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Chapter 11
Identification of Reduced Models from Optimal
Complex Eigenvectors in Structural Dynamics
and Vibroacoustics

M. Ouisse and E. Foltête

Abstract The objective of this chapter is to present some efficient techniques for
identification of reduced models from experimental modal analysis in the fields of
structural dynamics and vibroacoustics. The main objective is to build mass, stiff-
ness and damping matrices of an equivalent system which exhibits the same be-
havior as the one which has been experimentally measured. This inverse procedure
is very sensitive to experimental noise and instead of using purely mathematical
regularization techniques, physical considerations can be used. Imposing the so-
called properness condition of complex modes on identified vectors leads to matri-
ces which have physical meanings and whose behavior is as close as possible to the
measured one. Some illustrations are presented on structural dynamics. Then the
methodology is extended to vibroacoustics and illustrated on measured data.

11.1 Introduction

Being able to identify reduced physical models can help designers to understand
the behavior of the system in a given frequency range, and orient design decisions
in order to reach a given objective. Performing model reduction is quite usual in
the field of numerical analysis [14, 29], in this case the objective is to find a model
with a reduced number of degrees of freedom, which can be deduced from a large
model, in order that the reduced model exhibits the same behavior as the full one
in a frequency band of interest. An alternative to this model-based methodology
could be based on experimental measurements. The basic idea is to identify from
measurements the matrices describing the behavior of the system in order to help
the designer to make proper decisions. The main difficulty in this kind of analysis
is related to the very bad conditioning of the inverse procedure, since experimental
conditions induce noise in the data, resulting in large changes in the final identified
system matrices, in particular for the damping terms.

M. Ouisse (�) · E. Foltête
FEMTO-ST Institute, Applied Mechanics, University of Franche-Comté, 25000 Besançon, France
e-mail: morvan.ouisse@univ-fcomte.fr
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C.M.A. Vasques, J. Dias Rodrigues (eds.), Vibration and Structural Acoustics Analysis,
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Several approaches have been proposed throughout the last decades to regularize
the inverse problem on the field of structural dynamics. A brief overview of the state
of the art is given in Sect. 11.2. Section 11.3 is dedicated to the so-called proper-
ness condition for structural dynamics and can be considered as a tutorial section.
Original illustrations are presented to help the reader to understand the importance
of the condition. An experimental test-case is given to illustrate application of the
methodology on a real structure, on which a reduced model is directly derived from
the experimental data. In Sect. 11.4, the properness condition is extended to vibroa-
coustics and new results about optimal correction of vibroacoustic complex modes
are given. Several corrections techniques are described and illustrated on experi-
mental data coming from vibroacoustic measurements on a guitar. Section 11.5 is
dedicated to prospectives: some comments are given about the structural dynamics
applications of the methodology, and some suggestions are given for improvement
of the methodology concerning vibroacoustic applications. Section 11.6 gives some
conclusions and a summary of the work presented in this chapter. The bibliography
and a selection of additional references are finally given at the end of the chapter.

11.2 Overview of the State of the Art

Identification of analytical models from measurements in structural dynamics is
still an open question, in particular concerning the damping terms. Both stiffness
and mass can be derived quite easily from models, or even from experiments with
reasonable confidence. As far as the dissipative effects are concerned, there is still
no consensus about the most reliable technique to obtain a physical description of
damping which can be efficient for simulation.

In this chapter we will mainly focus on techniques based on experimental data,
that allow identification of second-order matrices corresponding to classical stiff-
ness, mass and viscous damping terms of multi-degrees of freedom models. This
topic has shown a growing interest over the last decades. The fundamental book
from Lord Rayleigh [34] includes some considerations about sensitivity of eigen-
frequencies and eigenvectors which are of first interest for system identification.
Damping aspects have been at the center of several works, among which the fa-
mous papers from Caughey [11] including considerations about normal and com-
plex modes, which are of first importance in the context of interest.

Some review papers have been published [10, 15, 20], including many references
to important works on damping related aspects. More recently, some papers have fo-
cused on the particular case of damping identification from measurement [33, 35,
36]. In these papers, the authors exhibit a large set of available methods, starting
either from Frequency Response Functions (FRFs) or modal data to identify at least
the damping matrix. These methods are applied and compared on given test-cases.
An interesting point is that these papers do not lead to the same conclusions concern-
ing the efficiency of the techniques for practical applications, which clearly means
that there is still some work to do, even if among the available methods, some of
them can provide quite confident results.
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One of the ways to obtain the system matrices is to start from identified complex
modes. This chapter will be limited to this case, and will focus on a particular point,
called properness condition, which is not addressed in the review papers referenced
above. This condition, which has been mentioned in several publications [9, 22, 24,
41], is automatically verified by the exact complex modes of the system. When a full
basis is extracted from experimental data to reconstruct a physical model, this con-
dition should be enforced on the complex modes to obtain physical results. Balmès
[7] has proposed a methodology to find optimal complex vectors which are as close
as possible as initial identified vectors, while verifying the properness condition.
Another way to obtain optimal complex vectors from measured ones has been pro-
posed by Adhikari [1], but this method requires the knowledge of real modes, which
is not necessarily the case in practical applications.

