scheme of SW-ELM
Require

- N learning samples (xi, ti), n inputs, Ñ hidden nodes
- Arcsinh and Morlet activation functions (θ and ψ)

1: Initialize wavelet parameters (i.e., dilatation & translation).
2: Assign parameters of hidden nodes (wk, bk) randomly & adjust.
3: Obtain hidden layer output matrix Havg using Eq. 4 .
4: Find the output weight matrix β̂ in Eq. 6.

In order to achieve RUL estimates with iterative approach
using SW-ELM and to account for issues of long-term predic-
tions (section. II-C), constraints are included in the prognostics
modeling phase to ensure that predictions decay properly
over a long-term horizon (to reflect stack aging process) and
intersect with FTs as well.

d

dt
(x̂t) 6= 0 (7)

xtcurrent > x̂t+i , i ∈ Z+ (8)

x̂t+h ≤ FT (9)

The constraints given in Eq. 7 and Eq. 8 are based on assump-
tion that stack aging process is irreversible (i.e., decreasing
trend). Thus, the slope of recursive predictions at any step
cannot be zero and predicted value (x̂t+i) at each step i should
be less than current state of stack at time tcurrent from which
prediction is initiated. The constraint given in Eq. 9 ensures
that predicted trends intersect the failure threshold (FT).

B. Ensemble modeling

Predicting behavior of aging FC is a complicated task,
since there are various sources of uncertainty that impact RUL
estimates (section II-C). Thus, its not feasible to estimate RUL
with complete accuracy on the basis of a single prediction,
which could lead to wrong decisions. Thus, prognostics with
an ensemble model would be less likely to be in error than an
individual model and appears to be meaningful. The proposed
approach aims at building an ensemble using selective SW-
ELM models that satisfy the constraints given in Eq. 7, 8 and
9. The main steps of ensemble modeling are as follows.

1) Set the required number of models for the ensemble.
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Fig. 4. Structure of SW-ELM ensemble modeling

a) b) 
0 0.5 1 1.5 2 2.5 3 3.5 4 

x 10 
6 

0.5 

0.6 

0.7 

0.8 

C
el

l 
v

o
lt

a
g

e
 

Fuel cells voltage drop curves 

  

  

FC1 

FC2 

FC3 

FC4 

FC5 

0 200 400 600 800 1000 1200 1400 1600 

3 

3.5 

4 

4.5 

5 

Time (hours) 

H
o
u

rl
y
 m

ea
n

 v
o

lt
a

g
e 

(U
to

t)
 

Fuel cells stack voltage drop 

  

  

0 0.5 1 1.5 2 2.5 3 3.5 4 

x 10 
6 

2.5 

3 

3.5 

4 

V
o

lt
a

g
e 

(U
to

t)
 

Fuel cells stack voltage drop 

0 200 400 600 800 1000 1200 1400 1600 

3 

3.5 

4 

4.5 

5 

Time (hours) 

H
o
u

rl
y
 m

ea
n

 v
o

lt
a

g
e 

(U
to

t)
 Fuel cells stack voltage drop 

  

  
Actual Utot 

Filtered (rloess) 

c) d) 

Characterization interval 

Fig. 5. Data-processing to extract voltage drop trend

2) Learn a group of SW-ELM models with same com-
plexity & data, but different parameters initialization.

3) Choose the model with minimum learning error.
However, the model may not be optimum, therefore
it must satisfy the constraints given in Eq. 7, 8 & 9
in the test phase.

4) Test the model for performing msp (to estimate RUL)
under constraints, to be selected for ensemble.

5) Repeat steps 2-4 until the given number of SW-ELM
models for an ensemble is met.

6) Compute mean / median of RULs from ensemble .

With proposed ensemble, the final RUL value is the outcome of
several predictions from selective SW-ELM models which will
improve the accuracy and robustness of long-term prognostics,
see Fig. 4.

IV. EXPERIMENT AND RESULTS DISCUSSIONS

The data of PEMFC stack used for the validation of pro-
posed approach were provided by FCLAB Research Federation
(FR CNRS 3539, France). The data were obtained from a
PEMFC test bench that enables aging of FCs stacks under
actual operating conditions. For the experiment, 5-cells stack
was assembled at FCLAB and was operated under constant

current of 60A approximately. The experiment last for the
duration of 1750 hours. The monitoring data collected from
run-to-failure experiment are composed of voltage measure-
ments, load measurements, temperatures, air stoichiometry
rates, hydrogen, etc., (see [2] for further understanding and
details from similar experiments).

