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Abstract: Tip timing method enables spectral analysis of turbomachinery blades in
operation. It consists of several sensors mounted on casings which can estimate the
vibration of blades by measuring time of arrival of each blade tip. Thus, tip timing is an
easy to set up device, as it requires no rotating instrumentation and it is a non intrusive
measurement method. Moreover all blades can be monitored; this is very useful for real
rotors which always contain a certain amount of mistuning.
We show in this paper how tip timing measurements, processed by a minimum variance
estimator can be helpful to analyse and understand aeroelastic phenomenon that can
occur on rotors.

1 INTRODUCTION

Blades vibrations, under specific ranges of shaft speeds are usually measured during tur-
bomachinery rig tests. Such measurements are usually made with strain gauges directly
positioned on blades, but recently turbomachinery industries have worked on a new mea-
surement method called tip timing because it has multiple advantages. Tip Timing mea-
surement system consists of a set of probes mounted on casings, measuring the passing
times of blade tip in front of them (Fig.1). Each probe collects one pulse per revolution and
per blade (Fig.2). As the blades are vibrating, these passing times depend on vibrations
and shaft speed. Vibration amplitudes can be deduced, as long as shaft speed is known
with enough precision. Frequency and amplitude of the vibrations are then estimated in
a post processing phase. Thus, tip timing is a non intrusive system which provide in-
formation on all the blades whereas strain gauges only measure the instrumented blades.
Moreover, as sensors work in the static frame, installation is easier.

However signal analysis is more complicated. As sampling depends on shaft speed and
of the number of sensors, sampling frequency is very low compared with the vibrations
frequencies. Because the vibration signal is sampled only when the blade is in front of a
sensor, it is not possible to apply a low pass filter on original vibration signal and avoid
the aliasing effect with traditional spectral estimation. Consequently, different methods
have been developed to extract vibratory information from those undersampled data.
We distinguish two kinds of vibration responses to analyse: synchronous vibrations (mul-
tiple of shaft speed) and asynchronous vibrations.
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Figure 1: Tip timing on bladed disc
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Figure 2: Passing times for one blade in front
of the different sensors

Synchronous vibrations are generally analysed with methods based on curves fitting (n pa-
rameters sinus fitting, 2 Parameter Plot), autoregressive models (AR, GAR and GARIV)
and eigen decomposition (Singular Spectrum Analysis) [1]. These methods all yield engine
order estimates and some of them, amplitude estimates. Asynchronous vibrations need
to be analysed with spectral estimation methods such as all blade spectrum method [2],
the multisampling analysis [3] and the minimum variance spectral estimator [4].

This paper focuses on the application of a minimum variance spectral estimator for asyn-
chronous vibrations. The first part will present the minimum variance algorithm that will
be used in this paper. Then this algorithm is applied to analyse asynchronous aeroelastic
vibrations measured on a Turbomeca test rig .

2 MINIMUM VARIANCE SPECTRAL ESTIMATOR

We consider number of sensors circumferentially disposed on the stator in front of the
blades tip at given axial location. Angular spacing between sensors is usually irregular.
The passing times of the blades in front of the sensors is recorded. Knowing the rotation
speed, it is possible to deduce the vibration amplitude of each blade, in the rotating frame,
at the time it passes in front of each sensor. This reconstructed signal is usually irregularly
sampled. Moreover due to the small number of sensors, it is strongly undersampled
regarding the blades eigenfrequencies. The minimum variance spectral estimator (MVSE)
is then applied to this irregularly undersampled signal.
The MVSE, which was first proposed by Stéphan in the context of tip timing [4], is based
on an algorithm developed by Capon [5]. It is a high resolution estimator as it can identify
closely spaced peaks. The principle of Capon is based on the minimization of the signal
variance to obtain the coefficients of amplitudes in a frequency band. It works as a filter,
and is theoretically data independent because it does not adapt to the processed data in
any way. Then the user can choose the frequency bandpass.
The power of this filter is equal to

E|y(t)|2 = h∗R h

where R is the autocorrelation matrix, y is the sampled signal, h are the coefficients of
the filter and * denotes the conjugate transpose.
The method consists in minimizing the total power, subject to the constraint that the
filter passes the frequency ω undistorted. This idea can be represented by the following
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optimization problem:

minh h∗R h subject to h∗a(ω) = 1

where
a(ω) =

[
1 e−iω . . . e−imω

]T
m is a positive integer, equal to the number of points the signal contains.
The solution of this problem leads to the estimate of the spectral amplitude Y at ω

Y (ω) =
a(ω)∗R−1y(t)

a(ω)∗R−1a(ω)

It is an iterative algorithm, for each step, the autocorrelation matrix is computed with
the Wiener-Khintchin theorem. This theorem links the autocorrelation function and the
power spectral density (PSD). The PSD is obtained from the spectral amplitudes com-
puted in the last step (the first PSD can be computed with a non-uniform discrete Fourier
transform, NDFT).