11.3 Properness Condition in Structural Dynamics

The very classical matrix formulation used for structural dynamics is

Mq̈(t)+ Cq̇(t)+ Kq(t)= f(t), (11.1)

where q(t) is the vector of generalized displacements of the structure, M is the mass
matrix of the structure, K is the stiffness matrix of the structure, C represents viscous
losses and f(t) is the vector representing the generalized forces on the structure. One
way to solve the system in Eq. (11.1) for steady-state harmonics is to use modal
decomposition. This can be done using the space-state representation of the system,

UQ̇(t)− AQ(t)= F(t), (11.2)

where

U =
[

C M

M 0

]
, A =

[
−K 0

0 M

]
, Q(t)=

{
q(t)

q̇(t)

}
,

F(t)=
{

f(t)

0

}
. (11.3)

The eigenvalues of this problem can be stored in the spectral matrix �, so that

� = [
�

λj
�

]
. (11.4)

The j -th eigenvalue is associated to the eigenvector θ j such as (Uλj − A)θ j = 0,
where θ j = {ψT

j ψT
j λj }T, ψj being the complex eigenvector in the physical space

(i.e. its components are related to q). Storing the eigenvectors (in the same order as
the eigenvalues) in the modal matrix � = [T �T]T, the following relationship is
verified:

U�� = A�. (11.5)
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The orthogonality relationships can be written using 2n arbitrary values to build the
diagonal matrix ξ = [�ξj

�
],

�TU� = ξ or �TA� = ξ�. (11.6)

The modal decomposition of the permanent harmonic response at frequency ω is
finally

Q(t)= �
(
ξ(iωE2n − �)

)−1
�TF(ω)eiωt , (11.7)

where E2n is a 2n× 2n identity matrix and F(ω) is the complex amplitude of the
harmonic excitation. This relationship can also be written using the n degrees of
freedom notation in the frequency domain as

q(ω)= �Tf(ω), (11.8)

where

�=
[

� 1

ξj (iω− λj )
�

]
. (11.9)

In the following, without loss of generality, the eigenshapes are supposed to be
normalized such as ξj = 1.

11.3.1 Properness of Complex Modes

The properness condition is related to the inverse procedure: starting from the modal
basis, the orthogonality relationships can be inverted to obtain the system matrices.
Inverting relationships (11.6) leads to

U−1 = ��T, (11.10)

or
[

C M

M 0

]−1

=
[

0 M−1

M−1 −M−1CM−1

]

=
[

T �T

�T �2T

]
, (11.11)

and

A−1 = ���T, (11.12)

or
[

−K 0

0 M

]−1

=
[

−K−1 0

0 M−1

]

=
[

�−1T T

T �T

]
. (11.13)
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From these expressions, the mass, stiffness and damping matrices can be expressed
as

M = [
�T]−1

, (11.14)

K = −[
�−1T]−1

, (11.15)

C = −[
M�2TM

]
. (11.16)

These relationships are only valid if the complex modes verify the properness con-
dition that directly comes from the zero terms in inverse matrices:

T = 0. (11.17)

It should be emphasized that this methodology leads to identification of matrices
only if all modes of the system are identified. This is of course not realistic for
continuous structures. Nevertheless, the reconstruction equations can lead to useful
condensed model of the continuous structure if the number of identified modes is
equal to the number of measured degrees of freedom, and if the locations of the
sensors ensures physical meaning for the degrees of freedom of the reduced model.
Some techniques are available to provide estimation of matrices when only a subset
of the modes are identified, or even directly from measured FRFs. The readers are
invited to refer to corresponding papers [12, 19, 21, 26, 28] or reviews [33, 35, 36]
for more details. This chapter is limited to model reconstruction from a full set of
complex modes.

