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Abstract

Simulating the dynamic behaviour of heterogeneous finite-element structures such as electric motors often
requires to homogenise the models in the first place. Current homogenisation methods do not always imply
computing an equivalent homogeneous material’s elasticity matrix and are often restrained to specific
uses. In this document, a novel approach of equivalent material identification is developed for multi-
layered orthotropic structures. A finite-element model of a 3D stratified structure is created, as well as
its equivalent homogeneous medium. The dynamic behaviour of the homogeneous structure with the
equivalent material identified by the new method is compared at low frequencies to the reference stack
and to equivalent materials created using other existing homogenisation techniques. It is shown that this
approach is more accurate than existing reference homogenisation methods. Applied to the magnetic
core’s finite-element model of a real laminated electric machine stator, the method enables simulating the
experimental behaviour with good accuracy, without need of time-consuming model updating procedures.

Keywords: homogenisation, laminated structures, effective medium, electric machine stator, magnetic
core, superelements

1. Introduction

In order to analyse a complex structure’s dynamic behaviour, modelling its components may become
difficult if they are numerous, small, or if some of the assembly properties are not known. This is one
of the reasons why so-called “homogenisation” methods have been developed. They aim at recreating
a given heterogeneous structure’s behaviour by reducing the multiplicity of its components’ properties,
and also enable to mesh the structure independently from the sizes of the heterogeneities, that could have
imposed numerous degrees of freedom in the models. Such methods are much desired for modelling
composite materials, and especially for laminated structures. Kalamkarov et al. [1] have thoroughly listed
and compared over 200 studies about homogenisation and have assessed the pros and cons of various
analytical methods and specific applications.

For industrial projects in structural dynamics as well as academic research involving finite-element
simulations on heterogeneous structures, the need of efficient techniques able to model homogeneous
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Symbols Definitions
Fd,i reaction force on node i, direction d
T x, Ty, T z translational DOFs
∆ld,i displacement of node i, direction d
ψ̃ global/equivalent property ψ

subscript n referring to layer n
subscripts x, y, z referring to directions x, y, z
DOF degree of freedom
FE finite-element
2D, 3D two-dimension, three-dimension
BuN number of nodes on face u = N
UhN set of nodes on face h = N

Table 1: Nomenclature

equivalent structures both accurately and cost-effectively is great [2]. Therefore, there is a significant
interest for simple tools yielding results directly usable for common finite-element software. Motivated
by the current coming-up of hybrid or 100%-electric vehicles, the development of silent devices (as well
as other noise, vibration and harshness (NVH) specifications) in the automotive industry involves finite-
element modelling of heterogeneous structures such as electric motor stators [3]. In this perspective,
the main objective of this article is to establish a method to determine representative equivalent material
properties (elasticity matrices) for laminated structures, especially for the applicability to any kind of
finite-element simulation (including dynamic responses, model updating, etc.) without being limited to
specific cases.

Concerning stratified materials, many applications are made under the assumption of plane stresses
and strains (for instance with laminated beams or shells), for which theory predicts static and dynamic
behaviours with good accuracy (e.g. [4]). In addition, there also exist exact theories and solutions describ-
ing the vibration of stratified beams and plates, such as the works [5] and [6], as well as ready-to-use 2D
laminated finite elements present in several software programmes (see e.g. [7]). A finite-element-based
homogenisation technique taking into account viscoelastic properties in 2D-laminates has been proposed
by Koishi et al. [8]. However, some other analyses can not be simplified by such assumptions – take the
case of no dimension being negligible in the model – and have to be meshed in 3D.

A short review of some existing “3D-homogenisation” methods is made, as well as the fields of their
applications. Such techniques are particularly relevant when e.g. parts of 3D finite-element models are
multi-layered and need to be homogenised. First of all, the relations that may be the simplest for de-
termining a homogeneous material equivalent to a heterogeneous structure, and that are used in many
studies (including reference works in the field of composite materials, such as [4] and [6]), are weighted
averages of the different components’ elastic constants, sometimes referred to as the “rule of mixtures”.
As shown in [6], the expressions are built from the decompositions of the structure’s global stresses and
strains according to each of the components.

Let us consider a laminated structure composed of N isotropic layers, stacked along the z-axis. For
each layer n, the material’s corresponding density ρn, Young’s modulus En and Poisson’s ratio νn are
initially known, as well as its volume fraction:
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χn =
Vn

V stack , (1)

where Vn and V stack respectively stand for the layer’s and the entire structure’s volumes. Then, equivalent
density ρ̃ , Young’s moduli Ẽi, shear moduli G̃i j and Poisson’s ratios ν̃i j may thus be computed with the
following relations:

ρ̃ =
N

∑
n=1

ρnχn , (2)

Ẽx = Ẽy =
N

∑
n=1

Enχn , (3)

Ẽz =

(
N

∑
n=1

χn

En

)−1

, (4)

ν̃xy =
N

∑
n=1

νnχn , (5)

ν̃xz = ν̃yz = ν̃xy
Ẽz

Ẽx
, (6)

G̃xy =
Ẽx

2 · (1+ ν̃xy)
(7)

and

G̃xz = G̃yz =

(
N

∑
n=1

2 ·χn · (1+νn)

En

)−1

. (8)

These expressions already give a good approximation of the structure’s global behaviour, at the cost
of relatively simple calculations to perform. However, they might not be adapted to cases more complex
than stacks of isotropic layers. Begis et al. [9] have developed an analytical method (summed up and
reapplied in [10]) for the determination of any structure’s equivalent elasticity matrix C̃ from its compon-
ents’ elasticity matrices, that may even describe a triclinic behaviour, the most general material definition
without any symmetries or simplifications.

