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ABSTRACT
Self-reconfiguration for moving MEMS microrobots currently
needs a positioning system and a map of the target shape.
Traditional positioning solutions like GPS or multilatera-
tion are not applicable in the micro-world and maps sharing
does not scale. In this paper we present self-reconfiguration
method where nodes are unaware of their positions, and
where they do not have the final coordinates of each micro-
robots. In other words, nodes do not store the correct po-
sitions that build the target shape. Consequently mem-
ory usage for each node is reduced to O(1). This algo-
rithm does not need message exchange to achieve the self-
reconfiguration from a chain to square configuration (micro-
robots are organized in square shape) that represents the
optimal logical topology for messages sending and it ensures
a Snap-connectivity. Obtained results show a rapid conver-
gence of the algorithm. The worst-case time complexity is of
n movement rounds, where n represents the number of mi-
crorobots. Our algorithm is implemented in the declarative
language MELD and executed in the simulator DPRSim.

Keywords
MEMS microrobot,distributed algorithm, self-reconfiguration,
physical topology,energy

1. INTRODUCTION
Recent advances in micro and nano-technologies made

possible the design and the development of a large vari-
ety of Micro Electro-Mechanical Systems (MEMS) which are
miniaturized and low-power devices that can sense and act
[25, 26]. It is expected that these small devices, that that
scaled down to less than 1 mm [10] referred to as MEMS
nodes, will be mass-produced, making their production cost
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almost negligible. Their applications will requires a mas-
sive deployment of nodes, thousands or even millions [22]
which will give birth to the concept of Distributed Intelli-
gent MEMS[3].

One of the major challenges in developing a MEMS micro-
robot is to achieve a precise movement to reach the destina-
tion position while using a very limited power supply. Many
different solutions have been studied. For example, within
the Claytronics project[1, 2, 7, 14], microrobots can only
turn around its neighbor which introduce the idea of a col-
laborative way of moving. But, even if the power requested
for moving has been lowered, it still costs a lot regarding
the communication and computation costs. Optimizing the
number of movements of microrobots is therefore crucial in
order to save energy.

Self-reconfiguration of microrobots is the most useful al-
gorithm and it is used by many applications[11]. Optimiz-
ing the energy cost of self-reconfiguration algorithms will
therefore have a direct impact on the energy efficiency. In
the literature, self-reconfiguration can be seen from two dif-
ferent points of view. First, it can be defined as a proto-
col, centralized or distributed, which transforms a form of
nodes to reach the optimal logical topology from a physi-
cal topology [9]. On the other hand, and in second sense
the self-reconfiguration is built from modules which are au-
tonomously able to change the way they are connected, thus
changing the overall shape of the network[18, 7]. This pro-
cess is difficult to control, because it involves the distributed
coordination of a large numbers of identical modules con-
nected in time-varying ways.

In this work, we focus on a special case of self-
reconfiguration where the objective is to optimize the logical
topologies such that exchange of messages would be more op-
timal. We study distributed algorithm of self-reconfiguration
for MEMS starting with a form and arriving to a target form
while analyzing the memory, exchanging messages complex-
ity and the number of movement rounds.

2. RELATED WORKS
In the literature, many terms refer to the concept of self-

reconfiguration. In several works on wireless networks the
term used is self-organization. This term is also used to ex-
press the partitioning and clustering of ad hoc networks or
wireless networks to groups called cliques or clusters, where
the objective is to organize the various spots where the orga-



nization is carried by the cluster head that has more amount
of energy. While the self-organization term can be found in
protocols for sensors networks to form a sphere or a poly-
gon from a center node [13, 24]. The term redeployment
is also a new term to address self-reconfiguration for sensor
networks [12, 17]. For the self-reconfiguration with robots
or microrobots there are the protocols [18, 19] where the
desired configuration is grown from an initial seed module
and a generator takes as input a 3D CAD model of a desired
configuration and outputs a set of overlapping blocks which
represent this configuration, in the second step this repre-
sentation is combined with a control algorithm to produce
the final self-reconfiguration algorithm.