11.3.2 Illustration of Properness Impact on Inverse Procedure

When dealing with experimental data for matrices identification, it is clear that the
input data (i.e. the complex eigenshapes) are polluted with random noise. In order to
illustrate that point, a numerical example can be used: starting from exact solutions
of a 4 degrees-of-freedom system, the eigenshapes are modified using a random
noise of growing amplitude acting on amplitude and phase of vectors. This numer-
ical noise does not necessarily represent exactly experimental noise, it is used here
for a sake of simplicity, in order to illustrate impact of noise on properness condi-
tion. Experimental results will be shown later, on which the trends observed here
will be confirmed.

Figure 11.1 shows the impact of noise on the properness norm. The norm which
is used here is the norm 2, i.e. the largest singular value of the matrix.

It can clearly be observed that the properness norm grows up with the noise on
inputs, which means that the inverse relations are no longer valid as soon as the
properness condition is not verified. This is confirmed by Fig. 11.2, which shows
the error on identified matrices, this error being defined from the ratio of norm 2
of the difference between identified and exact matrices to the norm 2 of the exact
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Fig. 11.1 Impact of noise on
eigenvectors on properness
norm

Fig. 11.2 Impact of noise on
eigenvectors on error on
identified matrices

matrices. It is clear from the figure that some very large errors can be obtained on
matrices identification for small errors levels on inputs, in particular for the damping
identification, while the identification of mass and stiffness matrices is quite robust,
i.e. the level of error on outputs is of the same order as the level of error on inputs.
Proper complex modes are then of first importance for correct damping estimation.

11.3.3 Properness Enforcement

When the complex modes are available from experimental identification,
Eqs. (11.14)–(11.16) can be used in order to find the reduced model which is sup-
posed to have the same behavior as the measured system. In general, the com-
plex modes do not verify the properness condition (11.17) and Ref. [7] proposes a
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Fig. 11.3 Eigenvectors of the
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initial shapes (dashed line),
modified shapes (continuous
line) and proper shapes
(dashdot line)

methodology to enforce properness condition, in order to obtain optimal complex
modes. The objective is to find the approximate complex vectors, which are as close
as possible to the identified ones, and that verify the properness condition. It is
shown that for structural dynamics, an explicit solution can be found, requiring only
to solve a Riccati equation. This equation can be deduced from the problem

Find ̃ minimizing ‖̃ − ‖ while ̃̃
T = 0. (11.18)

Writing this problem using a constrained minimization approach leads to

̃ = [En − δδ]−1[ − δ], (11.19)

where δ is a Lagrange multiplier matrix, that can be found by solving the Riccati
equation

T − δT − 
T
δ + δ 

T
δ = 0. (11.20)

In the previous equations,  is the conjugate of  . After properness enforcement,
the eigenvectors are typically mainly changed in phase, while the amplitude of vec-
tors remains almost the same, as shown in Figs. 11.3, 11.4, 11.5 and 11.6, which
present the eigenvectors of the four modes in complex plane. The figure exhibits
three families of shapes:

– the initial shapes, corresponding to those of the initial system;
– the modified shapes, obtained after random changes of initial shapes;
– the proper shapes, deduced from the modified ones after properness enforcement.

It is quite clear from this picture that the proper modes are not those of the initial
system, but the closest ones to modified ones that verify the properness condition.
The case considered here for illustration is undoubtedly an extreme case, since it
corresponds to the highest value of random noise used in Figs. 11.1 and 11.2, i.e.
30% in amplitude and phase. For practical applications, lower level of noise is ex-
pected, and the starting vectors should be closer to the “true” shapes of the system.
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Fig. 11.5 Eigenvectors of the
third mode in complex plane:
initial shapes (dashed line),
modified shapes (continuous
line) and proper shapes
(dashdot line)

In order to obtain the characteristic matrices of formulation (11.1), one has then
to consider the following steps:

– build FRFs from time domain measurements;
– use complex curve fitting in order to find the complex modes in the frequency

range of interest [17, 38];
– use the properness enforcement technique to obtain modified complex eigenvec-

tors from identified ones;
– use inverse relationships (11.14) to (11.16) to find the matrices of formula-

tion (11.1).
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Fig. 11.7 Experimental
test-case: two bending beams
coupled by common
clamping device

11.3.4 Experimental Illustration

In this section an experimental illustration of the methodology is presented. Fig-
ure 11.7 shows the experimental set-up which has been used. It is constituted with
two bending beams which are coupled through their bases by a common “clamp-
ing” device. The frequency range of interest concerns the two firsts modes of the
coupled system, which could be represented by a 2-degrees of freedom equivalent
model, using points 1 and 2 indicated in Fig. 11.7 as reference points. These points
are equipped with accelerometers and some contactless force transducers are used
to excite the structure, with force sensors. An electrical intensity probe has also been
used to check the value of the force sensors and to verify that the moving masses do
not perturb the measured information.
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The complex eigenvectors which have been identified from the experimental
FRFs are