For a given point on a structure, the elasticity matrix C is defined by Hooke’s law σ = Cε , where σ is
the stress tensor and ε the strain tensor [11]. The entire linear system is:

σ11
σ22
σ33

σ23
σ13
σ12


=



C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46
sym. C55 C56

C66





ε11
ε22
ε33

2 · ε23
2 · ε13
2 · ε12


, (9)
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in which the indices 1, 2 and 3 correspond to the respective directions x, y and z in a rectangular coordinate
system, or r, θ and z in a cylindrical coordinate system. In its most general definition, matrix C stands is
a fourth-order tensor [11], such as:

C =



C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212


. (10)

Begis et al. [10] propose a general definition of a Y -periodic structure’s equivalent elasticity matrix
from an asymptotic homogenisation approach. Considering the unit cell periodically repeated in the entire
structure and represented in the set of directions y = {y1,y2,y3}, Y -periodic vectors W pq (y) need to be
calculated, as solutions of

∂

∂y j

(
Ci jkh (y) · εkh (W pq)

)
=
−∂

∂y j
Ci jpq (y) (11)

in Y . Then, the homogenised coefficients C̃i jkh are computed by:

C̃i jkh =
1

volY

ˆ
Y

[
Ci jkh (y)−Ci jpq (y) · εkh (W pq)

]
dy , (12)

where volY is the actual volume of unit (base) cell. This approach was compared in [10] to the works [12]
and [13] which addressed the same issues, and has been declared more accurate by the authors. Also, other
studies were based on the same general expressions (see Eq. (11) and Eq. (12)) and have proposed similar
analytical approaches – amongst others, the articles of Lukkassen et al. [14], Kalamkarov et al. [15],
Hassan et al. [16] and Cheng et al. [17]. In spite of the appropriateness to describe periodic structures
with equivalent elasticity matrices in the general case, this method may be complicated to apply due to the
need of resolving condition (11) in the first place. This difficulty is outlined in [18], where the resolution
techniques of the general expressions (11) and (12) are denoted to be “nebulous” by the authors.

However, this general homogenisation technique has been applied to laminated structures in [9], and
led to “clear” expressions given for the same case as before: a structure of N isotropic layers stacked along
the z-axis. The algorithm is referred to as “INRIA” (“Institut National de Recherche en Informatique et
en Automatique”, i.e. french Institute for Research in Computer Science and Automation) in the entire
article, and is detailed as following. Each layer’s elasticity matrix Cn is defined with Lamé’s coefficients
λn and µn so that

Cn =



λn +2µn λn λn 0 0 0
λn λn +2µn λn 0 0 0
λn λn λn +2µn 0 0 0
0 0 0 µn 0 0
0 0 0 0 µn 0
0 0 0 0 0 µn

 . (13)

With the aid of the coefficients I0, I1, I2 and J0 such that
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Ih =
N

∑
n=1

(λn)
h

λn +2µn
·χn (14)

and

J0 =
N

∑
n=1

χn

µn
, (15)

the constants C̃11 are computed with the global relations [9]:

C̃11 =
I2
1 − I0I2

I0
+

N

∑
n=1

(λn +2µn) ·χn , (16)

C̃22 = C̃11 , (17)

C̃12 =
I2
1 − I0I2

I0
+

N

∑
n=1

λnχn , (18)

C̃13 = C̃23 =
I1

I0
, (19)

C̃33 =
1
I0

, (20)

C̃44 = C̃55 =
1
J0

(21)

and

C̃66 =
N

∑
n=1

µnχn . (22)

The expressions, initially defined with an integration over the entire structure’s thickness, have been
here expressed under a discrete form. The laminated stack’s equivalent elasticity matrix is therefore com-
posed:

C̃ =



C̃11 C̃12 C̃13 0 0 0
C̃11 C̃13 0 0 0

C̃33 0 0 0
C̃44 0 0

sym. C̃44 0
C̃66

 , (23)

and by the way verifies the property of transverse isotropy

C̃11 = C̃12 +2 ·C̃66 . (24)

Identical expressions have been proposed in [19]. As for Cecchi and Sab [20], they have proposed
a numerical homogenisation method for orthotropic structures based on a Reissner-Mindlin model, and
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applied it to brick walls. Although efficient, the algorithm nonetheless requires computing correction
factors amidst the numerous computation stages and therefore seems tricky to implement.

There exist other numerical models. The works of Watt et al. [21], Kamiński and Kleiber [22], and
Magalhães Dourado [23] have aimed at identifying composite structures’ elastic coefficients by the means
of statistical methods, that seem complicated to use in simple, deterministic studies. As for Araújo et al.
[24], they have proposed a numerical model for the identification of elastic properties of laminates, applied
it to the dynamic behaviour of a stratified plate and compared the results with experimental measurements.
Yet, this approach does not identify all 6 lines of Hooke’s law elasticity matrix, and is therefore too
restrictive to be applied to generic 3D structures.

Apart from homogenisation techniques, the recent development of several types of industrial materials
and devices have motivated research in the comprehension and prediction of laminated structures’ dynamic
behaviours. A type of device currently under the spotlight is alternating electric machines, the stators of
which are built from a multi-layered laminated structure, called the magnetic core. Amongst the studies
made in this field, the works of Wang [25], Verma [26], Williams [27] or Le Besnerais [28] bring sensible
notions of stator and magnetic core dynamics to the table, yet without exhibiting elastic properties or
modelling techniques. As for modelling guidelines, the necessity of taking other heterogeneities such as
weld beads into account in a homogenisation process of the magnetic core has, to the authors’ knowledge,
not yet been addressed in the literature.

