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SUMMARY

Vibrating energy is a renewable energy that can be used to power wireless transducers. This article presents
analytical and numerical results that put forward design parameters for optimizing the energy conversion
from mechanical vibration to electrical power with an electromagnetic transducer. The studied structure is
a flexible structure using an electromagnetic transducer connected to a resistive feedback loop. This passive
harvesting circuit is a simplified representation of the storing system usually including a battery and a
rectifying electronic. Here the energy harvesting strategy chosen creates an additional viscous damping on
the structure. The numerical model of the generator, including the coupling law, predicts the power
transferred between electrical and mechanical energies. For a purely resistive feedback, the study of the
harvested energy shows that harvesting and stabilization strategies are different. A simple analytical model,
derived from modal synthesis techniques, shows that Jacobi’s maximal power transfer theorem can be
adapted for multi-physic problems: the electrical and mechanical damping ratios have to be matched to
maximize the power transferred. This result is confirmed by experimental measurements. The analytical
study also shows that it is possible to use the root locus to choose the two optimal energy harvesting
feedback gains and then consequently the harvesting electronic circuit’s parameters. Copyright r 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays wasting energy is of increasing concern. There are a lot of different energy sources
available around us: the sun, the wind, rivers,y, but most of theses energies cannot be used
directly. They first have to be transformed into another energy. For example, mechanical energy
from a wave is transformed into electrical energy by an electromagnetic device [1]. This
transformation is performed as electrical energy is very easy to carry and use. This explains why
most of today’s appliances use electrical energy.

Portable appliances have to be energetically autonomous: that is why the energy is stored in
batteries, which need to be replaced regularly. An alternative solution is to harvest the available
wasted vibrating energy and to convert it into electrical energy. This power scavenged from
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a vibrating structure can be used to power sensors [2,3] and hence for monitoring
applications [4–6]. Piezoelectric [7,8], electrostatic [9,10] and electromagnetic [11,12]
transducers have already been used to harvest energy in this way. Comparisons between
different types of transducer architecture [13–15] have shown that in some cases there is interest
in using a velocity-damped resonant generator [13]. Therefore, this study will focus on an
electromagnetic power generator that produces a damping force proportional to the structural
velocity. A consequence of energy harvesting is an additional damping on the structure [16].
In many cases, the harvested energy is very low compared to the energy stored in the power
source, so the additional damping can be neglected. The structure is then considered as an
infinite power source and does not suffer any harvesting feedback effect. For designing
human body energy harvesting systems this assumption is made [14]. The limb’s motion
is then not disturbed by the scavenged energy. Williams et al. [17] also consider an infinite
power source and optimize the energy harvesting in the case of a magnetic seismic mass
moving past a coil connected to a resistive load. Nevertheless, some applications may not
satisfy this hypothesis of infinite power source, for example, when using a harvesting system on
a light and flexible panel, which is a common structure in the aerospace and automotive
fields. A finite power source must then be considered, like in Monnier et al. stabilization
approach [18]. In this study the considered finite power source is a flexible structure,
energetically supplied by an external power source such as environmental acceleration or
vibration noise. To harvest energy one or more devices are connected to the flexible structure.
The goal of this study is to maximize the power harvested from the structure with
electromagnetic transducers.

The most realistic multi-physic modeling of the tested setup is written to study the influence
of energy harvesting on the structure. The coupling electromechanical equations are added to
the finite element model (FEM) of the flexible structure. This FEM is used to evaluate the
energy provided by the external source and harvested by the studied transducer versus the
resistive feedback, mimicking the effect of the harvesting electronics.

For frequencies close to a separated mode, the structure can be simplified by modal
projection. The full coupled system can then be solved analytically and the influent parameters
for optimizing energy harvesting can be carried out.

Section 2 presents the criterion to harvest energy. Section 3 compares the energy harvesting
and the stabilization strategies. Section 4 models the flexible structure with the connected energy
harvester. This modeling is used to evaluate the provided and harvested energies in Section 5.
The modeling is simplified to obtain analytical expressions, which are compared to the
numerical results. They are confirmed by experimental measurements presented in Section 6.
Finally, in the last part of this paper, the conclusion presents the maximal power transfer
condition for a viscous energy harvester and how to choose the corresponding feedback gain on
the root locus.