 =
[

0.0324 − 0.0377i 0.0283 − 0.0328i

0.0249 − 0.0303i −0.0298 + 0.0350i

]
. (11.21)

The matrices which are deduced from original vectors are

M =
[

0.5360 0.0348
0.0348 0.6320

]
, (11.22)

C =
[−17.0 −1.29
−1.29 −23.7

]
, (11.23)

K =
[

2.53 × 104 −1.00 × 103

−1.00 × 103 3.07 × 104

]
. (11.24)

It is clear that the identified damping matrix is not physical. In order to improve its
identification, the properness condition is enforced on the complex vectors

̃ =
[

0.0352 − 0.0349i 0.0304 − 0.0307i
0.0275 − 0.0277i −0.0325 + 0.0323i

]
. (11.25)
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Fig. 11.9 Comparison of measured and synthesized FRF12

The amount of change in these vectors is clearly in the same order of magnitude
as the one observed in the numerical illustration. These small changes in vectors
clearly improve the matrices identification

M̃ =
[

0.5330 0.0343
0.0343 0.6270

]
, (11.26)

C̃ =
[

0.569 0.194
0.194 0.848

]
, (11.27)

K̃ =
[

2.52 × 104 −1.02 × 103

−1.02 × 103 3.05 × 104

]
. (11.28)

Changes associated to properness enforcement have a very limited impact on
mass and stiffness identification, while they have a strong effect on the damping
identification. The first observation that can be done is related to the numerical
values in the damping matrix, which correspond to possible physical values. The
second observation is that the identified values with properness enforcement are
in accordance with the measured data, as indicated in Figs. 11.8, 11.9 and 11.10.
These figures show the measured FRFs, the synthesized FRFs from complex modes
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Fig. 11.10 Comparison of measured and synthesized FRF22

identified using a curve fitting technique, the synthesized FRFs obtained from direct
calculation using matrices coming from identified complex modes, and the corre-
sponding ones after properness enforcement.

The figures clearly show that:

– the initial modal identification seems to be correct, since the associated synthe-
sized FRFs are very close to the measured one;

– if these identified modes are used for matrices identification, the bad conditioning
of the problem leads to very large errors (as indicated above, mainly due to bad
damping identification);

– if these modes are slightly modified in accordance with the properness condi-
tion, the identified matrices are able to represent the behavior of the measured
structure.

For damping identification purposes, it is then clear that properness enforcement
on complex vectors must be considered. This operation can be seen as a regulariza-
tion technique based on physical considerations, instead of using purely mathemat-
ical methods. The procedure to enforce properness has been proposed some years
ago [7], but unfortunately it is not widely used as it should be. The next section is
dedicated to extension of properness for vibroacoustics.
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11.4 Extension of Properness to Vibroacoustics

11.4.1 Equations of Motion

Discretizing an internal vibroacoustical problem using the natural fields for the de-
scription of the structure (those which can be directly measured), i.e. displacement
for the structure and acoustic pressure for the cavity, leads to the matrix system [29]

[
Ms 0

LT Ma

]

︸ ︷︷ ︸
M

{
ẍ(t)

p̈(t)

}

︸ ︷︷ ︸
q̈(t)

+
[

Cs 0

0 Ca

]

︸ ︷︷ ︸
C

{
ẋ(t)

ṗ(t)

}

︸ ︷︷ ︸
q̇(t)

+
[

Ks −L

0 Ka

]

︸ ︷︷ ︸
K

{
x(t)
p(t)

}

︸ ︷︷ ︸
q(t)

=
{

Fs(t)

Q̇a(t)

}

︸ ︷︷ ︸
f(t)

, (11.29)

where x(t) is the vector of generalized displacements of the structure, p(t) is the
vector of acoustic pressures, Ms is the mass matrix of the structure, Ma is called
“mass” matrix of acoustic fluid (its components are not homogeneous to masses,
the name is chosen for analogy with structural denomination), Ks is the stiffness
matrix of the structure, Ka is the “stiffness” matrix of fluid domain, L is the vibro-
acoustic coupling matrix, Cs and Ca respectively represent structural and acoustic
losses. This formulation includes the hypothesis that there is no loss at the coupling
between structural and acoustic parts, and that internal losses can be represented
using equivalent viscous models. Fs(t) is the vector representing the generalized
forces on the structure, while Q̇a(t) is associated to acoustic sources (volume accel-
eration) in the cavity.