As for the use of composite materials in commercial software, the implementation of 3D laminated
structures is not documented or is restricted to specific non-linear or static studies. Only few works
tackling homogenisation issues show the comparison of their results to those obtained with commercial
software in such cases. Based on Barker’s results [29] – stating that 3D-homogenisation of compos-
ite structures necessarily induces detrimental errors – Kuhlmann and Rolfes have developed their own
3D-laminated finite element [30], seemingly as accurate as MSC.MARC™’s. However, to the authors’
knowledge this finite element has not yet been implemented into any software packages available on the
market.

Finally, concerning experimental analyses, several approaches exist to measure the elastic behaviour
of a structure. Hearmon [31] and Hayes [32] have detailed a few ways to identify a structure’s entire
elasticity matrix from measurements. But as this method requires several types of analysis and several
types of samples, it seems very difficult to inspire an analogous application to finite-element models. This
same difficulty also compromises the use of other methods, such as those developed in the articles of
Pierron et al. [33] and Rikards et al. [34, 35, 36].

In this section, several types of approaches have been discussed for the application to laminated struc-
tures. Some of them are numerical or analytical/asymptotic homogenisation techniques, or deal with
experimental applications, while others are based on finite-element models. The novel method proposed
in this article belongs to this last category: it is based on finite elements. The emphasis is made on repres-
entative elasticity matrices, which constitute stress-strain laws for the considered materials and determine
stiffness matrices for both static and dynamic analyses. The following sections will detail its applications
to simulate the dynamic behaviours of multi-layered orthotropic laminates as well as the magnetic core of
an electric motor stator. The last section will also investigate efficient modelling techniques for FE mod-
els of electric motor stators and compare the modal simulations to experimental data from an industrial
structure.
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2. Development of the “Orthotropic” method

In this section, a new approach aiming at determining the elastic properties of a heterogeneous struc-
ture is proposed. The equivalent material thus defined is assumed to be orthotropic (as explained in
Section 1) and is characterised by nine elastic coefficients: Ex, Ey, Ez, Gzy, Gzx, Gxy, νyz, νxz and νxy.
By the means of a limited number of static simulations and by simple processing of the corresponding
displacements in the structure, all nine elastic coefficients can be computed. The definition of shear in the
case of laminates can be ambiguous due to the orientation of the structure, and is therefore addressed in
this article.

The study taken as an example in this section is a stack along the z-axis of three isotropic thick layers,
for which the theory predicts a global transversely isotropic behaviour [11]. The structure is a cuboid <1,
2, 3, 4, 5, 6, 7, 8> composed of three 8-node solid elements, as shown in Fig. 1. The nodes 101, 102,
103, 104, 105, 106, 107 and 108 represent the respective interfaces with their two neighbouring elements.
Also, the coordinate system for the whole structure is global (i.e. rectangular unitary system) and its origin
taken as node 1. The cuboid’s dimensions are Lx, Ly and Lz and its faces’ respective areas Ax (faces x = 0
and x = 1), Ay (faces y = 0 and y = 1) and Az (faces z = 0 and z = 1). The descriptions of external faces
is made with ’= 0’ or ’= 1’ notations (referring to the limits of the structure’s volume), despite Lx, Ly and
Lz.

b2 b
3

b
7

b
6

b
1

b 4

b
8

b
5

x

y

z

b106

b
102

b105

b
101

b
107

b
103

b108

b
104

Lz

Lx

Ly

Ax

Ay

Az

Figure 1: Structure geometry

The first simulation is a pure tension along the x-axis shown on Fig. 2: a static displacement δx is
enforced along−x to the nodes 1, 4, 5, 8, 101, 104, 105 and 108 (face x = 0), while the same displacement
δx is enforced along +x to the nodes 2, 3, 6, 7, 102, 103, 106 and 107 (face x = 1). In order to stabilise
the system, plane contact constraints are applied to the faces y = 0 and z = 0.

By computing the nodal displacements ∆lx,i, ∆ly,i and ∆lz,i as well as the reaction forces Fx,i, Fy,i and
Fz,i at every node i, the stress σxx can be found using the relation

σxx =
1
Ax

∑
i∈Ux1

Fx,i

2
, (25)
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Figure 2: Pure tension along x

where Ux1 is the set of nodes located on face x = 1. Therefore, the Young’s modulus Ẽx in the x-direction
may be found with [37]

Ẽx = σxx ·
Lx

δx
, (26)

where the ratio Lx/δx is related to the normal strain εxx by

Lx

δx
=

1
εxx

. (27)

The Poisson’s ratios ν̃xy and ν̃xz can then be computed with the mean displacements ∆ly
(Uy1) and

∆lz
(Uz1), such as

∆ly
(Uy1) =

1
By1

∑
i∈Uy1

∆ly,i (28)

and

∆lz
(Uz1) =

1
Bz1

∑
i∈Uz1

∆lz,i , (29)

where By1 and Bz1 respectively refer to the numbers of nodes on the faces y = 1 and z = 1 (e.g. for a
stack with three layers, Bx1 = By1 = 8 and Bz1 = 4). This finally yields:

ν̃xy =
−∆ly

(Uy1)

2 ·δx
· Lx

Ly
(30)
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and

ν̃xz =
−∆lz

(Uz1)

2 ·δx
· Lx

Lz
. (31)

Two similar simulations along y and z yield the global structure’s remaining Young’s moduli and
Poisson’s ratio:

Ẽy =
Ly

Ay ·δy
∑

i∈Uy1

Fy,i

2
, (32)

Ẽz =
Lz

Az ·δz
∑

i∈Uz1

Fz,i

2
(33)

and

ν̃yz =
−∆lz

(Uz1)

2 ·δy
·

Ly

Lz
. (34)

Finally, the reciprocal Poisson’s ratios ν̃yx, ν̃zx and ν̃zy must verify the symmetry of the global elasticity
matrix [11], such that

ν̃i j

Ẽi
=

ν̃ ji

Ẽ j
. (35)

The shear moduli G̃zy, G̃zx and G̃xy may be found with shear simulations. However, some attention
must be paid to defining shear in the case of non-isotropic materials and particularly for laminated compos-
ites. Although an orthotropic structure’s shear moduli are often estimated without explicit consideration
of either sliding or transverse shear configurations ([10, 4, 11]), it may be observed in practice that the
two behaviours are not equivalent in general. This is why, in this document, the analysis separates sliding
shear (illustrated on Fig. 3) from transverse shear (illustrated on Fig. 4) in the respective “Ortho1” and
“Ortho2” scenarios. It may be noted that the identification of Young’s moduli and Poisson’s ratios remains
identical in both scenarios.