2. HARVESTING ENERGY FROM A FLEXIBLE STRUCTURE

2.1. View from the flexible structure

Let us consider the vibrating structure shown in Figure 1.
The governing equation of the flexible structure is:

Ms €x1Cs _x1Ksx ¼ f ð1Þ

Ms, Ks, and Cs are respectively the mass, stiffness and damping symmetric matrices of the flexible
structure. x represents the displacement vector and _x represents differentiation of x with respect
to time. The external excitation force is noted f. In Figure 1 only the force at point i is
represented. The instantaneous power provided to the structure can be written as:
P ¼ _xT:f ¼

Pn
i¼1 _x

T
i :f

a=s
i ¼

Pn
i¼1 Pi. If the instantaneous power Pi at point i is positive this

indicates that power is provided to the structure. If Pi is negative, power is extracted from the
structure. The goal of this study is to extract power with an actuator. If the condition Pio0
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(if _xi 6¼ 0) is realized all the time energy is harvested. This strong condition implies
R1
0 Pi dt

negative. The condition
R1
�1 Pi dto0 is enough to consider that energy is harvested. By

multiplying Equation (1) by _xT and integrating it, we obtain the following energy equation:

1

2
_xT Ms _x1

1

2
xTKsx

� �1
0

1

Z 1
0

_xT Cs _xdt ¼
Z 1
0

_xT :f dt

¼
Xp

i¼1

Z 1
0

_xTi :f
a=s
i dt1

Xn

i¼p11

Z 1
0

_xTi :f
a=s
i dt ð2Þ

The points have been sorted such as the first p points provide energy to the structure, and the
n� p following ones harvest energy from it.

R1
�1 _xTi :f

a=s
i dtX0 represents the energy provided at

one of p first points and
R1
�1 _xTi :f

a=s
i dto0 the energy harvested at one of n� p last ones. To

harvest some energy the force f a=s
i has to be different from zero. This indicates that the energy

harvesting device has to create a force on the structure.

2.2. View from the energy harvesting device

Figure 2 presents the energy harvesting device. xi and xj are the displacements imposed by the
structure when the energy harvesting device is connected to the flexible structure. This is
the configuration of the internal energy harvesting device shown in Figure 3. f s=a

i and f s=a
j are

the reaction forces from the structure on the harvesting actuator.
We will assume that the transducer’s mass is neglected compared to the forces f s=a

i and f s=a
j .

This implies that f s=a
j ¼ �f s=a

i . The scavenged energy can then be written as:

Ehi ¼
Z 1
�1

_yT
i f s=a

i dt ¼ �
Z 1
�1

_xTi f a=s
i dt �

Z 1
�1

_xTj f a=s
j dt ð3Þ

This shows that an internal energy harvesting device extracts power from 2 points of the flexible
structure. The power extracted from n� p points of the flexible structure does not imply
necessarily n� p harvesting devices, unless we only consider external energy harvesting devices
as shown in Figure 3. In this case the energy harvesting device is connected to one side of the
flexible structure (displacement imposed to xk) and the other side is fixed to the structure’s
support. The energy harvested by the device can be written as Ehk ¼

R1
�1 _yT

k f s=a
k dt. In both cases

the energy provided to the harvesting device is positive. For the rest of the study we will use the
notation fi for f s=a

i . The harvesting criterion that we will use for an energy harvesting device i is:

Ehi ¼
Z 1
�1

_yT
i fi dt40 ð4Þ

To maximize the scavenged energy, we will assume that the energy harvesting device, shown in
Figure 2, is oriented such as the structure’s force vector fi is collinear to the velocity vector _yi.

Figure 1. Extracting energy from a flexible structure.
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3. STABILIZATION VERSUS ENERGY HARVESTING STRATEGY

3.1. The direct velocity feedback control

To harvest energy from a flexible structure, a control law for fi has to be defined. A simple
solution is to suppose fi proportional to the corresponding structural velocity _yi.

fi ¼ gð _yiÞ ¼ gi: _yi ð5Þ

The control law is the simplest active damping strategy, and is commonly called direct velocity
feedback (DVF). For a strictly positive gain gi, the instantaneous power gi _yT

i _yi is always positive,
hence Ehi40 if _yi 6¼ 0. The governing equation of the flexible structure, for a DVF [19], is:

Ms €x1Cs _x1Ksx ¼ f 1Bu

_y ¼ BT _x

u ¼ �G� _y

ð6Þ

Ms40, KsX0, and CsX0. The energy harvesting forces u apply a set of control forces Bu on the
structure through the influence matrix B. The force vector u depends on the velocity
measurements _y. As u and _y are collocated, the same influence matrix B is used to evaluate
_yi. Hence, we have _y ¼ BT _x. The external excitation force is noted as f. The power extracted from
the vibrating structure corresponds to power harvested by the harvesting devices (Ph ¼ � _yTu).