The non-self-adjoint character of the formulation induces difficulties for the res-
olution of this kind of problem using modal decomposition. Some research works
have been done to find symmetric formulations dedicated to coupled vibroacoustic
problems [16, 29], but up to now, these formulations are either not able to take into
account dissipation in the fluid domain, or lead to full matrices which can not be
efficiently used for large models. The technique which is widely used for model re-
duction in the field of numerical analysis is based on the use of two uncoupled bases
(structural and fluid), and the solution of the coupled system is projected on these
bases, even if some convergence problems can be found [37]. Being able to evaluate
numerically the coupled modal basis in an efficient way is still a challenge, in partic-
ular for damped problems. On the other hand, starting from experimental data, it is
possible to identify these modes [39], and one of the ways to build reduced models
could be to follow the same methodology as the one used in structural dynamics,
extended to vibroacoustics.
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11.4.2 Complex Modes for Vibroacoustics

The system (11.29) can be solved for steady-state harmonics by modal decomposi-
tion. The non-symmetric character of the matrix system implies that right and left
modes must be identified. This can be done using the space-state representation of
the system

UQ̇(t)− AQ(t)= F(t), (11.30)

where

U =
[

C M

M 0

]
, A =

[−K 0
0 M

]
, Q(t)=

{
q(t)

q̇(t)

}
,

F(t)=
{

f(t)

0

}
. (11.31)

The eigenvalues of this problem can be stored in the spectral matrix �,

� = [
�

λj
�

]
. (11.32)

The j -th eigenvalue is associated to:

• a right eigenvector, θRj such that (Uλj −A)θRj = 0, where θRj = {ψT
Rj ψ

T
Rj λj }T.

Storing the eigenvectors (in the same order as the eigenvalues) in the modal ma-
trix �R = [ψT

R �ψT
R]T, the following relationship is verified,

U�R� = A�R; (11.33)

• a left eigenvector θLj , such that θT
Lj (Uλj − A)= 0, where θLj = {ψT

Lj ψ
T
Lj λj }T.

Storing the eigenvectors (in the same order as the eigenvalues) in the modal matrix
�L = [ψT

L �ψT
L ]T, the following relationships are verified,

UT�L� = AT�L or ��T
LU = �T

LA. (11.34)

The orthogonality relationships can be written using 2n arbitrary values to build the
diagonal matrix ξ = [�ξj

�
],

�T
LU�R = ξ or �T

LA�R = ξ�. (11.35)

The modal decomposition of the permanent harmonic response at frequency ω is

Q(t)= �R
(
ξ(iωE2n − �)

)−1
�T

LF(ω)eiωt , (11.36)

where E2n is the 2n× 2n identity matrix and F(ω) is the complex amplitude of the
harmonic excitation. This relationship can also be written using the n degrees of
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freedom notations in the frequency domain as

Q(ω)=ψR�ψ
T
L f(ω), (11.37)

where

�=
[

� 1

ξj (iω− λj )
�

]
. (11.38)

In the following, without loss of generality, the eigenshapes are supposed to be
normalized such that ξj = 1.

Each mode has its own response which is proportional to the right eigenvector,
with a modal participation vector that includes the scalar product between the left
eigenvector and the force exciting the system. In the case of a self-adjoint prob-
lem, right and left eigenvectors are equal. The non-self adjoint character of problem
(11.1) is particular since extradiagonal coupling terms that appear in mass and stiff-
ness matrices are linked. It can be shown [39] that the left eigenvectors are related
to the right ones by the following relationship:

If ψRj =
{

Xj
Pj

}
then ψLj =

{
Xj

−Pj λ
−2
j

}
, (11.39)

where X corresponds to the structural dofs of the eigenvectors, and P is related to
the acoustic dofs. This point is fundamental for modal analysis of coupled system,
since only extraction of right eigenvectors is required to derive the left ones. The
previous relation can also be written as

If ψR =
[

X
P

]
then ψL =

[
X

−P�−2

]
. (11.40)

11.4.3 Properness for Vibroacoustics

The properness condition in the case of a non-self adjoint system can be derived
from the orthogonality relationships (11.35):

U−1 = �R�T
L, (11.41)

or
[

C M

M 0

]−1

=
[

0 M−1

M−1 −M−1CM−1

]

=
[
ψRψ

T
L ψR�ψT

L

ψR�ψT
L ψR�2ψT

L

]
, (11.42)

and

A−1 = �R��T
L, (11.43)
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732
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or
[

−K 0

0 M

]−1

=
[

−K−1 0

0 M−1

]

=
[
ψR�−1ψT

L ψRψ
T
L

ψRψ
T
L ψR�ψT

L

]
. (11.44)