A growing number of researchers on the self-reconfiguration
for microrobots using centralized algorithms are done, among
them we find the proposed control algorithms for self-assembly
and/or reconfiguration with a centralized manner, see for in-
stance [16]. Other approaches give each unit a unique ID and
a predefined position in the final structure; see for instance
[23], the disadvantage of these methods is the centralized
computing and the need of identities for nodes. More dis-
tributed approaches include [5, 8, 20]. In simulation, the
authors in [19, 21] have demonstrated algorithms for self-
reconfiguration and directed growth of cubic units based on
gradients and cellular automata. In [4] the authors have
shown how a simulated modular robot (Proteo) can self-
reconfigure into useful and emergent morphologies when the
individual modules use local sensing and local control rules.

Claytronics, is the name of a recent robotics project by
Carnegie Mellon University, in which nanoscale robots called
Catoms. It is designed by Researchers from Carnegie Mellon
University and Intel Corporation that have been working on
this project where the idea is to have hundreds of thousands
of nano processors (microrobot) form together to create new
solid objects in any shape or size. The challenges are vast,
but once it becomes a reality it will change the world for-
ever. Much like the cells in a body or complex organism,
each small member of the whole is committed to doing its
own part and communication between parts results in a uni-
fied form. Within the Claytronics project, many works have
already been successfully conducted. In [6] a metamodel for
the configuration of catoms beginning from an initial con-
figuration to achieve a second desired configuration using
creation and destruction of catoms, the authors use these
two functions due to the inability of motion of catoms in the
presence of neighbors that can be considered as barriers. In
[7] the authors present a scalable distributed reconfiguration
algorithm with the Hierarchical Median Decomposition, to
achieve arbitrary target configurations without a global com-
munication, another scalable algorithm is here [14]. In [2]
a scalable protocol for catoms self-reconfiguration with the
MELD language [1, 15] using the creation and destruction of
nodes. In all these works the form target is predefined and
the catoms know all corrects position at the beginning and
the authors assume that each node is aware of its current
position.

3. CONTRIBUTIONS
In this paper, we propose a new approach for MEMS

microrobots, self-reconfiguration, where the target form is
built incrementally, and each node in the current increment
acts as a reference for other nodes to form the next incre-
ment, which will belong to the form. We introduce the

state model where the node can see the state of its physical
neighbor to achieve the self-reconfiguration for distributed
MEMS microrobots, using the states the nodes collaborate
and help each other. Knowing that the node can get help
only from the physical neighbor without global information
of the network. We seek in our algorithm to achieve the self-
reconfiguration without message exchange except the mes-
sages of the tree. Contrary to the existing works, in our
algorithm the node has no information on the correct po-
sitions (predefined positions) of the target shape, the algo-
rithm does not need to know the size of the network (nodes
number). The nodes are unawares of their position on the
plan.

We propose here an efficient algorithm for nodes self-
reconfiguration where the nodes move by rotation around
their physical neighbors. In our paper the MEMS network
is organized initially as a chain. By choosing a straight
chain as initial shape, we aim to study the performance
of our approach in extreme case. Indeed, the chain form
represents the worst physical topology for many distributed
algorithms in terms of fault tolerance, propagation proce-
dures and convergence. First, the number of direct con-
tacts between macro-robots is minimal and secondly the av-
erage distance between two robots (in terms of number of
hops) is of (n+ 1)/3 where n is the number of robots. Also,
chain of microrobots represents the worst case for messages
broadcasting complexity with O(n). The redeployment into
a square organization allows to obtain the best case mes-
sages broadcasting complexity O(

√
n). The performance of

the self-organization algorithm is evaluated according to the
number of exchanged messages and the number of movement
rounds. Both phenomena (message and movement) impacts
on the energy consuming and redeployment time.

