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This work investigates acoustic emission generated during tension fatigue

tests carried out on a carbon fiber reinforced polymer (CFRP) composite

specimen. Since fatigue data processing, especially noise reduction remains

an important challenge in AE data analysis, a Mahalanobis distance-based

noise modeling has been proposed in the present work to tackle this prob-

lem. A Davies-Bouldin-index-based sequential feature selection has been

implemented for fast dimensionality reduction. A classifier offline-learned

from quasi-static data is then used to classify the processed data to different

AE sources with the possibility to dynamically accommodate with unseen

ones. With an efficient proposed noise removal and automatic separation of

AE events, this pattern discovery procedure provides an insight into fatigue

damage development in composites in presence of millions of AE events.

Keywords: organic-matrix composites, acoustic emission clustering, fatigue10

datasets, noise reduction, sequential feature selection.11

∗Corresponding author. Tel.: +33 81 66 69 49.
Email address: emmanuel.ramasso@univ-fcomte.fr (E. Ramasso)

Preprint submitted to Mechanical Systems and Signal Processing February 17, 2015



Introduction12

AE testing has become a recognized nondestructive test (NDT) method,13

commonly used to detect and locate defects in mechanically loaded structures14

and components. AE can provide comprehensive information on the origina-15

tion of a discontinuity (flaw) in a stressed component and also pertaining to16

the development of this flaw as the component is subjected to continuous or17

repetitive load [1]. Moreover, the method has been developed and applied in18

numerous structural components, such as steam pipes and pressure vessels,19

and in the research areas of rocks, composite materials and metals [2].20

Acoustic emissions (AE) are stress waves produced by the sudden internal21

stress redistribution of the materials caused by the changes within the struc-22

ture [3]. For polymer-composite materials, these changes are mainly due to23

crack initiation and growth, crack opening and closure, fiber breakage and24

fiber-matrix debonding. The use of AE for structural health monitoring has25

been investigated several decades ago with the objective to predict material26

failure [4, 5, 6].27

With a huge noisy amount of data originating from fatigue loading tests,28

a major challenge in the use of AE technique is to associate each signal to a29

specific AE source related to noise or to a damage mechanism. This analysis30

is a non-trivial task for two main reasons. First, AE signals are complex so31

that it has to be characterized by multiple relevant features. Second, there is32

generally no a priori knowledge of the acoustic signatures of damage events33

which are generally scattered due to the high variability of the properties of34

composite materials [7].35

In the literature, dealing with the challenge of massive data due to high36
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sensitivity of AE sensors and to long-term fatigue loading experiments, sev-37

eral processing approaches have been proposed [8, 9, 10]. In [8], it is consid-38

ered that only signals with amplitude higher than 70 dB or recorded above39

80% of peak load contain information related to damage mechanisms. In [9],40

“friction emission” tests in which the maximum cyclic load was decreased41

to a level that was insufficient to generate crack growth were performed to42

understand the AE signal characteristics arising from hydraulics, machine43

start/stop and slippage. All of the AE events at this lower peak load were44

therefore assumed to be due to friction emission. Emission having the char-45

acteristics of friction emission was then filtered. A more complex denois-46

ing process developed by [10] that combines Principal Component Analysis47

(PCA) and K-means and several validation techniques was presented to be48

able to classify more than 60% of the detected signals as noise during long49

time corrosion monitoring of a pre-damaged post tensioned concrete beam.50

High dimensional feature space reduction is a remaining challenge to sta-51

tistical processing and classification of AE data. In the literature, many52

approaches for AE data processing [1, 11] rely on the Principal Component53

Analysis (PCA). The PCA takes a set of features calculated from AE signals,54

such time-frequency features, and generates a set of articifial variables made55

of a linear combination of the input features depicting the largest variance.56

Other approaches [12, 13, 14] rely on a specific subset of features such as57

energy, rise time, duration, amplitude [12] or have reduced the dimension58

of the feature space by using complete link hierarchical clustering in order59

to merge the correlated features into groups [13]. Those apply a greedy ap-60

proach that generates all possible feature combinations and then selects the61
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one which optimizes a given criterion [14, 15]. The goal of the criterion is62

generally to evaluate the quality of the partition provided by the cluster-63

ing. It can be noticed that the PCA and the K-means clustering method64

are theoretically related to each other as shown in [16]. An alternative ap-65

proach to Euclidean distance-based clustering methods was proposed [17] and66

based on the Gustafson-Kessel algorithm (GK) [18]. It makes use of a modi-67

fied Mahalanobis distance for each cluster which is iteratively adapted to fit68

ellipse-shaped clusters. The use of hyper-ellipses instead of hyper-spheres is69

more appropriate for AE clustering in presence of low density and high scat-70

tering. In the GK algorithm, the covariance between each pair of features is71

estimated so that possible redundancy or complementarity between features72

can be taken into account. The Mahalanobis distance has also been shown73

to be robust to outliers in statistical analysis [19].74

The processing of large AE datasets, in particular originating from fa-75

tigue, requires to develop efficient methods in terms of memory and time76

consumption. Some approaches have been proposed which are able to work77

online (or real-time), that means that clusters parameters are updated with-78

out iterative procedure but as new data arrive. As underlined in the GK-79

based method proposed in [17] and in the Kmeans-based method developed80

in [20], external AE sources (corresponding to noise) may have an important81

influence on the clusters’ updating. In this paper we propose a methodology82

to estimate efficiently the partition of AE data obtained in fatigue loading83

in presence of noise sources. The methodology also includes an automated84

sequential feature selection based on the GK algorithm and relying on quasi-85

static (QS) tests. The clusters obtained are then adapted to be applied86
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on large fatigue tests. The next section is dedicated to presentation of the87