The next paragraphs detail the determination of shear moduli by sliding shear schemes, which there-
fore correspond to the “Ortho1” scenario (see Fig. 3). The simulation combines an enforced displacement
δy applied along −y at nodes 1, 2, 3, 4 (face z = 0), the same displacement δy along +y at nodes 5, 6, 7,
8 (face z = 1) and plane contact constraints on the same faces z = 0 and z = 1 in order to generate pure
shear. To stabilise the system, the Tx degree of freedom at node 1 is fixed.

The stress σzy is defined by the relation

σzy =
1
Az

∑
i∈Uz1

Fy,i

2
, (36)

where Uz1 is the set of the nodes located on the face z = 1. Finally, this yields the shear modulus G̃zy [37]:

G̃zy = σzy ·
Lz

δy
, (37)

where the ratio Lz/δy is related to the shear strain εzy by
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Figure 3: Pure sliding shear z− y (Ortho1)
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Figure 4: Pure transverse shear y− z (Ortho2)

Lz

δy
=

1
γzy

=
1

2 · εzy
. (38)

The two other shear moduli are then computed in a similar way and are defined by the following
expressions:

G̃zx =
Lz

Az ·δx
∑

i∈Uz1

Fx,i

2
(39)

and

G̃xy =
Lx

Ax ·δy
∑

i∈Ux1

Fy,i

2
. (40)
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3. Comparison with other existing methods

The results of the “orthotropic” method presented in Section 2 have been compared to those obtained
from some other methods that could be applied to such structures: three isotropic layers stacked along the
z-axis, whose properties are gathered into Table 2. The structure’s base cell is a 1-centimetre-long cube
for which the layers are organised as following (for increasing z): titanium (l1 = 0.4cm), polypropylene
(l2 = 0.2cm) and steel (l3 = 0.4cm), where li represents the layer’s thickness.

S
te

el

Po
ly

pr
op

yl
en

e

Ti
ta

ni
um

E [GPa] 207 2.0 121
ν [−] 0.25 0.40 0.34

ρ
[
kgm−3

]
7875 1200 4430

l [cm] 0.40 0.20 0.40

Table 2: Initial stack

The other methods being compared are the homogenisation algorithm developed in [9] and the so-
called “weighted averages”, that is to say the two approaches detailed in Section 1. A larger structure
was built from this base cell, standing for a reference for comparisons. The global structure is shaped as
a cuboid, has 5,024 elements, 30,144 DOFs; its dimensions along x, y and z are respectively 210 mm,
110 mm and 60 mm, so that the unit cell is reproduced periodically in every direction.

Also, a node-to-ground 3-D stiffness element is linked to each of the global cuboid’s 8 outer nodes,
with stiffness values of Kntg = 107 N ·m−1 on every direction (x, y and z). The global laminated structure
taken as a reference is illustrated on Fig. 5.

node-to-ground
stiffness elements

Figure 5: Global laminated reference structure

The homogeneous finite-element models based on each of the equivalent materials have the same
dimensions and the same total mass as the reference structure and are made of 1-centimetre-long cubic
8-node solid elements.

11



The elastic coefficients of the equivalent materials respectively computed with each of the three meth-
ods are compared in Table 3. “Ortho1” and “Ortho2” refer to the scenarios developed in Section 2,
“INRIA” to the homogenisation algorithm detailed in [9], and “WA” to the weighted averages. Also, the
elasticity matrix C̃O1 equivalent to the material computed with method “Ortho1” corresponds to:

C̃O1 =



164 59.3 9.63 0 0 0
164 9.63 0 0 0

19.4 0 0 0
3.34 0 0

sym. 3.34 0
51.3

 ·109 . (41)

For each case, the mass matrix of the homogeneous equivalent structure is computed from the relation (2)
(weighted averages). Apart from the reference structure, every mass matrix is therefore identical. Finally,
the row “CC” compares the computation costs (in seconds) for each of the methods used. The finite-
element solver NASTRAN™ v. 2013 is used for scenarios “Ortho1” and “Ortho2” (with a dual-core
2.5 GHz processor and 16 GB of RAM), whereas results for “INRIA” and “WA” are computed with Scilab
v. 5.4.1.