Figure 3. Energy harvesting devices connected to a flexible structure.

Figure 2. Modeling of an energy harvesting device.

D. MAMMOSSER, E. FOLTÊTE AND M. COLLET364
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According to Equation (6), the energy harvesting devices appear as an added mechanical
dissipative impedance on the flexible structure. This has for effect to increase the structure’s
damping [16].

As the energy harvested depends on the additional structure’s damping, optimizing the
stabilization of the structure seems to be a good strategy. Are the energy harvesting and
stabilization strategies really equivalent?

3.2. Stabilization strategy

To study the stability of the controlled system we have to find the complex roots of:

½Mss21ðCs1BGBTÞs1Ks�X ¼ 0 ð7Þ

This equation is obtained from Equation (6) and the system is always stable when Cs1BGBT40.
The solutions of quadratic eigenvalue problem Equation (7) can then be written as [20]:

si ¼ �xioi� joi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
ð8Þ

where oiX0 is the ith natural frequency and xi the modal damping ratio of this mode. We will
assume that 0pxip1.

As <ðsiÞp0, the following inequality is verified:

jxðtÞjpgemax½ReðsiÞ�t ð9Þ

where g is a positive constant. Equation (9) corresponds to Komornik’s result [21]. All the
components are real positive values. Let us consider the fastest return of the structure to its
equilibrium position as the stabilization strategy. This strategy is equivalent to minimize the cost
function Jst:

Jst ðGÞ ¼ max
i2½1;n�

max½RðsiÞ�gf ð10Þ

This criterion is equivalent to the one proposed by Monnier et al. [18], who optimize the
stabilization of a flexible structure submitted to an integral force feedback (IFF). Meyer et al.
[22] showed that the IFF optimization results are applicable to DVF strategy (as it is the dual
form of IFF strategy). This explains why the IFF stabilization criterion can be applied as the
harvesting devices impose a DVF control law.

From Equation (7) we can obtain the root locus in Figure 4. Only two modes (i and j) of the
structure are represented. Each curve corresponds to the solution s of the mode i and j when the

Figure 4. Example of root locus.
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feedback parameter G varies. In this figure, the solution siðGiÞ is marked. Here Gi minimizes
<ðsiðGÞÞ. The cost function Jst defined only for the mode i is then minimized. This corresponds
to the optimal damping feedback parameter for mode i.

In general, the optimal gain Gi does not optimize the stabilization of mode j, as it is shown in
Figure 4. This means that each mode has its own optimal stabilization parameter G.

To optimize the stabilization of all the modes, the cost function has to be minimized
considering all the modes. This means that the parameter G has to be chosen such as the highest
solution RðsðGÞÞ has to be minimal. If we consider the parameter Gi, it minimizes the shortest
root locus loop (mode i). On the other curve we have RðsjðGiÞÞoRðsiðGiÞÞ, which means that for
the two considered modes JstðGiÞpJstðGÞ. The stabilization is then optimized for G ¼ Gi.

3.3. Energy harvesting strategy

The total energy harvested (Eh) from a flexible structure is:

Eh ¼
Z 1
�1

_xTðBGBTÞ_x dt ð11Þ

When the matrix G is chosen positive, the harvested energy Eh is positive. If f 2 L2
R, then we

have x 2 L2
R and Eho1 (Schwartz theorem). According to Parseval’s theorem, it is possible to

write the equality of energies between time and frequency domains:

Eh ¼
Z 1
�1

_xTðtÞðBGBTÞ_xðtÞ; dt ¼
1

2p

Z 1
�1

_XT
ð�joÞðBGBTÞ _XðjoÞ do ð12Þ

As _X ¼ joð�o2Ms1joðCs1BGBTÞ1KsÞ
�1

F , this indicates that the maximal harvested energy
(Eh) depends on G, f and o. In the case of a periodic function f of period t, it is not possible to
use Equation (12) as f=2L2

R and then the energy harvested is not necessarily finite. But in the case
f 2 L2

ðtÞ, it is possible to give a new definition of the energy harvested (Eht ) on a time period.