proposed methodology.88

1. Unsupervised pattern recognition89

The flow chart of the methodology is shown on Fig. 1.90

[Figure 1 about here.]91

1.1. AE fatigue data pre-processing92

All acoustic emissions even originating from outside the area of interest93

bounded by the sensors were taken into account (no spatial filtering). Thus a94

pre-processing step of such AE data is highly important and requires adapted95

filtering methods [21].96

1.1.1. Signal screening97

Continuous background noise due to hydraulic flows is essentially elimi-98

nated from the AE signal by a floating signal threshold, which is adjusted99

at a 40 dB level. This threshold makes it possible to loose signals originated100

from friction. Optimal denoising, for instance using wavelets [22], would be101

necessary if those signals are important for the monitoring.102

1.1.2. Noise model-based filtering103

Typical field and environmental noise such as electromagnetic interfer-104

ence (EMI), fretting, mechanical or hydraulic vibration encountered in real105

applications generate extraneous noise detected by the broadband and high106

sensitive AE sensors. Assuming that this AE activity is not due to damages,107
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a noise model is built using a multivariate statistical test based on the Maha-108

lanobis distance as used in novelty detection [23, 24]. For that, the AE hits109

recorded before the loading phase are considered as representative of the AE110

hits corresponding to external AE sources (such as noise). The statistical111

mean (center of the noise model) and covariance of those samples define an112

ellipsoid in the feature space, and its boundary is estimated as the average113

of the Mahalanobis distances between each sample and the center. An AE114

hit recorded during loading is then considered as noise if it falls within the115

boundary of the ellipsoid.116

1.2. Sequential selection algorithm of AE features117

An automated technique is presented to detect relevant feature subsets118

for clustering of AE events. In contrast to feature reduction procedures (for119

example based on correlation dendrogram [1]) or exhaustive search of global120

optimal feature combinations [14], the principle of the approach is to combine121

gradually each feature from an available feature space with an initial feature122

subset [25]. The feature selection is achieved by minimizing the value of123

Davies and Bouldin (DB) index [26] defined by:124

DB =
1

c

c∑
i=1

max
i 6=j

{
di + dj
Dij

}
(1)

where c is number of clusters, di and dj are the average within-class distances125

of clusters i and j respectively, and Dij denotes the distance between the126

two clusters i and j. This clustering validity index has been used by several127

authors in order to select optimal cluster number [13] or to evaluate feature128

subset partition [14]. The lower is its value, the better is the compactness129
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and the separability within the partition. Figure 2 shows the diagram of the130

proposed algorithm based on a feature filtering approach [27].131

[Figure 2 about here.]132

Considering an initial subset of features S (empty by default), the algorithm133

takes each of the available features from F to update S. This subset is then134

partitioned by the GK clustering algorithm. At the kth iteration, a feature135

fl ∈ F is added to the current subset of features Sk, and the corresponding136

DB index DBl of the partition obtained by the GK algorithm is computed.137

The computation of the DB index makes use of the Mahalanobis-like distance138

defined in the GK algorithm [18] to estimate the distance between AE hits139

and cluster centers and finally obtain the estimate of the average within-class140

distances used in Eq. 1 (di and dj).141

The subset of features Sk+1 for the next iteration is given by Sk∪fl∗ with142

l∗ = arg minlDBl and the partition is then evaluated by the DB criterion.143

The feature that minimizes the value of DB index is selected and transfered144

from F to S. At each iteration, the procedure generates |F | new subsets145

since each new subset contains the features from S plus a new one taken146

from the remaining features in F . The algorithm stops when no new subsets147

can improve the DB criterion.148

For each iteration k, an improvement rate IR(k) is calculated as follows:149

IR(k) =
DB(Sk)−DB(Sk−1)

DB(Sk−1)
(2)

where DB(Sk) and DB(Sk−1) represent the value of the DB-index of the best150

feature selection for the kth and (k−1)th iteration respectively. The sign of IR151

indicates if the DB criterion is improved (negative) or not (positive). For the152
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last iteration klast (for which IR(klast) > 0), if IR(klast) < mink<klast|IR(k)|153

then the feature with the best DB-index is added to S to establish the final154

selected feature set.155

1.3. AE source clustering156

Quasi-static (QS) tests are first applied to obtain a relatively low amount157

of data compared to fatigue and by supposing that damage sources in QS158

tests are mostly similar to fatigue. The GK algorithm is thus applied to159

estimate the parameters of a given set of k clusters on AE originated from160

QS tests. To cope with possibly additional AE sources that can occur during161

fatigue [28], an additional k + 1th cluster is estimated based on fatigue data162