O
rt

ho
1

(s
lid

in
g

sh
ea

r)

O
rt

ho
2

(t
ra

ns
ve

rs
e

sh
ea

r)

IN
R

IA

W
A

Ẽx [GPa] 132 132 137 132
Ẽy [GPa] 132 132 137 132
Ẽz [GPa] 18.7 18.7 19.0 9.50
G̃zy [GPa] 3.34 51.3 3.40 3.40
G̃zx [GPa] 3.34 51.3 3.40 3.40
G̃xy [GPa] 51.3 51.3 51.3 50.0

ν̃yz [−] 0.326 0.326 0.313 0.023
ν̃xz [−] 0.326 0.326 0.313 0.023
ν̃xy [−] 0.343 0.343 0.338 0.316

ρ̃
[
kgm−3

]
5,160 5,160 5,160 5,160

CC [s] 8 8 <1 <1

Table 3: Comparison of elastic coefficients

It can be seen that the computation costs are all below 10 seconds, although they do not account for the
time necessary to prepare the solutions. Independently from this preparation time, the presented method
can be automatised and be adapted to any types of structures, at the cost of quick changes to perform (e.g.
element thicknesses).
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3.1. Modal correlation between the two structures

A convenient and accurate way to evaluate the extent to which a given structure is able to recreate
the dynamic behaviour of a reference is to compare vibration modes. These modes constitute a so-called
modal basis and describe how and at which frequencies the structure generates a resonance in response of
applied loads. Being able to compute the modal basis with accuracy is thus necessary to ensure a good
representativity of the finite-element model for dynamic simulations.

The comparison of two modal bases (usually truncated to the first, low-frequency modes) can be
made according to several criteria [38] and is part of model updating processes. One convenient way
to estimate such modal correlation is to compare each vibration mode of the first model to each of the
second. Therefore, two matrices are computed: ∆f and MAC, of size M1×M2, and where M1 and M2
respectively stand for the numbers of vibration modes considered for the first and the second structures.
Each component ∆ f (me,i,ma, j) of the matrix ∆f expresses the relative difference between the natural
frequency of the first structure’s i-th vibration mode m1,i and the second structure’s j-th mode m2, j, and is
defined by the relation:

∆ f (m1,i,m2, j) =
f1,i− f2, j

f1,i
, (42)

where f1,i et f2, j are the natural frequencies respectively corresponding to the modes m1,i and m2, j. The
second matrix, MAC, expresses the similarities between the deformed shapes of the modes m1,i and m2, j
(respectively called φ1,i and φ2, j), according to the so-called MAC criterion (Modal Assurance Criterion).
Its components MAC (m1,i,m2, j) are defined by the expression [39]:

MAC (m1,i,m2, j) =

∣∣{φ1,i}ᵀ
{

φ2, j
}∣∣2

{φ1,i}ᵀ {φ1,i}
{

φ2, j
}ᵀ{

φ2, j
} . (43)

With these notions, two models perfectly correlated are defined by a matrix ∆f in which every diagonal
component is at 0%, and a matrix MAC in which every diagonal term is at 100%, and the others at 0%.
Finally, the pairs of vibration modes for which MAC values are highest are assembled, and are taken into
account for the correlation if the MAC values are above a fixed threshold.

3.2. Results

The correlation between each of the three homogeneous structures (to which the materials computed
by each method have been applied) and the reference model have been compared. To do this, the first 50
vibration modes have been computed for each case, amongst which the first 6 modes (between 413 Hz
and 853 Hz) describing the “suspension” related to the node-to-ground elements have been discarded. For
the reference structure, the 7th mode (and thus the first to be correlated) is at 3,073 Hz, while amongst all
homogeneous structures, the 7th mode of lowest frequency is at 2,947 Hz. The paired modes for which
MAC values were below 70% were discarded too. An example of paired deformed shapes between the
reference structure and the homogeneous model (computed with scenario “Ortho1”) is given on Fig. 6.

Structure (a) shows the deformation of the individual layers while structure (b) shows “flatter” bound-
aries due to bigger elements made of identical material properties. The two structures are paired in (c)
even though the elements are of different sizes and numbers in (a) and (b).

Then, the results of the correlation are plotted on Fig. 7 and summed up in Table 4 for the first 44
modes of the reference structure. For Npm mode pairs in a given correlation, the entities |∆ f | and MAC are
defined by the expressions:
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(a)   REFERENCE – Mode 3 (5,228 Hz) (b)   HOMOGENEOUS – Mode 3 (4,916 Hz)

(c)   MODE PAIR 3 – red dots: REFERENCE – blue solid: HOMOGENEOUS (“Ortho1”)

Figure 6: Compared models’ deformed shapes ((a): reference, (b): homogeneous, (c): mode pair)

|∆ f |= 1
Npm
·

Npm

∑
q=1

∣∣∆ f
(
mq

1,m
q
2

)∣∣ (44)

and

MAC =
1

Npm
·

Npm

∑
q=1

MAC
(
mq

1,m
q
2

)
, (45)

where mq
1 and mq

2 are the modes composing the q-th pair. The deformed shapes of the first 9 paired modes
used to illustrate the results on Fig. 7 are detailed in the Appendix, on Fig. A.1.

It can be clearly seen that the method “Ortho1” proposed in Section 2 is more accurate than the
weighted averages, and of equivalent quality to “INRIA” in such a setting, whereas using “Ortho2” leads
to more significant errors. Although for this stacking setting, the values of |∆ f | are all relatively high, still
39 modes of the 44 are identified by the method “Ortho1”.

Finally, “Ortho1” presents a new opportunity, that none of the approaches analysed in Section 1 did.
Indeed, this type of static simulation is not restrained to applications on finite-element models including
distinctive elements and materials, but may also be used with structures on which no information about
constitutive materials is available. For example, a superelement whose master-nodes describe the geo-
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Figure 7: Comparison of frequency differences with reference model (MAC > 70%) - captions “INRIA”, “WA”, “Ortho1” and
“Ortho2” respectively refer to the corresponding identification methods

metry of a cuboid could be analysed with the same method, leading to the construction of an equivalent
homogeneous material that would recreate the superelement’s stiffness behaviour.