Eht ¼
Z t

0

_xT BGBT
� �

_x dt ð13Þ

We have 0pEhto1. Maximizing the energy harvested is then equivalent to maximize the
average power Ph ¼ Eht=t harvested on a time period. For a periodic function f, the Fourier’s
decomposition of fðtÞ and _xðtÞ gives:

fðtÞ ¼
P11

n¼�1
fne
�jnot

_xðtÞ ¼
P11

n¼�1
ð�jnoÞ:xne

�jnot

ð14Þ

Let us note �xn the conjugated complex number of xn. Applying Parseval’s theorem to the real
function _xðtÞ and noting that �_xn ¼ _x�n, we obtain the relation:

Ph ¼
o
2p

Z 2p=o

0

_xTðtÞ ðBGBTÞ _xðtÞ dt

¼o2
X11
n¼1

n2 xTn ðBGBTÞ xn ð15Þ

As xn ¼ ð�n2o2Ms1jno ðCs1BGBTÞ1KsÞ
�1fn, the average power harvested Ph depends on G, f,

and o. It is logical that the energy harvested depends on f as it imposes the incoming energy to
the flexible structure.

From Equation (15) and xn expression we can conclude that Ph ðG¼0Þ ¼ Ph ðG!1Þ ¼ 0. The
average harvested power function versus G has then at least one maximum, as Ph ðGÞ is a
continuous function and PhX0. Let us define the cost function Jh (for a periodic external applied
force f to the structure):

Jh ðG;f ;oÞ ¼ Ph ðG;f ;oÞ ð16Þ
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which has at least one maximum. In the case f 2 LðRÞ
2, similar results can be obtained by studying

the total amount of energy harvested Eh instead of the average power for a periodic excitation f.
The cost function Jh can be used to decide if energy is harvested or not when G is not definite

positive. In this case the inequality JhX0 has to be studied versus G.

3.4. Comparing energy harvesting and stabilization strategies

Energy harvesting and stabilization strategies are different as the definitions of the two cost
functions Jst and Jh are not the same. In the case of stabilization, the defined cost function Jst

depends only on the feedback loop parameter G. In the case of energy harvesting strategy, the cost
function Jh depends on the same parameter G, the pulsation o and the external force f. Does the
parameter Gi which optimizes the stabilization of the mode i maximize the energy harvested?

The root locus can be used, as shown in Figure 4, to choose the optimal stabilization
parameter G. We will prove in the energetic study Section 5 that the optimal stabilization
parameter does not maximize the energy harvested in general. However, it will be shown that
the root locus can still be used to choose the optimal energy harvesting parameter G when a
viscous law control law is considered.

4. MODELING OF THE STRUCTURE WITH THE HARVESTING DEVICE

4.1. Modeling of the flexible structure without an energy harvesting device

If the considered flexible structure of Figure 3 is excited by an external harmonic force with
pulsation close to one of its natural frequency, the structure can be modeled by a spring mass model.

Indeed, Equation (1) can be modified by considering the modal matrix (F) of the conservative
system and the modal coordinate vector qs, which satisfies the equation x ¼ Fqs. Operating FT

in Equation (1), the following equation is obtained:

eMs
d2qs

dt2
1eCs

dqs

dt
1eKsqs ¼ FTf ð17Þ

with Ms ¼ FTMsF ¼ diagðmiÞ, Ks ¼ FTKsF ¼ diagðmio
2
i Þ and eCs ¼ FTCsF. mi denotes the modal

mass and oi the natural frequency of the mode i. Assuming a proportional damping model implieseCs ¼ diagð2xioimiÞ, where xi is the modal damping ratio of the mode i. We will assume that xi1.
The Laplace transform of Equation (17) gives:

X ¼ ½Fðs2eKs1seCs1eKsÞ
�1FT�F ¼ HðsÞF ð18Þ

s is the Laplace variable and HðsÞ the dynamic flexibility matrix [19]. The eigenfrequencies are
sorted as o1oo2o � � �oon where n is the number of considered modes of the discrete system.
The flexible structure is supposed to vibrate at a frequency around a well separated mode N.
This means that we suppose oNoi if ioN and oNoi if i4N . H can then be written as:

HðsÞ ¼
FNFT

N

mN ðs212xNoN s1o2
N Þ

1R0
N ð19Þ

with:

R0
N ¼

1

s2
XN�1
i¼1

FiFT
i

mi
1
Xn

i¼N11

FiFT
i

mio2
i

ð20Þ

In Equation (19), the constant matrix R0
N is the static contribution of the low and high frequency

modes of the structure [23]. If the excitation frequency o is close enough to the natural
frequency oN , it is possible to neglect the static residues. This assumption is made for the
analytical model developed in Section 5.3, as the flexible structure is considered as a spring mass
system.
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4.2. Modeling of the chosen harvesting device

Let us consider the energy harvesting device presented in Figure 5. It is composed of an
electromagnetic transducer connected to an impedance Zf ðoÞ, which represents the resistive
feedback loop [19]. It is a simplified representation of the storing system including the battery
and the rectifying electronic.

The transducer is composed of a moving coil in a magnetic field created by a magnet. The
relative velocity _yi (Figure 5) is imposed by the flexible structure. Equations (21) and (22) are
the electromagnetic transducer’s coupling laws.

fi ¼ �Ceii ð21Þ

emf i ¼ Ce
dyi

dt
ð22Þ

Variable ii is the current flow in the transducer’s coil ‘i’ and emf i the electromagnetic force. The
coupling coefficient Ce, which appears in Equations (21) and (22), is a constant that depends on
the magnetic field, the number of turns of the coil and the length of one turn.

Here we can notice that all the mechanical power _yi:fi is transformed into electrical power

emf i:ii ¼ Ce _yi:
fi
Ce
. This indicates that the transducer is supposed perfect as it has an efficiency

of 100%.
The harvesting device presented in Figure 5 is modeled by the passive electrical circuit shown

in Figure 6. The coil’s inductance Lb and its internal resistance Rb are modeled. They are added
to the electromagnetic force emf i and to the storing impedance Zf .

The associated electrical equation gives Equation (23):

Vi ¼ �ðRb1LbsÞii1emf i ¼ Zf ii ð23Þ

Combining Equations (21)–(23) leads to the expression of the feedback transfer function GiðsÞ:

GiðsÞ ¼ �
fi

syi
¼

C2
e

Zf 1Rb1Lbs
ð24Þ

Figure 5. Structure of an energy harvesting transducer.

Figure 6. Passive electrical circuit.
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This equation shows that the chosen harvesting device respects the control law defined on
Equation (5).

4.3. Modeling of the structure with one connected energy harvester

Now that the structure and the harvesting device are modeled, let us connect them together.
Figure 7 represents the energy harvesting configuration studied. Only one harvesting device is
considered. Torah et al. [24] have used a cantilever beam excited by an acceleration imposed to
the beam’s support to harvest energy. In their experiment the electromagnetic energy harvesting
device is connected to the free end of the beam. In our setup, the harvesting device can be
connected to any moving point of a flexible structure.

To simplify the experimental measurements, we will suppose that the external force f is
imposed at only one point (point 1). This allows an easy experimental evaluation of the power
provided to the flexible structure. For the rest of this study we will use the notation f1 for the
imposed force at point 1. x1 is the displacement at point 1. f2 represents the force vector applied
by the energy harvesting device and x2 the corresponding displacement vector.

Let us see the influence of this energy harvesting on the structure. The displacements at points
1 and 2 are defined as x1 ¼ bT

1 x and x2 ¼ bT
2 x, where b1 and b2 are the influence vectors. We will

suppose that f1, x1, f2 and x2 are real scalar functions for the rest of the study. The force vector
f ¼ b1f11b2f2 depends on the external shear force f1 and the feedback shear force f2. Let us
consider the transfer functions hij ¼ xi=fj defined by:

x1 ¼ h11f11h12f2

x2 ¼ h21f11h22f2

: ð25Þ

From Equation (19), (20) and (25) we obtain the following transfer functions hij for one
mode N:

h11 ¼
a11

s212xNoN s1o2
N

1r011

h12 ¼
a12

s212xNoN s1o2
N

1r012

h21 ¼ h12

h22 ¼
a22

s212xNoN s1o2
N

1r022

: ð26Þ

where the coefficients aij ¼ bT
i FNFT

N bj=mN and the static residues r0ij ¼ bT
i R0

N bj (which represent
the influence of the high frequency components of the modal decomposition) have been
introduced to simplify the notations.