to include all feature vectors located “far” from the previous k clusters. For163

that, the boundary of each cluster characterized on QS tests is estimated by164

the average of the Mahalanobis-like distance (used in GK) [24]. A feature165

vector obtained during fatigue belongs to the k + 1th cluster if its distance to166

nearest cluster is above the corresponding radius. This adaptation of clusters167

is supposed to take into account one (or more) AE sources that is (or are)168

not present in quasi-static tests (e.g. noise due to repeated tensile loading,169

acoustic waves related to cumulated damage ...).170

2. Experiments171

Composite split disks were considered subjected to cyclic fatigue loading172

up to failure determined when a complete break of the specimen was ob-173

served in the hoop direction. The specimens were cyclically tested under a174

tensile/tensile sinusoidal loading with constant amplitude and frequency of 5175

Hz and under constant stress ratio R = 0.1 at room temperature. Quasi-static176
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tests were preliminarily conducted on five different specimens with a constant177

loading rate of 0.3 kN.s−1. The static failure stress was equal to 1520± 165178

MPa. The tests were performed according to ASTM D2290 ”Apparent hoop179

tensile strength of plastic or reinforced plastic pipe by split disk method”.180

Rings were produced by cutting and machining filament-wound carbon fiber181

reinforced epoxy tubular structures intended for the manufacturing of fly-182

wheel rotors with a (90◦)6 lay-up configuration. The transient elastic waves183

were recorded during test at the material surface using a multi-channels data184

acquisition system from EPA (Euro Physical Acoustics) corporation (MIS-185

TRAS Group). The system is made up of miniature piezoelectric sensors186

(micro-80) with a range of resonance of 250 - 325 kHz, preamplifiers with a187

gain of 40dB and a 20 - 1000 kHz filter, a PCI card with a sampling rate188

of 1MHz and the AEWin software. Two AE sensors were coupled on the189

specimen faces using silicon grease. The experimental set-up is shown in190

Fig. 3.191

[Figure 3 about here.]192

The calibration of the system was performed after installation of the trans-193

ducers on the specimen and before each test using a pencil lead break pro-194

cedure. A part of the ambient noise was filtered using a threshold of 40dB.195

The acquisition parameters: PDT (Peak Definition Time) = 60 µsec; HDT196

(Hit Definition Time) = 120 µsec and HLT (Hit Lock Time) = 300 µsec were197

optimized for this specific experimental configuration to extract transient sig-198

nals. The optimization of these time-driven parameters was performed using199

the standard pencil-lead breakage proposed by Hsu and Nielsen [29]. Many200

features such as absolute energy, counts, hits, amplitude, duration, frequency201
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centroid were calculated from recorded waves.202

3. Results and discussion203

According to different percentages of the ultimate tensile stress deter-204

mined in the tensile test (1520 MPa), the S-N curve was obtained as illus-205

trated in Figure 4.206

[Figure 4 about here.]207

Nine samples were used to generate the S-N curve. This was a good208

compromise between the six specimens recommended by ASTM D-3479 for209

preliminary and exploratory test campaign and the twelve specimens required210

for research and development on testing of components and structures. The211

results presented in this work are part of a wider study including the gen-212

eration of S-N curves of different types of composites (with different carbon213

fibers) and with different lay-up configurations. The main goal is to select a214

composite of choice for the application concerned, namely rotors of flywheels.215

Four datasets were considered denoted as A1 (quasi-static test) and A2,216

A3 and A4 (fatigue tests for 90%, 80% and 70% of the ultimate tensile217

strength respectively). A brief description of the obtained datasets is sum-218

marised in Table 1.219

[Table 1 about here.]220

3.1. Noise reduction221

According to the scenario of the quasi-static test A1 (Fig. 5(a)), around222

the time-instant t1, the actuator was pressurized and the stress was applied223
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only at t2. The noise modeling phase (Section 1.1.2) has been made from AE224

data recorded before t1, i.e. while the specimen was let in its environment225

without any mechanical loading. Noise during loading is then filtered by this226

model.227

[Figure 5 about here.]228

Figure 5(b) and 5(c) represent dataset A1 (made of 52,832 AE hits) in the229

duration-amplitude space segmented into three populations: noise before and230

during loading in Figure 5(b), and denoised data after application of noise231

model in Figure 5(c). The two first populations (noise) possess the same232

characteristics, the same location and the same scattering. This observation233

is justified by the graphic of AE cumulated energy in Fig. 6(a). Indeed, the234

level of AE cumulated energy of noise before and during loading is negligi-235

ble and the total energy is conserved within denoised data while the latter236

occupies only 12% of the whole dataset in terms of quantity (Fig. 6(b)).237

[Figure 6 about here.]238

The application of the noise model to fatigue dataset A3 made of239

1,682,434 AE hits led to a similar separation between noise and denoised240

data (Fig. 7(a)). In spite of 93% of AE hits recorded associated to “noise”241

(Fig. 7(c)), this highest population represents negligible AE cumulated en-242

ergy level in comparison with that of denoised data (Fig. 7(b)).243

[Figure 7 about here.]244
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3.2. Feature selection245