4. Influence of stacking settings in a beam

This second application aims at analysing the influence of the number of layers in a cantilever beam.
For this, four FE models of laminated cantilever beams are created from the same base cell: three layers
of isotropic materials, either stacked along the beam’s length (models 1 and 2) or in a transverse direction
(models 3 and 4). Beam 1 is composed of more layers than beam 2, but of similar thicknesses: beam 2 is
shorter. To the contrary, the global dimensions of beams 3 and 4 are identical, while beam 4 is made of
more layers: each of them is therefore thinner. Finally, each beam is spanned along z, and its dimensions
along x and y are respectively 50 and 30 mm. The four configurations are shown on Fig. 8, and detailed in
Table 5.

The properties of the base cell are gathered in Table 6, in which E stands for the material’s Young’s
modulus, ν for its Poisson’s ratio and χ for the layer’s volume fraction (see Eq. (1)).

Applying the method “Ortho1” to this base cell yields equivalent material properties to models 1 and
2 (layers stacked along z):

Ẽx = Ẽy = 139GPa ,

Ẽz = 14.6GPa ,

G̃zy = G̃zx = 3.20GPa ,

G̃xy = 53.7GPa ,

ν̃yz = ν̃xz = 0.333 ,
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Nb paired modes 39 21 37 29
|∆ f | [%] 9.29 58.6 9.86 15.3
MAC [%] 93.1 83.7 93.8 89.9

Table 4: Correlation of the reference structure’s first 44 modes above 853 Hz
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1 4,776 2,970 28,656 z 1,200 198

2 1,032 630 6,192 z 252 42

3 4,824 3,000 28,944 y 1,200 3

4 37,386 30,000 224,316 y 1,200 30

Table 5: Details of laminated beams

and
ν̃xy = 0.293 .

As the stacking sequences are identical in all cases, the equivalent material properties for models 3 and
4 (layers stacked along y) are defined by the same elastic constants, where indices y and z are switched.

Each of the four beams is associated with a homogeneous one of identical dimensions, but made of
only one, equivalent material. A base of the first 72 vibration modes above 0 Hz is then computed for these
8 finite-element models. The modal bases of the initial models are compared to those of the corresponding
equivalent structures using the same criteria as described in Subsection 3.1, with a MAC threshold at 0%
for pairing the modes (so that all the modes are paired and taken into account). The results are gathered in
Table 7.

Table 7 shows that the correlation is globally much better than for Section 3 (in which the objective was
to compare the method with other existing ones). Also, the values of |∆ f | are significantly lower for the
beams with many layers (models 1 and 4) than for the others, showing that in these cases, the equivalent
materials are able to recreate the initial structure’s behaviour with good precision. Observing good overall

16



clamped 
face

x

y

z

(a) configuration 1

clamped 
face

x

y

z

(b) configuration 2

clamped 
face

x

y

z

(c) configuration 3

clamped 
face

x

y

z

(d) configuration 4

Figure 8: Configurations of laminated beams ((a): configuration 1, (b): configuration 2, (c): configuration 3, (d): configuration
4)
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χ [−] 1/3 1/3 1/3

Table 6: Properties of the beam’s base cell

correlation for models 1 and 4 and poor coefficients for models 2 and 3 is in agreement to the remark of
Lukkassen et al. [14], stating that their homogenisation expression is closer to the initial, heterogeneous
behaviour when the dimensions of the unit cell are small in comparison to the entire structure’s.

Eventually, the homogeneous material able to recreate the initial structure’s modal behaviour with the
best accuracy corresponds to the case of stratification in a direction transverse to the beam’s length.

5. Electric machine stators: experimental-numerical application

Modelling the stator of an electric machine, which is generally a laminated steel stack, is a very
interesting application for the studies of heterogeneous structures. Understanding the dynamic behaviour
of an electric machine stator is a key issue in the prediction of the electric machine’s noise and vibration
simulation and prediction [2]. As outlined in Section 1, a stator is built from a multi-laminated magnetic
core, on which windings are placed. This section will detail the simulation of a magnetic core’s modal
behaviour with the aid of the above-presented material property identification method, and will propose
several modelling guidelines for this type of structures.

5.1. Experimental data
The structure studied in this section is the magnetic core of a 12-tooth switched-reluctance machine

(without windings or resin). It consists in 400 steel sheets of thickness 360 µm, separated from each other
by 3-µm-thick varnish (epoxy) layers. Its dimensions are 154 mm (length) and 245 mm (outer diameter).
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1 2 3 4
Nb paired modes 72 72 72 72
|∆ f | [%] 3.19 11.1 9.51 1.38
MAC [%] 98.9 59.6 77.3 99.5

Table 7: Correlation of each beam’s first 72 vibration modes

By the means of a shock-hammer analysis, frequency response functions are measured for each of the
experimental mesh’s 108 degrees of freedom (36 points of 3 DOFs). From these response functions, 5
purely radial vibration modes could be extracted (amongst others). These modes, sometimes referred to as
“ovalisation” modes are particularly critical for the acoustic behaviour of the entire electric machine [3];
predicting them with good accuracy is therefore of particular interest. Pictures of the experimental setting
and mesh are shown on Figure 9 and Figure 10, respectively. This experimental modal basis stands for a
reference in this section.

Figure 9: Experimental setting

5.2. Finite-element model

Although it may differ from one type of machine to another, the production process for this magnetic
core consisted in coating steel layers with insulating varnish (in order to prevent eddy currents from taking
place in the structure and therefore dissipating energy) and then simply piling them one onto the others.
The stack was then placed under a press, and weld beads were applied on the lateral face while the
pressure was maintained. Two examples of finite-element models representing this structure are shown on
Figure 11.