To assess the distributed algorithm performance we present
the results of the simulations made with the declarative lan-
guage MELD [1] and the open source simulator DPRSim
[27].

The rest of the paper is organized as follows: Section 4
discusses the model and some definitions. Section 5 discuss
the proposed algorithm and analyzes the number of sent
messages and movement rounds, and it shows how to gener-
alize the algorithm. Section 6 details the simulation results.
Finally, section 7 summarizes our conclusions and illustrates
our suggestions for future work.

4. MODEL AND DEFINITIONS
Within Claytronics, a Catom that we call in this paper

a node is modeled as a sphere which can have at most six
2D-neighbors without overlapping. Each node is able to
sense the direction of its physical neighbors (east (E), west
(W), north-east (NE), south-east (SE), south-west (SW) and
north-west (NW)). In this work, the starting physical topol-
ogy is a chain of n nodes linked together. A chain corre-
sponds to a connected set of nodes where each node has two
neighbors excepting the two extremities representing only
one neighbor. A node A is in neighbor’s list of node B if
A touch physically B. Communications are only possible
through contact, which means that only neighbors can have
a direct communication.

Consider the connected undirected graphG = (V,E) mod-
eling the MEMS network. v ∈ V , is a node belonging to the
network and, e ∈ E is a bidirectional edge of communication
between two physical neighbors. For each node v ∈ V , we
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denote the set of neighbors of v as N(v) = {u, (u, v) ∈ E}.
Each node v ∈ V knows the set of its neighbors in G, N(v).
Furthermore, the set N(v) is the unique initial and instan-
taneous information get by the node. We assume that every
node systematically updates the set of its neighbors N(v)
after a local change.
We give the following definitions:
Connectivity: a graph G = (V,E) is said connected, if
∀v ∈ V, ∀u ∈ V , ∃ a tuple Cv,u = (ev,−, ..., e−,−, ..., e−,u),
where ex,y ∈ E is a edge from x to y and Cv,u represents a
path from v to u.
Snap − Connectivity: Let T be the full-time running of a
distributed algorithm DA and t1, t2, ..., tn are different in-
stants of DA execution (rounds). Let the dynamic graph
Gt(Vt, Et) the network state at the instant t. DA is said
respecting Snap-Connectivity property if ∀ti, i ∈ {1, ..., n},
Gti(Vti, Eti) maintains the connectivity.
Tree: the tree is any connected graph without simple cycles.
In th tree, a node is either a child (leaf) or a parent.

We call owner movement rounds of a given node its num-
ber of performed movements.In this paper, we present how
the node can precacluate the own movement rounds and
make sure that it correctly followed the algorithm.

To calculate the owner movement rounds we agree these
proposals:

Consider the figures 1 and 3 which represent respectively
a neighboring structure and microrobot node model. A node
performs a single movement round if the distance between
the old and the new positions is exactly twice the radius
(D1 = 2R).

The node perimeter corresponds to an angle of 360◦ that
can be divided into six equal segments each one of 60◦. The
perimeter length of a segment with α degree is equal to
Pα = πRα/180. According to figure 3 we prove that P1 =
P2 = P3 = P4 = P5 = P6 = πR/3 and in each round the
node travels the same distance.
The movement performed by a node can be represented by

the following Cartesian parametric equation:
x(t) = Rcos(wt)

y(t) = Rsin(wt)

wherewt ∈ [0..2π[

(1)

With w is a constant representing the rotation velocity and
x(t) and y(t) the coordinates of the M point (see figure
3). The M point represents the contact point between the
node in movement and the node around wich it moves. The
velocity vector is written:

→
V=

(
−Rsin wt
Rcos wt

)
(2)

The arc length from M to M0 is equal
∫
||
→
V ||.dt = Rwt.

So in this paper in one round the microrobot of radius R
travels Ra with a=60◦.