Many energy-based approaches of damage characterization or identifica-246

tion have been studied since AE energy provides a good correlation with247

damage mechanisms. Thus, in this work, absolute energy (Fig. 8) is used248

to initialize the subset of relevant features. As the number of clusters is un-249

known, 3 cases were addressed to check the stability of the selection algorithm250

by considering 4, 5 and 6 clusters.251

The selection algorithm was applied on the quasi-static dataset A1 with 4252

clusters. At the first iteration, given the absolute energy feature, the optimal253

DB index is given by the combination with the amplitude feature (Fig. 8(a)).254

At the second iteration, the best score was obtained by the combination with255

the MARSE energy (Fig. 8(b)). No more improvement of the DB index is256

made at the next iteration, so the algorithm is stopped by selecting the subset257

made of absolute energy, amplitude and MARSE energy. The same selection258

result was obtained with 5 and 6 clusters. In what follows, 4 clusters are259

used as initial number of AE sources.260

[Figure 8 about here.]261

3.3. AE source classification262

3.3.1. Sequence of AE hits in the quasi-static case263

The denoised and selected feature subset obtained previously is now used264

to identify the clusters in quasi-static dataset A1 using the GK clustering265

algorithm. Four well-separated clusters with different sizes and shapes have266

been obtained in the duration-amplitude space (Fig. 9(a)). After projection267

onto the amplitude dimension, four distinct distributions can be obtained,268
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among which three are located above 75 dB. These distributions have been269

often used to identify AE sources [30, 31].270

Ono and Gallego [2] recently underlined a misconception that fiber frac-271

ture always produces high-energy event, and that still persists to this day.272

For the considered material, the damage process involves fiber tow breakage.273

If the breakage of an elementary fiber (7µm diameter) can cause the release274

of low energy transient, the breakage of fiber tows including hundreds or275

thousands of elementary fibers (up to 12,000 in the considered material) are276

likely to induce highly energetic signals.277

As a complementarity view, the temporal evolution of the logarithm of the278

Cumulated Sum of Cluster Appearance (logCSCA) [17] has been depicted in279

Fig. 9(c) (for each cluster) together with the cumulated energy and the load.280

When an AE hit (emitted after the activation of an AE source) is associated281

to a given cluster at a given time, the corresponding logCSCA curve depicts282

a step. When several consecutive steps appear in a short time period, this283

visualisation allows to point out that the activity of the corresponding AE284

source is particularly sustained which may be related to propagations of285

cracks [32].286

In the sequence shown in Fig. 9(c), the first cluster is activated at the very287

beginning before applying the load. Despite the number of AE hits in this288

cluster is important (73% at the end), the cumulated energy of AE hits in this289

cluster is the lowest one among all clusters (Fig. 9(e)). These observations290

are coherent with the activation of an AE source related to mechanical and291

hydraulic emission such as vibration and friction between the specimen and292

the half-cylinders.293
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Both cluster 2 and 3 start early when the actuator has been pressurized.294

The main activity of cluster 2 occurs after a certain level of load (Fig. 9(c))295

and the cumulated energy of AE hits in this cluster (Fig. 9(e)) as well as the296

amplitudes (> 95 dB, Fig. 9(a)) are the highest ones compared to all other297

clusters. The number of AE hits in this cluster is particularly important at298

the end of the test, as expected with the ruine of the specimen induced by a299

cascade of fiber tow breakage. This cluster is thus related to the activity of300

highly energetic sources, in particular carbon fiber tow breakage.301

The low cumulated energy in cluster 3 as well as the amplitudes around302

75 and 90 dB make this cluster related to minor damage (probably matrix303

micro-cracks).304

The partition also emphasizes an important cascade of AE hits at305

t ≈ 352 s during which the activity of cluster 3 increases importantly and306

this increase is synchronised with both the appearance of cluster 4 and a high307

activity of cluster 3. The load level at this time, the mean value of amplitudes308

in cluster 4 (around 95 dB, Fig. 9(a)) and the level of the cumulated energy309

in this cluster (around 13% of the total cumulated energy, Fig. 9(e)) make310

this cluster related to macro-cracking and interface failures starting around311

the specimen’s notches and propagating gradually in the hoop direction.312

3.3.2. Sequence of AE hits in a fatigue test313

Afterwards, the model estimated on A1’s AE hits is used to infer the314

partition on the fatigue dataset A3. Direct application of the model generates315

overlapping zones between clusters in the duration-amplitude space of A3316

(Fig. 9(b)). We can observe a similar distribution of clusters in this feature317

space compared to A1 (Fig. 9(a)). However, we can also observe clusters318
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overlap, particularly important between clusters 2 and 3. As a consequence,319

the projection onto the amplitude axis would not give distinct distributions320

as for the quasi-static test. This phenomenon finds its origins in the fact321

that, compared to quasi-static tests, additional mechanisms can play a role322

during fatigue such as the temperature [33] or the cycling which implies323

crack opening/closing initially not observed during QS tests [28]. Therefore,324

it was expected to find out that a pattern recognition model learned from a325

quasi-static test and simply applied on a fatigue test may present a limited326

generalization capability. Based on the assumption that a new AE source327

is activated during fatigue and which has not been observed in quasi-static328

tests, the proposed methodology (Section 1.3) includes the creation of new329

cluster to cope with this problem. The result is a new segmentation with less330

overlapping between clusters as shown in Fig. 9(d).331

[Figure 9 about here.]332

The comparison of partitions with the previous quasi-static test yield333

similar conclusions concerning the possible damage scenario. The main dif-334

ference holds in the position of the new cluster, which has been automatically335

found from AE hits. Indeed, the cluster 3 identified as the friction and pos-336

sibly micro-cracking in the quasi-static test (Fig. 9(a)) was split (AE sources337