The “initial” model details the structure as it really is: a stack of 400 isotropic steel layers separated
from each other by isotropic epoxy layers, and is made of 493,164 elements and 618,426 nodes. The de-
tails of the layers is given in Table 8. Even with powerful computational resources, performing simulations
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Figure 10: Experimental mesh (undeformed)

z
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θ

initial FE model homogeneous FE model

lateral face

top face

weld beads

Figure 11: Finite-element models of the magnetic core (axis along z)

on such a structure is time-consuming and therefore cost-prohibitive. This is why another finite-element
model is generated, from the same mesh in the top face, but whose elements are extruded with the same
dimensions throughout the structure’s length (axis z). The new FE model is called “homogeneous” as
it is made of only one homogeneous material (to be determined in the following paragraphs) throughout
axis z instead of the details of the layers. Its 19,158 elements and 24,768 nodes make it more appropri-
ate than “initial” for computing modal bases. Also, due to the revolution symmetry of the structure, the
finite-element models as well as the material properties are expressed in a cylindrical coordinate system
of directions r, θ and z, where z is the stacking direction of the layers.

5.3. Modelling guidelines

The weld beads applied on the stack’s lateral face are necessary to hold the entire structure in one
piece, by imposing a mechanical bond onto the whole length. In the rest of the structure, the sheets are
bound together only by the varnish. The pressure applied to the stack is maintained after manufacturing
near the weld beads and decreases with the distance in the rest of the structure. Although they are only
a few micrometres thick and mechanical properties may vary from one varnish type to another, the local
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E [GPa] 207 3.0
ν [−] 0.25 0.37

ρ
[
kg ·m−3

]
7,875 1,300

l [µm] 360 3

Table 8: Details of the “initial” model’s layers

behaviour of the varnish layers and thus the interaction between the steel sheets are very likely to be
dependent on the residual pressure in the stack, and therefore on the proximity to the weld beads (where
the pressure is maintained) or to the free edges. This explains the necessity of dividing the entire FE model
into several zones.

The analysis proposed for dividing the model efficiently is the computation of static stiffness at each
of the “initial” model’s top-face nodes, in order to estimate the tightness of the structure in relation to the
position on the face and the distance to the weld beads. The entire model is clamped (DOFs Tr, T θ and
T z fixed as no rotations are considered on 3D elements) at the nodes on the weld beads. Displacements
∆lz (along z) are computed in response of a 1-N static force applied along z at each node (except on the
weld beads). The static stiffness values Kz are then found by:

Kz =
1
|∆lz|

. (46)

The results are plotted on Figure 12.

z
r

θ

3
4

2
1

Figure 12: Distribution of Kz (in N ·m−1)

Judging from the results shown on Figure 12, four zones have been drawn according to the stiffness
values:

1. zone “prox” (elements near the weld beads, with 1.5×108 < Kz < 4.6×108 N ·m−1);
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2. zone “yoke” (with 1.3×108 < Kz < 3.7×108 N ·m−1);
3. zone “teeth-W” (elements on the teeth next to the weld beads, with 7.0×107 <Kz < 3.8×108 N ·m−1);
4. zone “teeth-Y” (elements on the teeth next to the yoke, with 6.7×107 < Kz < 3.6×108 N ·m−1).

Therefore, the “homogeneous” model should be divided into corresponding zones. It seems also
relevant to associate zones 3 and 4 into one same “teeth” material definition. Finally, the finite-element
model of the magnetic core which will be used for the dynamic simulations is shown on Figure 13, where
each zone corresponds to specific material properties.

weld 
beads

yoke

teeth

“prox”

z
r

θ

Figure 13: Zoning the magnetic core’s finite-element model (axis along z)

It seems important to note that the entire model is composed of 3D, solid elements, which need not
necessarily be cuboidal. Although the identification method is applied to base cells made of 8-node
cuboid elements (particularly convenient for modelling and homogenising stacked structures), meshing
the equivalent structure remains under the control of the user: the equivalent material may be applied to
any type of mesh, as long as the global geometry is kept unchanged. Therefore, the stator could have
been meshed with any type of solid element (e.g. four-, five- or six-sided), even mixed, as this choice has
negligible influence over the global structure’s vibrational behaviour. In this case, creating the mesh with
a base of six-sided elements is a good compromise between representativity and total number of DOFs.

5.4. Equivalent material properties

The first zone under the spotlight is “prox”, gathering the elements which are closest to the weld beads.
In this zone, the proximity to the weld beads ensures the stator’s tightest cohesion between the steel sheets,
and implies therefore the best regularity in the successive varnish layers’ thicknesses. This means that the
cell <half-thick steel sheet; varnish sheet; half-thick steel sheet> is repeated regularly through the stator’s
length (dimension along z), with the same thicknesses everywhere. The corresponding finite-element
model which will be used for material identification is therefore a 3-layered cuboid with a square base of
length 400 µm, as illustrated on Figure 14. Its layers’ Young’s moduli E, Poisson’s ratios ν and thicknesses
l are gathered in Table 9. In the whole FE model, the same density ρ̃ is applied to all the zones and directly
taken from the measurements on the stator:

ρ̃ =
mtot

V tot
= 7,750kg ·m−3 ,
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ν [−] 0.25 0.37 0.25
l [µm] 180 3 180

Table 9: Properties of the base cell of zone “prox”

where mtot and V tot respectively refer to the stator’s total mass and volume.

Applying method “Ortho1” to the base cell of zone “prox” yields an equivalent material, whose elastic
constants are:

Ẽprox
r = Ẽprox

θ
= 205GPa ,

Ẽprox
z = 157GPa ,

G̃prox
zθ

= G̃prox
zr = 51.2GPa ,

G̃prox
rθ

= 82.1GPa

and
ν̃
prox
θz = ν̃

prox
rz = ν̃

prox
rθ

= 0.25 .