In this paper, we assume that the message exchange be-
tween two physical neighbors is carried without complexity
(0 message). By cons the consultation of not neighboring
node state, induces message exchange complexity. For ex-
ample in the figure 2:
- At t0, the node A needs to know the state of B to move to
a new position (represented by doted circle), which is done
without message exchange.
- At t1, A is in the new position and it needs to know the
state of D. In this case, D informs C of its state, and then C
forwards the message to A. So, in this case there is a mes-
sage exchanging and A must wait 2 rounds to decide.
- If a message has been sent from D to C at t0 or t1, then
A can obtain the state of D at t2 with a simple consultation
of C’s state without messages exchanging.

5. PROPOSED PROTOCOL

5.1 Algorithm with Safe Connectivity (ASC)
As mentioned before, the node can move only around its

physical neighbors. To ensure a snap-connectivity of the
network, only the leaves are allowed to move.

The distributed algorithm runs in rounds as it is shown
in the algorithm hereafter. A priority mechanism is used
allowing choosing the most prior satisfied predicate and ig-
noring the others ones during current round. We notice that
in ASC, the state change actions, represented by predicates
labeled P1, are considered more prior than a movement ac-
tions represented by P2 predicates. ASC builds the target
form by increments. When an increment is completed, its
composing nodes are considered as belonging to the final
form. At the beginning, only the initiator is set into the
final form. Then it helps its neighbors to take corrects posi-
tions. In other words, the nodes already in the form act as a
benchmark for the neighbor nodes to complete the new layer.
To mark its membership to the final form, a node changes it
state using the Statev(well) and then it becomes fixed. The
first node that can move is the node at the bottom of the
chain corresponding to the first leaf of the first tree (with
the predicate moveAroundbadv(u1, Pne)). The node goes
up towards northwest until it reaches the root node by mov-
ing around intermediate nodes using the second predicate
(moveAroundbadv(u1, Pe)) in ASC. The nodes of the layer
under construction may make motion either at left (W) or
NW directly using the last two predicates



moveAroundwellv(u1, Pne) and moveAroundwellv(u1, Pe),
given in the algorithm ASC. The node changes its state to
well when it cannot move to left (W) or to NW. The node
uses the predicate
moveAroundwellv(u1, Pne) to move to left(W), which in-
duces that pivot node becomes its NE neighbor. This mo-
tion is repeated until that the node reaches the diagonal
position and set the spe state.

Variables and Predicates
- v, u, u1, u2: denote a node belongs to the network.
- {U}:set of nodes.
- well, bad, spe: states, a node can take one or two
states at the same time, but not spe and bad or well
and bad.
- Nx(v): the neighbor in the direction x of the node v:
x ∈ {(N), (E), (W ), (NE), (SE)or(NW )}.
- connectedv : true if the node v is connected to the
network, false else (Boolean).
- Statev(k) : the state of the node v, taking one or two
of these values k = well, bad or spe.
- Statev(s, well): the node v has s (s is an integer)
neighbors that have the well state State(well) .
- moveAroundwellv(u, Px): move around the neighbor
u in such a way that u becomes in the direction x re-
garding to v.
- Parent(v, u): means the node v is parent of node u.
- isLeaf(v): the node v is a leaf in the tree.

Predicates checked only in the first round
Initiator(v) ≡ Nnw(v) = � ∧ connectedv.

Statev(bad) ≡ connectedv ∧ ¬Initiator(v).
Statev(well) ≡ Initiator(v).
Statev(spe) ≡ Initiator(v).

Predicates checked in each round

Parent(v, v) ≡ Initiator(v).
Parent(v, u) ≡ (Parent(w, v), u 6=
w) ∧ neighbor(v, u) ∧ Stateu(bad).

isLeaf(v) ≡ (∀u ∈
N(v),¬Parent(v, u) ∧ ¬Parent(v, v)).