3a and 3b, Fig. 9(b)). The signatures of AE hits in both clusters in terms of338

amplitudes, durations and energies (Fig. 9(f)) are quite different despite the339

fact that the clusters are pretty close in the duration-amplitude space. The340

evolution of AE cumulated energy of each source (Fig. 9(f)) brings useful in-341

terpretations about the damaging process during fatigue. Despite its smallest342
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population, AE source 2 is dominant in term of energy at the end of test as343

for the quasi-static test and is associated to severe damage mechanisms re-344

lated to carbon fibers. AE source 1 is the most scattered and populated but345

represents negligible contribution compared to the total energy. As for the346

quasi-static case, this cluster may represent the activation of an AE source347

related to mechanical and hydraulic systems [34]. AE source 4 generates AE348

hits with the longest duration and the highest energy that may be related to349

macro-cracking and interface failures.350

[Figure 10 about here.]351

[Figure 11 about here.]352

Figure 11 represents the positioning of clusters onto the load level for353

the fatigue dataset A3. This figure enables one to visualise the load level354

when the AE sources are activated. On dataset A3, it can be observed in355

Fig. 10(a) to 10(f) that during 20%-fatigue-life of the specimen, many AE356

hits appear, related to all AE sources. This phenomenon is well known as357

the accommodation phase [35] which generally appears at the first stage358

of materials undergoing fatigue testing and may lead to partial fractures.359

Indeed, AE hits with high energy (from AE sources 2 and 4) are activated360

during this phase (and during failure). After this stage, the clusters’ activities361

globally slow down for a while (stabilization phase). Beyond 65% of the362

fatigue life, an important number of highly energetic AE hits occur up to the363

ruine of the specimen (from AE sources 2 and 4). It is interesting to notice364

a repetitive phenomena that takes place all along the test and represented365

by the activation of AE sources 3a and 3b: The latter is mainly activated in366
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loading phases while the former occurs in unloading phase (Fig. 11(b)). As367

for the quasi-static test, the latter may correspond to internal frictions and368

interfaces fretting as observed in previous papers [36]. It can also be observed369

that the AE hits originated from these clusters occur between 5-7 kN at the370

beginning of the tests and between 3-4 kN at the end. AE source 3a is much371

more activated than AE source 3b between 20% and 50%, then the activity372

of 3b substantially increases until the ruine. This increasing is followed by373

the activation of AE source 5 that is particularly active between 70% and374

90%, just before the ruine. Therefore, as expected, the fatigue plays a role375

on the loading level required to activate some sources and the chronology of376

activation may give insights to the understanding of damage mechanisms.377

3.3.3. Sequence of AE hits in two other fatigue tests378

The complexity of damage mechanisms involved during fatigue is illus-379

trated in this section. For that, two other specimens denoted as A2 and380

A4, corresponding to 90% and 70% of the tensile strength respectively, are381

considered. The behavior of A2 is similar to the previous specimen A3 as382

depicted in Fig. 12(a). The activity of the AE hits including high energy and383

high duration signals is rather high (relatively to the remaining AE hits) at384

the very beginning of loading and increases again at about 60% of the spec-385

imen life, as for A3. Although AE hits generated by AE source 3a are more386

scattered than in the previous test, overlaps between clusters related to this387

source and to AE source 3b have also been detected by the proposed algo-388

rithm. Table 2 summarises the clusters assigned to each AE source according389

to the previous observations.390
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[Table 2 about here.]391

Rather different than the previous tests, the partition obtained on dataset392

A4 at 70% of the ultimate static strength is depicted in Fig. 12(b). The initial393

(accommodation) phase occurs within the first cycles as for the previous394

loading levels, but it is then followed by a silence of most of AE sources.395

Only AE source 1 is activated (representing possible external sources which396

has been filtered out) and a few highly energetic AE hits occur (such as fiber397

tow breakage). Then, at 20% of the fatigue life, a progressive activation of398

all AE sources can be observed. In the load band 2− 10 kN, only cluster 1 is399

activated but this band is gradually reduced with respect to the number of400

cycles to reach 4 − 7 kN when approaching the end-of-life. The progressive401

and continuous reduction of the band beyond which clusters are activated402

can be of interest for predicting the remaining lifetime of the composite if403

confirmed on other specimens and lower loading levels. It can also be noticed404

that more AE hits related to AE sources 2 and 4 (i.e. with the highest energy)405