Power Spectral Density⇒ Autocorrelation matrix⇒ Spectral amplitude

Convergence is obtained when relative error between the last two PSD is less than 5 per-
cent. This algorithm is statistically stable and gives good results in terms of frequencies.

An example of a signal with three sinusoids and white noise is given. The frequencies are
15Hz, 22Hz and 32 Hz, for the respective amplitudes 10, 4 and 7. The signal to noise ratio
is equal to 20. According to the Shannon theorem, a correct sampling frequency should be
at a minimum of 64Hz. In this example the signal is sampled with a 10Hz periodic irregular
pattern of three points, which approximately corresponds to a mean sampling frequency
equal to 30Hz. Ninety points are treated in this example. It reproduces the situation of
three non-equispaced sensors recording passing times of a blade under a rotation speed
equal to 10Hz and during thirty revolutions of the blade. Figure 3 displays the signal
sampled at 70Hz and the points that tip timing system records.

Figure 3: Comparison of signal sampled at 70Hz and tip timing measurements
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Figure 4: Spectrum after a non-uniform dis-
crete Fourier transform (NDFT)

Figure 5: Final spectrum obtained with MVSE
(last iteration)

Figure 4 presents the spectrum obtained with the NDFT which corresponds to the first
data the MVSE treats and figure 5 presents the final spectrum obtained with the MVSE
once it converged. The frequencies were normalized relatively to the mean sampling
frequency (Fs = 30Hz). It illustrates the capability of the MVSE to compute a spectrum
over a large frequency band (in this example from −1.2×Fs to 1.2×Fs) compared to the
one computed with a simple Fourier transform (from −0.5 × Fs to 0.5 × Fs). Then the
three sinusoids whose frequencies are 15Hz, 22Hz and 32Hz can be identified at respective
normalized frequencies (Nf ) 0.5, 0.73 and 1.07.

The NDFT spectrum (Fig.4) presents some peaks at multiple frequencies. Several of them
are artefacts whereas the physical frequencies are clearly visible. The Parseval theorem
is respected, which means the total energy of the signal is conserved from the temporal
representation to the spectral estimation.

E =

∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|X(f)|2df

In the final spectrum computed with MVSE (Fig.5), all the peaks decreased comparing
to the NDFT spectrum, especially the artefacts with a ratio greater than 10. The three
physical frequencies are now clearly visible, their amplitudes are lower than in the original
signal with an average ratio equal to 2.6. The relative amplitudes between the physical
peaks are conserved. The MVSE does not respect the Parseval theorem, the total energy
decreased with a ratio equal to 3.7.
As a conclusion of this typical example it seems that the MVSE gives correct frequencies
but amplitudes must be considered comparatively against each other.

3 INDUSTRIAL TEST CASE ANALYSIS

We will now analyse test rig data recorded at Turbomeca. This analysis intends to iden-
tify asynchronous vibrations occurring during the test. The aim of this test is to analyse
each blade response in the rotating frame, and identify the spatial organisation of main
responses. Generally, the All Blade Spectrum is used in the case of asynchronous vibra-
tions, as it can yield spatial informations. But in that specific case it is not recommended
because the main assumption of such estimator, is a well-tuned blade assembly. There-
fore data were treated with the Minimum Variance Spectral Estimator, which presents

4



Figure 6: Campbell diagram, computed on one
blade, after a NDFT

Figure 7: Campbell diagram, computed on one
blade (MVSE last iteration)

the interest of focusing on each blade and separating their behavior. Furthermore it works
easily with rotor data and can also yield spatial organisation computing a spatial Fourier
decomposition.
The compressor rotation is following an accelerating slope. Rotor speed is assumed con-
stant for each measurement group of points on which the MSVE algorithm is applied. In
reality rotor speed changes during one rotation, but this hypothesis can be made because
the acceleration is slow.