It is then clear that the properness condition for a non-symmetric second order sys-
tem can be written as

ψRψ
T
L = 0. (11.45)

Once this relationship is verified, the matrices can be found using the inverse rela-
tions

M = [
ψR�ψT

L

]−1
, (11.46)

K = −[
ψR�−1ψT

L

]−1
, (11.47)

C = −[
MψR�2ψT

L M
]
. (11.48)

For the particular vibroacoustic case, left eigenvectors are linked to right ones, and
the properness condition can be written using only the right complex eigenvectors,

[
XXT −X�−2PT

PXT −P�−2PT

]
= 0. (11.49)

11.4.4 Methodologies for Properness Enforcement

11.4.4.1 Structural Dynamics Based Strategy

When the complex modes are available from experimental identification, one can
use Eqs. (11.46) to (11.48) in order to find the reduced model which is supposed to
have the same behavior as the measured one. The fact is that in general, the modes do
not verify the properness condition (11.49). In the particular case of vibroacoustics,
one can try to follow the same methodology as the one used in structural dynamics.
The following constrained optimization problem should then be solved:

Find X̃ and P̃ minimizing ‖X̃ − X‖ and ‖P̃ − P‖
while

X̃X̃T = 0, X̃P̃T = 0, X̃�−2P̃T = 0, P̃�−2P̃T = 0,

(11.50)

where X and P are two given complex rectangular matrices and � is a given diag-
onal complex matrix. This problem can be re-written using 4 Lagrange multipliers
matrices δj (j = 1 to 4), yielding
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{
X̃

P̃

}
−

{
X
P

}
+ 1

2

[
δ1 + δT

1 δ2

δT
2 0

] ⎧
⎨

⎩
X̃

P̃

⎫
⎬

⎭

− 1

2

[
0 δ3

δT
3 δ4 + δT

4

]⎧
⎨

⎩
X̃�−2

P̃�−2

⎫
⎬

⎭ = 0,

X̃X̃T = 0,

X̃P̃T = 0,

X̃�−2P̃T = 0,

P̃�−2P̃T = 0,

(11.51)

where the overbars correspond to complex conjugates. Solving this problem is
clearly not easy because of the presence of the � matrices that makes impossible to
find explicitly the expression of multipliers versus the unknown vectors. An iterative
procedure could be investigated but this is not the best way to obtain quick results
that can be used in real-time during modal analysis. Some simplified methods have
been proposed [30], among which one is called over-properness: considering the
fact that the method developed for structural dynamics [7] is valid for all matrix Y
subjected to a properness condition YYT = 0, one can use as Y matrix:

Y =
⎡

⎢⎣
X

P

−P�−2

⎤

⎥⎦ , (11.52)

yielding

YYT =
⎡

⎢⎣
XXT XPT −X�−2PT

PXT PPT −P�−2PT

−P�−2XT −P�−2PT P�−4PT

⎤

⎥⎦ . (11.53)

It can be observed that the four required terms of Eq. (11.49) are included in this
matrix, while two of them are not theoretically required. Using this vector in the
procedure detailed by Eqs. (11.18)–(11.20) leads to a so-called over-proper solution
which includes more constraints than those required, but that includes the required
ones.

11.4.4.2 Alternative Strategy

Another thinkable way for obtaining matrices of system (11.29) is to use a least-
square approach. Being given a set of measured frequency responses X correspond-
ing to a set of measured excitations F, the matrices can be found by solving the
minimization problem

min
(M,C,K)∈A

ε(M,C,K)= ∥∥(−ω2M + iωC + K
)
X = F

∥∥, (11.54)
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where A = M × C × K is the space of admissible matrices (whose topology corre-
spond to a vibroacoustic problem). The function to minimize can be written using a
linear system,

ε(M,C,K)= ‖Dα − G‖, (11.55)

where α = {M11M12 . . .Knn}T, while D includes terms coming from X and ω, and
G includes terms coming from F. The matrices components can finally be found
using pseudo-inverse for minimization of least-square error,

α = (
DTD

)−1DG. (11.56)

This strategy can then be used to directly find the matrices without using the com-
plex eigenvectors, which can be found in post processing stage by solving the eigen-
value problem. This approach implies undoubtedly a higher calculation cost than
the previous strategies, in particular for systems with numerous degrees of freedom,
while in the case of low order reduced models, this strategy could be appropriate.