can be found compared to the two previous specimens. Therefore, the failure406

process of specimen A4 tested at 70% of the ultimate tensile strength is more407

gradual and more related to the progressive weakness of the material during408

the repeated stress until the ruine.409

[Figure 12 about here.]410

Conclusion411

An unsupervised pattern recognition approach for AE data originating412

from fatigue tests on polymer-composite materials has been presented to413
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tackle different existing challenges of AE analysis and damage detection: 1)414

data pre-processing, especially noise reduction; 2) automatic and fast fea-415

ture selection; 3) clustering of massive data from fatigue tests with cluster416

adaptation. The methodology relies on the estimation of clusters during417

static tests. Its application to big fatigue data based on the adaptation phase418

allows to add a new cluster to cope with new AE sources. The assignment419

of a cluster to a AE hit is not iterative and only requires to find the closest420

cluster by using a Mahalanobis-like distance that allows to cope with data421

scattering. The processing of a fatigue dataset is made faster than itera-422

tive procedures which requires to load a dataset and to perform interative423

optimization on large matrices.424

The first results on three real fatigue tests of thermoset ring-shaped CFRP425

involving until 10 millions AE hits demonstrate that the proposed method-426

ology allows to identify some relevant clusters. Of particular interest:427

• Four main phases have been identified: Accommodation with many AE428

hits with the highest energy and amplitude (0-20% of the lifetime), a429

slowdown of AE activity (20-50%), a resumption of the AE activity430

(50-85%) and a failure progress up to the final failure (85-100%). The431

fatigue at 70% of the ultimate strength depicts a particular pattern432

during the degradation involving an envelop which gradually reduces433

until the ruine.434

• Two clusters detected by the adaptation phase occur at similar loading435

levels. A modification of their kinetics with report to the cumulated436

loading lets suppose that those two clusters can be due to damage. It437

is also interesting to emphasize that the level required to activate the438
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AE sources related to those two clusters depicts a slight and progressive439