The first diagram of interest is the Campbell diagram (Fig.7) because it gives a global
point of view of the test and separate vibrations per frequencies at given rotor speeds. As
the shaft speed is accelerating, the Campbell diagram represents vibrations over a range
of normalized rotor speeds (Ns) from 0.92 to 1. In this test, as we have five sensors, the
equivalent sampling frequency is equal to 5×Ωrot

2π
.

Frequencies were normalized with the same method as in the example (Fig.4 and Fig.5).
The mean sampling frequency used corresponds to the minimum rotation speed. Ampli-
tudes and rotation speed were normalized relatively to their respective maximums. On
the Campbell diagrams, amplitudes are displayed in dB.

The comparison of figures 6 and 7 shows that artefacts due to the computation were re-
duced during the convergence of the algorithm. The final Campbell diagram still contains
artefacts (Fig.7), but one dominant frequency band (called band A) can be identified
around a mean normalized frequency Nf = 0.75. In fine MVSE algorithm can easily
reduce artefacts coming from undersampled data, the physical information included into
the spectra arises from aliased contents.
The analysis will focus on the frequency band A, corresponding to blade modal response.
Figure 8 displays the Campbell diagram centered on band A. Figure 9 represents the
evolution of the normalized amplitude spectrum in the frequency band A as a function of
the rotor speed. We can see that an asynchronous vibration is initiated after Ns = 0.94,
fully developed before Ns = 0.96 and disappears after Ns = 0.99.

The analysis will pursue identifying spatial organisation of the vibration during two peri-
ods: Ns = 0.92 to 0.94 and Ns = 0.94 to 0.99. The compressor mistuning makes difficult
the use of an all blade spectrum. This particularity is illustrated by figure 10 which
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Figure 8: Campbell diagram centered on frequency band A

Figure 9: Amplitude of one blade on band A

displays the responses of the maximum and the minimum amplitude blades. Important
amplitude differences are visible for the speed range Ns = 0.94 to 0.99, in which mistuning
plays an important role.

Investigation on spatial organisation starts by specifying the frequencies of interest at
given normalized speeds Ns = 0.945, 0.968 and 0.977. Figure 11 displays the spectrum
of the ten first blades of the compressor at Ns = 0.945 on the frequency band A. We can
identify two frequency peaks for which the vibration of all blades is maximum for the
same frequency value. This is typical of an organized vibration on the rotor, probably
due to an aeroelastic instability. In contrast, above Nf = 0.742 exists a small frequency
band in which we can see the superposition of various mistuned responses.

The same plot is made at normalized speeds Ns = 0.968 and 0.977 and is represented on
figures 12 and 13. Progressively as the rotation speed increases, the organized vibrations
dominate. This confirms the hypothesis of an aeroelastic instability. The spatial Fourier
transform for the three previous rotation speeds and for the frequencies corresponding to
the organized vibrations are presented on figures 14 and 15. The plots are limited to the
most interesting wave numbers. Positive wave numbers represent waves rotating in the
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Figure 10: Maximum and minimum amplitude blades

Figure 11: Amplitude spectrum of the ten first blades at Ns = 0.945
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Figure 12: Amplitude spectrum of the ten first
blades at Ns = 0.968

Figure 13: Amplitude spectrum of the ten first
blades at Ns = 0.977

Figure 14: Spatial organisation per frequency
at Ns = 0.945

Figure 15: Spatial organisation on principal
frequency at Ns = 0.968 and 0.977

direction of the rotation. The wave number modulus is equal to the number of the nodal
diameters of the vibrations. We can see that the instability is initiated at Ns = 0.945 with
the wave numbers 0 and -5. Then when it is fully developed, the wave number changed
to -3 and remains constant as we can see on the plot for Ns = 0.968 and 0.977. Figure 16
shows the bladed disk pattern at Ns = 0.977 and Nf = 0.753.

Figure 16: Blades pattern at Ns = 0.977 and Nf = 0.753
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4 CONCLUSION

We presented the Minimum Variance Spectral Estimator for the analysis of tip timing
data. We demonstrate the capability of such algorithm to deal with undersampled and
aliased data. With this method, aliases are reduced in amplitude that allow to estimate
properly physical responses of blade, moreover we can also estimate frequency content
beyond the equivalent Shannon frequency.
Those capabilities were demonstrated on a simulated test case and on real data coming
from an industrial test rig. This spectral estimation leads to an individual analysis of
each blade in the rotating frame.
By estimating spectra on all blades, we can perform a spatial Fourier transform that gives
the wave numbers of the phenomenon. We can precisely estimate the mistuned behavior
of the rotor in this particular case of an aeroelastic instability.
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