(P1.1): Statev(well) ≡ (Ne(v) =
u1 ∧ Stateu1(well) ∧Nne(u1) =

�) ∨ Statev(3, well) ∨ (Statev(2, well) ∧ (Nne(v) =
u1 ∧ Stateu1(spe)) ∨ (Nw(v) =

u1 ∧ Stateu1(well))) ∨ Statev(spe).
(P1): Statev(s, well) ≡ (Nx(v) = {U} , |U | =

s ∧ State{u}(well)).
(P1): Statev(spe) ≡ (Nnw(v) = u1)) ∧ (Nne(v) =

u2, Stateu2(spe)).
(P2): moveAroundbadv(u, Pne) ≡

isLeaf(v)∧Statev(bad)∧ (Nnw(v) = u∧Stateu(bad)).
(P2): moveAroundbadv(u, Pe) ≡

isLeaf(v)∧ Statev(bad)∧ (Nne(v) = u∧ Stateu(bad)).

(P2): moveAroundwellv(u, Pne) ≡
isLeaf(v)∧Statev(bad)∧(Nnw(v) = u∧Stateu(well)).

(P2): moveAroundwellv(u, Pe) ≡
isLeaf(v)∧Statev(bad)∧ (Nne(v) = u∧Stateu(well)).

ASC.

The node can move around the diagonal nodes using
moveAroundwellv(u1, Pne) only if the diagonal nodes have
not a node at the E direction. All diagonal nodes get spe

state with the predicate Statev(spe), and with
moveAroundwellv(u1, Pe)) the node moves until it takes a
correct position. The state changing is more prior than mov-
ing actions in order to avoid bad motion. To avoid messages
exchanging, the node can change its state to well if it has
either 3 neighbors at the well state (Statev(n = 3, well)) or
one neighbor at spe state and two neighbors in both NE and
NW directions.

5.2 ASC and Snap-Connectivity property
ASC maintains the snap-connectivity property since it

uses the tree mechanism where only the leaves can move.
Since only leaf nodes can move, moved nodes will not gen-
erate a hole between nodes connected through it. We can
divide the move impact into two categories. A first case hap-
pens when no new neighbor is appearing after the movement.
In this case there is no ti when the message cannot be sent
because during the motion it was being always the neighbor
of the node used it to move. The second case appears when
the moved node gets a new neighbor. In this case, before
it let its neighbor it becomes a neighbor node with another
node that is connected since the graph was connected at be-
ginning, so there is another route for the message of Cv,u
which will not be blocked for all ti, i ∈ {1, ..., n}.

5.3 Movement rounds complexity analysis
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To form the NxN square matrix, starting from n nodes
(
√
n = N), we use an incrementally process with a single

node that we assume in a correct square 1x1. Then we add,
each time, a new layer that contains the number of nodes
of the last column plus the number of nodes of the last line
of the current square plus one node. For example to reach
the square 2x2 we have to add a new layer with three nodes.
Considerer the figure 4, the node i will, at the end, take the
position p+x. Following the path from up to down the node



i still fix until that all node j > i been moved. Consequently,
if A is before B, and node A takes the position p + c and
node B takes the position p+k. We deduce then that c > k.
The number of nodes into each layer follows an arithmetic
sequence:

Uj = Uj−1 + 2. (3)

Where: Uj is the number of nodes in the layer j and Uj−1

is the number of nodes in layer j − 1. Now, the nodes of
the initial chain are partitioned and a rank or level is asso-
ciated with each subset. The nodes partitioning is obtained
as follow: the first

√
n node on the top of the chain get the

level 0. Then the next γ = (2
√
n−2) nodes are assigned the

level 1. Level 2 is assigned to the following γ = γ − 2 nodes
and so on (Figure 5 shows en example). We notice L(i) the
level of the node i.

The number of movement rounds for each node i of level
j can be given with the composition of two sequences Ui,j
and Sj .