decreasing together with the degradation of the material until the ruine.440

The visualization of clusters in the amplitude-duration feature, the loga-441

rithm of the cumulated AE hits and energy in each cluster as well as the442

the positioning of clusters onto the loading level have allowed to connect443

some clusters to possible AE sources. In order to validate the identification444

of AE sources observed, complementary non-destructive techniques and in-445

situ measurements is under study on more specimens. The application of446

the proposed methodology is currently investigated on thermoplastic CFRP447

composites and compared to finite element models [37]. Finally, the pro-448

posed methodology is under improvement for robust AE-based prognostics449

of composite structures.450

Acknowledgement451

This work has been carried out in the framework of the Laboratory of452

Excellence ACTION through the program ”Investments for the future” man-453

aged by the National Agency for Research (references ANR-11-LABX-01-01).454

The authors thank the reviewers for the relevant and fruitful comments.455

[1] A. A. Anastassopoulos, T. P. Philippidis, Clustering methodology for456

the evaluation of ae from composites, J. of Acoust. Emission 13 (1–2)457

(1995) 11–22.458

[2] K. Ono, A. Gallego, Research and applications of ae on advanced com-459

posites, Journal of Acoustic Emission.460

20



[3] M. Huang, L. Jiang, P. Liaw, C. Brooks, R. Seeley, D. Klarstrom, Using461

acoustic emission in fatigue and fracture materials research, The Journal462

of The Minerals, Metals and Materials Society 50 (1998) 1–12.463

[4] L. J. Graham, Characterization of acoustic emission signals and ap-464

plication to composite structures monitoring, in: Proceedings of the465

ARPA/AFML Review of Progress in Quantitative NDE, 1975.466

[5] C. Murthy, B. Dattaguru, A. Rao, Application of pattern recognition467

concepts to acoustic emission signals analysis, Journal of Acoustic Emis-468

sion 6 (1987) 19–28.469

[6] M. Otsu, K. Ono, Pattern recognition analysis of acoustic emission from470

unidirectional carbon fiber-epoxy composites by using autoregressive471

modeling, Journal of Acoustic Emission 6 (1) (1987) 61–70.472

[7] P. Pineau, F. Dau, Subsampling and homogenization to investigate vari-473

ability of composite material mechanical properties, Computer Methods474

in Applied Mechanics and Engineering 241244 (2012) 238 – 245.475

[8] J. Henry, Z. Aboura, K. Khellil, S. Otin, Suivi de l’endommagement en476

fatigue d’un composite a renfort interlock carbone/epoxy par emission477

acoustique, Mater. & Tech. 100 (6-7) (2012) 643–652.478

[9] J. Yu, P. Ziehl, B. Zarate, J. Caicedo, L. Yu, V. Giurgiutiu, B. Metro-479

vich, F. Matta, Quantification of fatigue cracking in CT specimens with480

passive and active piezoelectric sensing, in: Proc. SPIE, Vol. 7649, 2010,481

pp. 76490R–76490R–12.482

21



[10] L. Calabrese, G. Campanella, E. Proverbio, Noise removal by cluster483

analysis after long time AE corrosion monitoring of steel reinforcement484

in concrete, Constr. Build Mater. 34 (2012) 362–371.485

[11] N. Godin, S. Huguet, R. Gaertner, L. Salmon, Clustering of ae signals486

collected during tensile tests on unidirectional glass/polyester composite487

using supervised and unsupervised classifiers, Ndt&e Int 37 (4) (2004)488

253–264.489

[12] R. Gutkin, C. Green, S. Vangrattanachai, S. Pinho, P. Robinson, P. Cur-490

tis, On ae for failure investigation in CFRP: pattern recognition and491

peak frequency analyses, Mech. Syst. Signal Pr. 25 (4) (2011) 1393–492

1407.493

[13] M. Moevus, N. Godin, M. RMili, D. Rouby, P. Reynaud, G. Fantozzi,494

G. Farizy, Analysis of damage mechanisms and associated ae in two495

SiCf/[SiBC] composites exhibiting different tensile behaviours. Part II:496

unsupervised ae data clustering, Compos. Sci. Tech. 68 (6) (2008) 1258–497

1265.498

[14] M. Sause, A. Gribov, A. Unwin, S. Horn, Pattern recognition approach499

to identify natural clusters of ae signals, Pattern Recogn. Lett. 33 (1)500

(2012) 17–23.501

[15] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation502

techniques, J. Intell. Inf. Syst. 17 (2-3) (2001) 107–145.503

[16] C. Ding, X. He, K-means clustering via principal component analysis,504

in: Proc. ICML, Banff, Canada, 2004.505

22



[17] V. Placet, E. Ramasso, L. Boubakar, N. Zerhouni, Online segmentation506

of ae data streams for detection of damages in composite structures in507

unconstrained environments, in: Int. Conf. Struct. Saf. Reliab., New508

York, 2013.509

[18] D. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance ma-510

trix, in: IEEE Int. Conf. Decis. Control, Vol. 17, 1978, pp. 761–766.511

[19] D. Peel, G. J. Mclachlan, Robust mixture modelling using the t distri-512

bution, Statistics and Computing 10 (2000) 339–348.513

[20] E. Pomponi, A. Vinogradov, A real-time approach to acoustic emission514

clustering, Mechanical Systems and Signal Processing 40 (2) (2013) 791515

– 804.516

[21] V. Barat, Y. Borodin, A. Kuzmin, Detection of AE signals against back-517

ground friction, J. of Acoust. Emission 29.518

[22] D. Donoho, De-noising by soft-thresholding, IEEE Transactions on In-519

formation Theory 41 (3) (1995) 613–627.520

[23] C. Farrar, K. Worden, Unsupervised learning novelty detection, in:521

Struct. Health Monit., 2012, pp. 321–360.522

[24] L. Serir, E. Ramasso, P. Nectoux, N. Zerhouni, E2GKpro: An evidential523

evolving multi-modeling approach for system behavior prediction with524

applications, Mechanical Systems and Signal Processing 37 (1-2) (2013)525

213–228.526

23



[25] S. Guerif, Unsupervised variable selection: when random rankings sound527

as irrelevancy, JMLR Proc. 4 (2008) 163–177.528

[26] D. Davies, D. Bouldin, A cluster separation measure, IEEE T. Pattern529

Anal. PAMI-1 (2) (1979) 224 –227.530

[27] G. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selec-531

tion problem, Mach. Learn.: Proc. Int. Conf. (1994) 121–129.532

[28] I. D. Baere, W. V. Paepegem, J. Degrieck, Assessment of the inter-533

laminar behaviour of a carbon fabric reinforced thermoplastic lap shear534

specimen under quasi-static and tension-tension fatigue loading, Poly-535

mer Testing 32 (7) (2013) 1273 – 1282.536

[29] N. Hsu, F. Breckenridge, Characterization and calibration of acoustic537

emission sensors, Materials Evaluation 39 (1) (1981) 60–68.538

[30] L. J. Graham, R. K. Elsley, Characteristics of ae signals from composites,539