A. Data-processing & simulation settings

As mentioned in section II stack voltage is an important
prognostics indicator and economically possible. During ex-
periment the stack voltage is obtained by adding cell voltages
as given in Eq. 1. Fig. 5a shows voltage curves acquired from
5-cells in the PEMFC stack, that are added to get stack voltage
(Utot) shown in Fig. 5b. One can note that voltage drops as
the time grows. The peaks in the hourly voltage curves are
mainly due to characterization phases that also facilitate to
monitor FC aging process (Fig. 5c). According to these plots,
11 characterizations were performed to observe the response of
PEMFC stack under varying loads, controlled gas and environ-
mental conditions. However, the peaks due to characterization
can impact data-driven model performances. Prior prognostics
modeling the stack voltage signal is smoothed to extract a
monotonic trend by applying rloess filter with span value 0.9
Fig. 5d. Note that, rloess is a robust local regression filter
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that allocate lower weight to outliers, see [14]. According to
procedure of ensemble modeling in section III-B, the selective
models for ensemble are set to 100 (Fig. 4). A group of
100 SW-ELM models are learned, and the best model with
minimum learning error is selected for testing. The structure
of each model is set to 4 input neurons, 15 hidden neurons
and 1 output neuron. The inputs of each SW-ELM model
are (3 regressors from) Utot and aging time. The parameter
(wk, bk) adjustment constant C=0.01 (see [12]). Prognostics
performances are assessed by: 1) Sensitivity analysis to FT
defined at 6%, 10% and 15% of hourly power drop signal (i.e.,
P=VxI) Fig. 6, and 2) RUL estimation at frequent intervals.
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B. Prognostics results

1) Sensitivity to failure thresholds: basically, thresholds
aim at defining the failure time to stop the prediction pro-
cess. Surely, the uncertainty of FTs can impact prognostics
performances. Fig. 7 show prognostics results with proposed
ensemble (of 100 models) for three different FT 6%, 10%
& 15% of power drop (for which Utot are 3.207, 3.067
& 2.888 respectively). For each FT, plots show predictions
from ensemble and their dispersion. Note that, for each case,
1000 hours data were learned and this index is considered as

tcurrent from which prognostics is initiated. Most importantly,
whatever the FT is, the constraints based strategy ensures that
predictions from ensemble decay properly and intersect the FT
as well. But, obviously not all the models in an ensemble have
the same accuracy, which can be seen by the dispersion of RUL
estimates for each FT (Fig. 7). Mainly, the uncertainty is due
to lack of data, parameter initialization (weights & bias) and
FT defined on raw power drop signal. Nevertheless, the final
RUL estimates (mean or median) from the RULs dispersion
for each case of FT enable managing the uncertainty of RULs,
which shows the significance of ensemble strategy over single
prediction that are sensitive to FT. For all cases the final RUL
value obtained by computing the mean RUL from an ensemble
are close to the actual RUL, as compared to median RUL
estimates. However, it is necessary to thoroughly investigate
SW-ELM ensemble performance over long-term horizon at
frequent intervals. This will also enable us to compare RUL
errors with mean or median RULs.

2) Rul estimation & accuracy performances: to see overall
performance of the proposed approach like a real situation,
prognostics is initiated at 850 hours that is almost the half
life of the PEMFC stack used for the testing. Therefore,
initial learning frame consists of only 850 samples from stack
voltage and corresponding aging time. During the tests, RUL
is estimated after every 50 hours interval. Fig. 8 shows this
situation, where estimated RUL value is updated when new
data arrives at given time interval. The accuracy of RUL
estimates (mean or median) increase with time, as more data
are available. In PHM context, it is generally desirable to have
early RUL estimates rather than late RULs to avoid failures.
The qualitative analysis in Fig. 8 shows that median RUL give
early estimates and have better accuracy when more data are
available. This can be seen by the closeness of median RULs
to actual RULs as compared to mean RUL estimates.
To validate the findings from the prognostics results (i.e.,
mean vs. median) Fig. 8, the RUL estimation procedure is
repeated for 10 trials and the average errors from median
RULs and mean RULs are compared. Fig. 9 shows these results
by comparing the pdfs of RUL errors. The mean RUL error
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distribution has a wide spread and shows negative RUL errors
which mean late estimates. The median RUL errors distribution
has preference for early RUL estimates and has narrowness of
error interval with large area close to 0 error, which means
more on-time RULs as depicted in Fig. 8.
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V. CONCLUSION

This paper presents prognostics of PEMFC stack that en-
able timely decisions to prolong its life span. The development
focuses on improving the accuracy of long-term prognostics
of PEMFC with relevantly a new data-driven approach. More
precisely, an ensemble of constraints based SW-ELM algo-
rithm is proposed, that benefits from ease of implementation
for prognostics of PEMFC. The proposed approach is applied
to real data of fuel cell stack with a life span of 1750 hours.
Prognostics performances are thoroughly investigated to show
improvements. From results analysis we find that SW-ELM
ensemble manages uncertainty and avoids late RUL estimates,
which is useful in terms of safety. Also it is computationally
less expensive (due to one-pass SW-ELM), which makes it
suitable for on-line decisions to reduce FC operational costs.
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