

Tactile discrimination of surfaces:

Role of physicochemical, mechanical and morphological human finger properties on the in vivo friction behavior

PH Cornuault ¹, MA Bueno ², L Carpentier ¹, G Monteil ¹

¹ Femto-ST, UMR CNRS 6174, Applied Mechanics Department, 24 rue de l'épitaphe, Besançon, France ² Laboratoire de Physique et Mécanique Textile, EA CNRS 4365, 11 rue Alfred Werner, Mulhouse, France

Aim of this study

Development of tactile interfaces & stimulators

Friction forces modulation between the fingertip and an active counterpart

Problem: fingertip properties variability between individuals

- Fingertip roughness
- Skin mechanical properties
- Stratum Corneum chemistry

Friction behavior during touch

For 26 individuals (13 females and 13 males)

Fingertip properties characterization

from 60 to 160 µm

Friction measurements

Linear reciprocating tribometer

- Tangential motion direction of the right forefinger of individuals
- 1 pass: sticky & slippery surfaces
- Scanning speed = 4 mm/s
- Sliding distance = 40 mm
- Measurement of F_N & F_T COF
- Loading ≈ 0.5 N (controlled by

-30

-20

displacement (mm)

20

Results

Validation of
Stimtac as a good
tactile friction
forces modifier for
sticky/slippery
surfaces simulation

Gender influence on μ_{stick} , μ_{slip} & FC

Bad correlation of R_t , S_p or E^* with both Frictional Contrast & COFs (μ_{stick} or μ_{slip})... But...

Hydrolipidic film composition is highly responsible of Frictional Contrast values for sticky/slippery flat surfaces