in: ARPA/AFML Rev. Prog. Quant. NDE, 1977, pp. 219–225.540

[31] D. Short, J. Summerscales, Amplitude distribution ae signatures of uni-541

directional fibre composite hybrid materials, Composites 15 (3) (1984)542

200–206.543

[32] D. Sornette, Statistical physics of rupture in heterogeneous media, in:544

Handb. Mater. Model., 2005, pp. 1313–1331.545

[33] J. R. Gregory, S. M. Spearing, Constituent and composite quasi-static546

and fatigue fracture experiments, Composites Part A: Applied Science547

and Manufacturing 36 (5) (2005) 665 – 674.548

24



[34] M. Wevers, G. V. dijck, W. Desadeleer, M. Windelmans, K. V. D.549

Abeele, Acoustic emission for on-line monitoring of damage in various550

application fields, Journal of Acoustic emission 22.551

[35] G. Degallaix, A. Seddouki, S. Degallaix, Low cycle fatigue of a duplex552

stainless steel alloyed with nitrogen, in: Proc. 3rd Int. Conf. Low Cycle553

Fatigue Elasto-Plast. Behav. Mater., Vol. 3, Berlin, 1992.554

[36] J. Cheng, H.-J. Li, S.-Y. Zhang, L.-Z. Xue, W.-F. Luo, W. Li, Inter-555

nal friction behavior of unidirectional carbon/carbon composites after556

different fatigue cycles, Mater. Sci. Eng.: A 600 (2014) 129–134.557

[37] M. G. Sause, S. Richler, Finite element modelling of cracks as acoustic558

emission sources, Journal of Nondestructive Evaluation 34 (1).559

25



List of Figures560

1 Unsupervised damage detection methodology . . . . . . . . . . 27561

2 Sequential feature selection diagram . . . . . . . . . . . . . . . 28562

3 Experimental set-up for tensile test on split-disk specimen. (1)563

fixture, (2) notched ring specimen, (3) half-cylinder, (4) AE564

sensor, (5) notched region, (6) load. . . . . . . . . . . . . . . . 29565

4 S-N curve of all tested specimens with l: 90% of the ultimate566

tensile strength, t: 80%, u: 70% and n: 60%. . . . . . . . . 30567

5 Quasi-static dataset A1: (a) Loading profile; (b) and (c) Du-568

ration vs. Amplitude for AE hits detected as noise (remaining569

data surimposed in light gray) and for for denoised data re-570

spectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31571

6 Quasi-static dataset A1: (a) AE cumulated energy; (b) Per-572

centage in terms of population . . . . . . . . . . . . . . . . . . 32573

7 Fatigue dataset A3: (a) Duration vs. Amplitude; (b) AE cu-574

mulated energy; (c) Percentage in terms of population . . . . . 33575

8 Case of 4 clusters: (a) first selection giving amplitude feature576

as the best; (b) second selection giving feature MARSE energy577

as the best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34578

9 Left – Clustering result on dataset A1 (quasi-static): (a) Par-579

tition in the Duration vs. Amplitude space; (c) Evolution of580

the cumulated number of hits in each cluster (log CSCA); (e)581

Cumulated energy of each source. Right – Testing phase on582

dataset A3 (fatigue): (b) Direct classification without adapta-583

tion; (d) Adaptive classification; (f) Cumulated energy of each584

AE source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35585

10 Classified AE events during cyclic loading of specimen A3586

(80%): (a) All sources during the whole test; (b)-(f) Individual587

AE source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36588

11 AE events during cyclic loading of specimen A3 (80%): Close-589

up view (a) at the beginning and (b) at the end of the test. . . 37590

12 Visualization of classified AE events during cyclic loading A2591

(90% of the ultimate strength) and A4 (70%) . . . . . . . . . 38592

26



Figure 1: Unsupervised damage detection methodology
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Figure 2: Sequential feature selection diagram
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Figure 3: Experimental set-up for tensile test on split-disk specimen. (1) fixture, (2)
notched ring specimen, (3) half-cylinder, (4) AE sensor, (5) notched region, (6) load.
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Figure 5: Quasi-static dataset A1: (a) Loading profile; (b) and (c) Duration vs. Amplitude
for AE hits detected as noise (remaining data surimposed in light gray) and for for denoised
data respectively
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Figure 6: Quasi-static dataset A1: (a) AE cumulated energy; (b) Percentage in terms of
population
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Figure 7: Fatigue dataset A3: (a) Duration vs. Amplitude; (b) AE cumulated energy; (c)
Percentage in terms of population
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Figure 8: Case of 4 clusters: (a) first selection giving amplitude feature as the best; (b)
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Figure 9: Left – Clustering result on dataset A1 (quasi-static): (a) Partition in the Duration vs. Amplitude
space; (c) Evolution of the cumulated number of hits in each cluster (log CSCA); (e) Cumulated energy of each
source. Right – Testing phase on dataset A3 (fatigue): (b) Direct classification without adaptation; (d) Adaptive
classification; (f) Cumulated energy of each AE source.
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Figure 10: Classified AE events during cyclic loading of specimen A3 (80%): (a) All sources during the whole test; (b)-(f)
Individual AE source 36
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Figure 11: AE events during cyclic loading of specimen A3 (80%): Close-up view (a) at
the beginning and (b) at the end of the test.
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Figure 12: Visualization of classified AE events during cyclic loading A2 (90% of the ultimate strength) and A4 (70%)
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Dataset N/ % of the AE hits Time-to-failure (s)
loading type ultimate strength

A1 / quasi-static x 52,832 0.40E+3
A2 / fatigue 90 481,595 0.74E+3 (3.7E+3 cycles)
A3 / fatigue 80 1,682,434 4.11E+3 (2.0E+4 cycles)
A4 / fatigue 70 9,555,227 2.14E+4 (1.0E+5 cycles)

Table 1: Characteristics of AE datasets considered.

40



Cluster AE source
1 Extraneous noise (external friction, hydraulic vibration, EMI)
2 Fiber-related damage (rupture of tows, pull-out)
3a Friction-related source due to fatigue crack closure under cyclic loading
3b Matrix-related damage (micro/macro cracking, splitting)
4 Interface-related damage (fiber/matrix)

Table 2: Assigned-to-damage clusters
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