Concerning the other zones, to the authors’ knowledge there does not exist any analytical or numerical
method able to describe with precision the variation of the elastic properties with the distance to the weld
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beads. This is why a good experience in model updating of electric machine stators is necessary to describe
the behaviours of the different zones. In this case, the factors 3/4 and 1/2 have been applied to the shear
moduli of the respective zones “yoke” and “teeth”, according to their distance to the weld beads. The
other coefficients remain unchanged. Eventually, the material properties are detailed in Table 10.
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Ẽr [GPa] 205 205 205
207Ẽθ [GPa] 205 205 205

Ẽz [GPa] 157 157 157
G̃zθ [GPa] 51.2 38.4 25.6

-G̃zr [GPa] 51.2 38.4 25.6
G̃rθ [GPa] 82.1 61.6 41.1

ν̃θz [−] 0.25 0.25 0.25
0.288ν̃rz [−] 0.25 0.25 0.25

ν̃rθ [−] 0.25 0.25 0.25
ρ̃
[
kgm−3

]
7,750 7,750 7,750 7,750

Table 10: Comparison of elastic coefficients

5.5. Comparison with experimental data

Computing the FE model’s modal basis and comparing it to the experimental data with the criteria
described in Subsection 3.1 leads to the correlation state presented in Figure 15 and Table 11, where the
columns “FEA” and “EMA” respectively refer to the mode frequencies in the FE model and in the exper-
imental modal basis. The |∆ f | and MAC averages have been computed in the bottom line (cf. definitions
in Subsection 3.2) of Table 11. Only mode pairs for which MAC values were over 60% were taken into
account.

Judging from these results, it can be observed that the behaviour of the finite-element model computed
with the method “Ortho1” is in good agreement with the measured natural frequencies, and that the
model’s deformed shapes correspond to the experimental ones fairly well.

The results of Table 11 are compared with the case “NZ” (no zoning: the same “prox” material
properties applied to the whole structure), as shown in Table 12.

As in the previous sections, it can be seen that method “Ortho1” generates equivalent material prop-
erties that simulate the dynamic behaviour of the entire structure accurately. The necessity of zoning
the model and adapting the shear coefficients according to the elements’ distances to the weld beads can
be clearly seen as well, as the average frequency discrepancy is increased by 68.5%. The modelling
guidelines that have been proposed should be therefore followed for other geometries of magnetic core
structures.

In this application especially, the initial correlations of simulated and experimental modal bases on two
different electric machine stators were particularly promising for the prediction of such structures’ modal
behaviours. Judging from the time needed for the thorough experimental-based updating of an electric
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cylinder mode 2     799 Hz cylinder mode 3     2126 Hz 

   
   
   

   
cylinder mode 4     3748 Hz cylinder mode 5     5330 Hz cylinder mode 0     6287 Hz

“breathing mode”

Figure 15: Correlation of FE and experimental modal bases - mode shape pairs (experimental frequencies) - blue lines: simula-
tion, red dots: measurement

machine stator’s FE model, the stakes of an accurate, initial modelling of such structures in a relatively
simple and fast way are both high and numerous [3].

6. Conclusion

In this document, a new method for identifying equivalent material properties to laminated orthotropic
structures was developed. As a necessity in order to reduce the number of degrees of freedom in the finite-
element models of heterogeneous structures such as electric motor stators, the identification method en-
abled modelling them with equivalent representative homogeneous material properties. This new method
has been applied to various domains involving multi-layered material simulations. It has been shown that
analysing laminated structures requires a “sliding shear” approach rather than a “transverse shear” one.
The corresponding “Ortho1” approach is globally more accurate than existing reference homogenisa-
tion methods for such structures, yields good simulation results when used in an experimental-numerical
application, and unlike the others, can also be applied to superelements. This finite-element-based identi-
fication method also allows quick parametric sensitivity computations on heterogeneous structures.

An analysis of stacking settings in laminated cantilever beams has shown that the equivalent ortho-
tropic material created with this new technique was able to recreate the initial vibrational behaviour with
good precision for multi-layered structures. Eventually, the vibrational behaviour of the magnetic core of
an electric motor stator has been simulated by the means of a finite-element model with equivalent homo-
geneous material properties. The simulated ovalisation modes have been compared to experimental data
measured on a real stator, and showed good agreement. In addition to that, the zoning guidelines proposed
for finite-element models of magnetic cores have been proven efficient. It is hoped that this identifica-
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1 823.5 798.6 3.12 63.8 cylinder mode, order 2
2 2179.6 2125.5 2.55 62.3 cylinder mode, order 3
3 3855.0 3747.7 2.86 90.6 cylinder mode, order 4
4 5529.3 5330.1 3.74 82.5 cylinder mode, order 5
5 6593.4 6286.5 4.88 74.3 cylinder mode, order 0

Averages |∆ f | and MAC 3.43 74.7

Table 11: Correlations of FE and experimental modal bases
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|∆ f | [%] 3.43 5.78
MAC [%] 74.7 74.5

Table 12: Influence of zoning

tion method will eventually help improve further the current knowledge about the behaviour of laminated
structures and in particular of electric machine stators. Also, substituting time-consuming model updating
procedures by a simple, direct method could even replace the manufacture of costly prototypes and asso-
ciated measurements. Some other modelling aspects which are still based on practical experience will be
discussed in future work.

For more complicated situations however, notably in case of non-negligible preloading, or when coup-
lings exist between tension-compression and shear in the global structure, orthotropic equivalent materials
might not be accurate enough to simulate the expected behaviour of a given structure. Future work will
present another method for the identification of equivalent material properties for anisotropic or triclinic
structures and superelements, accounting for the influence of external perturbations such as friction and
preload.

AppendixA. First 9 paired modes

The deformed shapes of the first 9 modes paired in Subsection 3.2 are shown on Fig. A.1. For each
mode pair, the reference structure is drawn in red dots, and the homogeneous model in blue solid elements.
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