Sj =


0, if j = 0.

2
√
n− 5, if j = 1.

Sj−1 − 2, otherwise.

(4)

With Sj is a number associated to nodes that have the level
j.

Ui,j =


0, if j = 0.

2, if i =
√
n+ 1 ∧ j = 1.

Ui−1 − Sj , if L(i+ 1) 6= j.

Ui−1 + 2, otherwise.

(5)

Where Ui,j and Uj represent respectively the number of
movement rounds of the node i of a level j and the number
of movement rounds of each node of a level j.

Theorem 5.1. The highest number of movement rounds
induced by ASC is equal to n.

Special case
We study here the case where the number of nodes n is
not a square of an integer number. To calculate the owner
movement rounds of a given node we consider a similar par-
titioning system as before. The highest number of movement
rounds to reach the final form remains n.

Let q = b
√
nc, and diff = n− q2.

Ui,j =



0, if i ≤ q.
diff + 2q − 1, if i = q + 1.

Ui−1 − 2, ifq + diff ≥ i > q

diff + 2, if i = q + diff + 1.

Ui−1 − Sj , if i > q + diff ∧ L(i+ 1) 6= j.

Ui−1 + 2, otherwise.

(6)

5.4 Three states necessary and sufficient
ASC proceeds using three different states (well, bad, spe).

In this section we prove that three states are a minimum to

obtain the algorithm convergence. Obviously, with a single
state, nodes have no way to distinguish whether they are in a
good position or not and therefore if the node should move
or not. Supposing we seek a distributed algorithm using
two states, with two states a node knows whether it is in a
good position or not. Node moves to West or North-West
around nodes that have a well state (figure 6.a). However,
at the early rounds, the nodes forming the diagonal will be
authorized to move around nodes having the state well and
have not a neighbor at NE and NW direction, wich will
give another chain, and we loss the aim see figure 6.b) .In
other hand, in the algorithm the node can change its state to
well if it has three neighbors having the well state, but the
node that is in W direction from the diagonal node cannot
move to NW and has only two neighbors having well state,
and it must change its state. There is no benchmark to
distinguish those situations only with adding a special state
to nodes forming the diagonal. On the other hand, to avoid
message exchange, the node can change its state to well if
it has three neighbors having well state, but while building
the new layer diagonal node has only two neighbors having
well state while the same case are other nodes not illegal
to change its state, so these can be solved by adding this
spe state. A third state is essential to differentiate the node
that can move around a node having state spe. Therfore, it
can move around it, if and only if it has no right neighbor
(figure 6.c).

a b
      c

Figure 6: States of nodes

5.5 Null complexity of sent messages
The most interesting action for message changing in the

algorithm is the one activated by state changing predicates,
from the bad state to well (Statev(well)), it is obvious that
if a node changes its state before it be sure of the good state
of other nodes that have moved before it in the current layer,
the process will completely go in the opposite direction of
the desired objective and self-reconfiguration desired, the
predicate Statev(well) ensures without exchanging of mes-
sage that the node changes its state only if all nodes that
have moved before it have changed their states, therefore
the first node that begins the construction of the new layer
does not need to wait for the message of the first node that
began the previous layer. Since the node that is currently
checking the predicate Statev(well) can have this informa-
tion by simply consulting (message) the state of its former
neighbors. In other words, the message was being sent be-
fore that the node needs to know the state of its sender,
when the node needs to know it, the node will find the mes-
sage at its physical neighbor. So we do not need to transmit
information from the node blocked necessarily in a good po-
sition with the well state to other nodes which are forming
the new layer which explains that throughout the algorithm
in any case we do not need to transmit information between
two non-neighboring node of the new layer, this efficiency is



explained by the fact that synchronization in state changing
is not required for nodes that are in the same layer. We
would note that we do not count the messages for the tree
construction of ASC.