11.4.5 Numerical Illustration

The strategies which have been proposed here can be compared with a direct matri-
ces reconstruction, i.e. without properness enforcement. The first test-case which is
proposed here is a very simple 2-dofs numerical model, whose topology is the same
as the one given in Eq. (11.29):

[
3.23 0

−1.46 1.27 × 10−2

]{
ẍ

p̈

}
+

[
1.12 0

0 3.18 × 10−3

]{
ẋ

ṗ

}

+
[

1000 1.46
0 1.65

]{
x

p

}
=

{
F(t)

Q̇a(t)

}
. (11.57)

Starting from this system, the complex eigenmodes are evaluated. Some noise is
then added to the eigenfrequencies and eigenvectors (5% random noise on fre-
quency, 10% on mode shapes), and the matrices of the system are evaluated using
the three approaches:

– direct reconstruction from complex modes (without properness enforcement);
– reconstruction from complex modes (with over-properness enforcement);
– reconstruction from least-square error on FRFs (the FRFs being generated with

the noisy eigenvalues in order to keep the same noise level).

Finally, the three results are compared by comparing the reconstructed matrices to
the original ones (when available) or by plotting FRFs evaluated using each set of
matrices.

The direct approach, which is exact if no error exists in the identification proce-
dure, is clearly very sensitive to noise, and final matrices can be very different from
expected results. The corresponding matrices are:
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M =
[

3.29 −4.00 × 10−4

−1.55 1.31 × 10−2

]
, C =

[
−1.53 −1.02 × 10−2

−1.28 6.10 × 10−3

]
,

K =
[

964 1.37

−14.1 1.66

]
.

(11.58)

Estimation of mass and stiffness matrices is quite good, while the damping matrix
is very badly reconstructed. Some clear improvements can be observed when the
properness is enforced. The stiffness and mass matrices are almost unchanged, while
the physical meaning of the damping matrix is improved when it is derived from the
corrected eigenvectors:

M =
[

3.30 −4.12 × 10−4

−1.55 1.31 × 10−2

]
, C =

[
2.62 −5.04 × 10−3

−0.653 −1.21 × 10−4

]
,

K =
[

965 1.37

−14.5 1.66

]
.

(11.59)

The negative damping term on the fluid part is balanced with its very small value
compared to the (positive) value on the structural part. Finally, the least-square er-
ror (LSE) approach leads to a correct topology of matrices, with physical damping
terms on both structural and acoustic parts:

M =
[

3.31 0

−1.44 1.27 × 10−2

]
, C =

[
0.740 0

0 4.12 × 10−3

]
,

K =
[

982 1.44

0 1.62

]
.

(11.60)

The three strategies can be compared using one of the corresponding FRFs in
Fig. 11.11, on which the bad behavior of the direct method can be observed. One
can also observe that, even if the topology of the over-proper solution is not exactly
the right one, the global error on FRFs reconstruction is lower than in the case of
LSE technique. Indeed, depending on the objective, one should evaluate matrices
from both formulations and choose the ones which are the most appropriate.

11.4.6 Experimental Test-Case

The second test-case which is proposed here corresponds to an experimental test-
case based on measurements on a guitar given by F. Gautier from LAUM-Le Mans
and J.-L. Le Carrou from LAM-Paris VI. In that case, only two degrees of freedom
are considered, in order to represent the behavior of the guitar in the frequency range
corresponding to the so-called A0 and T1 modes, which are of first interest in the
design of the instrument [13, 18, 25]. The two degrees of freedom which have been
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Fig. 11.11 Methodologies for properness enforcement on numerical test-case

used in these measurements correspond to the structural transverse displacement of
a point on the soundboard, and the acoustic pressure in the middle of the sound hole.
A small impact hammer has been used for excitation on the structural degree of free-
dom. These two modes have been identified experimentally by a curve fitting tech-
nique, and the FRFs built from these two modes is considered as the reference in the
following. The direct approach leads once again to bad estimation of damping terms:

M =
[

3.10 × 10−2 2.10 × 10−9

3.88 × 10−2 2.85 × 10−7

]
, C =

[
−2.23 2.19 × 10−6

−3.68 −3.72 × 10−5

]
,

K =
[

2.30 × 104 −3.59 × 10−3

705 1.28 × 10−5

]
.

(11.61)

The properness enforcement allows the damping terms to become more physical:

M =
[

3.09 × 10−2 1.88 × 10−9

3.84 × 10−2 2.83 × 10−7

]
, C =

[
0.942 −1.52 × 10−6

0.315 7.55 × 10−6

]
,

K =
[

2.27 × 104 −3.57 × 10−3

632 1.26 × 10−5

]
.