5.6 Generalization of the algorithm
Presented ASC is specific to a chain case where nodes form

initially a straight line oriented toward SE-NW directions.
In this section we describe how the algorithm can be gener-
alized to any kind of initial straight chain with any direction
as shown in figure 7. We start by explaining how the initia-
tor (root) node is selected whatever is the direction of the
straight chain. For this end, the node with only one neighbor
situated either in SW, SE or E direction is chosen as root
node. Every node in the chain can deduce the orientation
of the chain (one of the three cases represented in figure 7)
by analyzing the orientation of its neighbors. For example,
if a node corresponds to an extremity node (one neighbor)
where the direct neighbor is on the E side, the node deduces
that the straight line is oriented E-W. The same thing is
happened on the middle nodes, which use the orientation
of their two neighbors to determine the orientation of the
formed chain. Generally, every node after the detection of
the chain orientation, noted D-D, runs a variant of the ASC
algorithm depending of the orientation D ∈ {W,NW,NE}.
The variant of ASC algorithm, ASCD, represents an adap-
tation of the the original ASC algorithm (corresponding to
ASCNW to the two other possible orientations. For instance
if the initial chain is oriented NE-SW, the algorithm ASCNE

is called, and the square form is realized using moves of type
moveAroundbadv(u1, Pw), moveAroundWellv(u1, Pw) and
moveAroundwellv(u1, Pnw). The usage of these three pred-
icates is described in figure 8.

RootRoot

Root

Figure 7: The three possible cases of a straight
Chain.

u1

Root Root Root

u1 u1

moveAroundbad w(u1, P  )v
moveAround (u1, P  )

v
moveAround w(u1, P  )

vnw

v
v

v

wellwell

Figure 8: Moves adaptation in the case of NE-SW
chain. Dark nodes represent the well-state node.

6. SIMULATION
We have done the simulation with the declarative lan-

guage Meld that uses the DPRSim simulator. In our sim-
ulations the radius of the node is 1 mm1. We simulated
with a laptop with processor Intel(R) Core(Tm)i5, 2.53 Ghz

1The time of one movement round depends on the size (the
diameter) of the microrobot, as shown in section 4.
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with 4 Go of memory. The results of these simulations come
to agree the results obtained previously, in particular as re-
gards the owner movement rounds, figure 9 represents the
number of movement rounds by number of nodes and figure
10 represents the execution time in ticks by the number of
nodes, with counting the tree and without counting the tree.
We see that the time of the tree has an impact on the total
time of the algorithm.
In the curves that represents the movement rounds, we re-
mark for some values of the network size n, the number is
always is n. For the curves that represent the times of exe-
cution figure 10, without counting the time of construction
of the tree of ASC we see that if the number of nodes in-
creases the time increase. We see, if we count the time of
the tree (O(n) time), the time execution of the algorithm
increases dramatically.

7. CONCLUSION
In this paper, We proposed a distributed and efficient al-

gorithm for Self-reconfiguration of MEMS microrobots. We
presented a new method to complete the self-reconfiguration
where the nodes do not know the fixed positions of the tar-
get form but only the aimed shape. We have presented a
protocol that ensures the connectivity throughout the ex-
ecution time of the algorithm. The proposed algorithm is
characterized by a linear time complexity regarding to the
system size (microrobots number) with a constant memory
needs. Messages exchange is limited to neighboring consul-
tations except the messages of the first tree. Consequently
system reconfiguration is quite fast.

However, some open problems remain. We study the con-
ception of an energy-efficient algorithm when the starting
form may be any connected shape, in wish we predict the



loss of these previous characteristics found in this paper, in
particular the number of states of each node and the mes-
sages exchanging. In our algorithm, the number of owner
movement rounds is calculated (predicted) according to the
size of the network. The question is then to know if it is
possible to calculate the owner movement rounds without
knowing the size of the network. finally, is it possible to
generalize the idea of this paper to any targeted shape?
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