(11.62)
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Fig. 11.12 Methodologies for properness enforcement on guitar measurements

Finally, the least-square error (LSE) approach leads to a correct topology of matri-
ces, with physical damping term on structural part, but not on the acoustic part:

M =
[

2.91 × 10−2 0

3.44 × 10−2 2.57 × 10−7

]
, C =

[
1.37 0

0 −2.97 × 10−6

]
,

K =
[

2.15 × 104 −3.45 × 10−3

0 1.15 × 10−5

]
.

(11.63)

The comparison of FRFs, in Fig. 11.12, leads to the conclusions in accordance with
both structural application and vibroacoustical numerical test-case. One can point
out the fact that all methodologies lead to quite good estimation of mass and stiffness
matrices, the critical point being the evaluation of damping matrix. The properness
enforcement is not sufficient to obtain the correct topology, but the improvement
is nevertheless clear, it can be seen as a regularization procedure for the inverse
problem which is addressed here.
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11.5 Prospects for the Future

As far as the structural dynamics applications are concerned, the properness enforce-
ment technique leads to optimal complex modes that can be derived from identified
ones. These modes can be efficiently used to reconstruct the system matrices when
the full set of vectors is available. This should be considered in any application,
since this operation acts as a regularization and helps to identify physical damping
matrices. A challenge for the future is clearly to extend this notion for an incomplete
set of identified complex vectors.

Concerning the vibroacoustic extension, the properness condition has been de-
rived. In this case no explicit solution can be found, obtaining optimal complex
modes that verify the properness condition is still a challenge. Of course constrained
minimization techniques could be applied, but they would certainly lead to a high
calculation cost. The efficiency of the approach in the context of structural dynamics
leads to similar expectations for the vibroacoustic case. Nevertheless some more re-
search in this way are required to provide an efficient tool that works in any situation.
The alternative way to achieve the expected goal is to extend advanced FRF-based
methods referenced in the chapter to vibroacoustic applications. This could possi-
bly lead to good results, since the least-square technique proposed here based on
FRF data gives interesting results. This is undoubtedly a promising way to obtain
efficient reconstruction of reduced vibroacoustic models.

11.6 Summary

Damping matrices identification in the context of structural dynamics, starting from
a full modal basis identified by measurements, is a topic which is quite clear to-
day. The inverse procedure is very sensitive to noise on input data (i.e. on identified
complex vectors), and some methods are available to provide regularization tech-
niques based on physical considerations. Among them, the properness enforcement
technique is undoubtedly very efficient, as shown on illustrative examples.

The properness condition can be easily extended to vibroacoustics: this property
must be verified by complex modes in order to be those of a physical system. Two
techniques have been proposed to enforce the property on eigenshapes that do not
verify it, leading to much better results than those corresponding to the use of initial
identified vectors. The first technique is based on the structural dynamics procedure,
leading to enforcement of more conditions than the theoretically required ones. The
second one is based on a least square error minimization. None of the two meth-
ods exhibits perfect results, so it is clear that one of the next challenges in vibroa-
coustic reduced models identification based on experimental modal analysis will be
the improvement of the properness enforcement methodology. Up to now, the two
proposed methods can be applied for a given application and the user can choose
between results depending of the efficiency of the identified reduced model.
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11.7 Selected Bibliography

For a deeper insight into damping identification techniques, the following references
are suggested. Adhikari and Woodhouse have written a very well documented paper
in 4 parts [3–6], which constitutes a starting point for understanding the context and
methodologies available for damping identification.

The paper from Lin and Zhu [27] can be referenced as a good illustration of
the relationship between viscous and hysteretic damping models, in particular to
understand that viscous and hysteretic damping matrices are almost equivalent when
the damping is distributed on the structure, while a correct choice of the damping
model is of first importance for systems with distributed damping.

In this context, Xu [40] has proposed an interesting formulation for computing
explicit damping matrices for multiply connected, non-classically damped, coupled
systems.

It is nevertheless clear that most of the methodologies have been developed for
viscous or proportional damping. In particular, the paper from Barbieri et al. [8]
gives a comparison of three techniques for identification of proportional damping
matrix of transmission line cables, and the paper from Pilkey et al. [32], dedicated to
viscous damping, investigates some aspects of the damping identification procedure
that are noise, spatial incompleteness and modal incompleteness.

There are few papers to which the reader is invited to refer concerning identifi-
cation of non-proportional damping, among which those by Adhikari [2] and Kasai
and Link [23].

Almost all the methods that allows identification of damping matrix are related to
measurements dofs: the size of the identified matrix is equal to the number of mea-
surement points. The paper from Ozgen and Kim [31] compares two methods that
can be used to expand the experimental damping matrix to the size of the analytical
model.
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