The energy harvester connected on point 2 of the flexible structure, shown in Figure 7,
implies a harvesting feedback according to Equation (24): f2 ¼ �G_x2. Adding the feedback
harvesting law to Equation (25) it is possible to deduce the Frequency Response Function

Figure 7. Modeling of the studied energy harvesting device on the support structure.
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(FRF) of the flexible structure with a feedback loop corresponding to the harvesting circuit:

H1 ¼
x1
f1
¼ h11 � sG

h2
12

11sGh22

H2 ¼
x2
f1
¼

h12

11sGh22

: ð27Þ

Equation (27) allows the study of the influence of the feedback loop on the FRF H1 and H2 with
only one input f. If points 1 and 2 are collocated we have H1 ¼ H2.

5. ENERGETIC STUDY

Stephen [25] optimizes the energy harvesting of a spring mass magnet moving through a coil.
The energy scavenged by the coil is dissipated through a load resistance. This article shows that
the resistance can be chosen to maximize the harvested energy from the vibrating structure. Our
goal here is to precisely examine the influence of the resistance and the excitation frequency on
the harvested energy. The impedance Zf plugged onto the coil is supposed purely resistive. Let
us introduce the total impedance Zt, which corresponds to the coil’s impedance (Rb1sLb) added
to the storing impedance Zf . We then have:

Zt ¼ ðZf 1RbÞ1sLb ð28Þ

To simplify the notations let us introduce the real coefficients a and b, defined as:

a ¼ Zf 1Rb

b ¼ Lb

: ð29Þ

5.1. Condition to harvest energy

The formulas of Equation (27) allow the calculation of the displacements x1 and x2 when an
external force f1 is applied to the flexible structure. f2 is the force applied to the flexible
structure by the harvesting device and here the feedback loop matrix G is a scalar defined by:

G ¼ �
f2

_x2
¼

C2
e

a1bs
ð30Þ

It is then possible to evaluate the average power P1 and P2 respectively provided to the structure by
coil 1 and harvested by the harvesting device (composed of a passive circuit connected to coil 2):

P1 ¼ 1
2

Reðsx1f1Þ ¼ 1
2
kf1k

2ReðsH1Þ ð31Þ

P2 ¼ 1
2
Reðsx2f2Þ ¼ 1

2
ksk2kf1k2kH2k2ReðGÞ ð32Þ

To harvest energy the cost function Jh has to be positive. As Jh ¼ P2, this implies the harvesting
condition on G:

ReðGÞ40 ð33Þ

5.2. Numerical study

The average powers P1 and P2 can be evaluated from Equations (31) and (32). Figure 8(a),(b)
show their evolution for a given shear force f1 of 1N versus the imposed frequency and the
dissipative resistance a.

Equation (32) shows that P2 can be maximal when H2 is maximal, which happens when the
excitation frequency is close to the imaginary part of the H2 pole. It is then interesting to
examine the root locus of H2 when the total resistance a varies. We then have to solve:

11sGðsÞ:h22 ðsÞ ¼ 0 ð34Þ

The solution s of Equation (34) is plotted for a 2 ½0;11½ and gives the root locus shown in
Figure 9.
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It is interesting to plot the evolution of the maximal average power for different resistances
a when the frequency varies (Figure 10). This corresponds to the ridge of the surfaces of
Figure 8(a), (b).

The curves in Figures 9 and 10 have some particular points of interest:

� Points A1 and A2 correspond to the open loop system (a!1), power P2 is then equal to
zero.

� Points E1 and E2 correspond to the closed loop system (a ¼ 0), power P2 is equal to zero.
Physically, this system is equivalent to a beam with the displacement stiffened by the coil
at point 2.

� Point C is where the system is the most damped. In this case, the yield is very high (close to
100%). However, as the system is very damped, the input power is very low.

� Points B1, B2, D1, D2 correspond to maximums of dissipated power P2. In this case the
energy harvested is optimized.
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These results show that for an external sinusoidal force f1 with a constant amplitude around the
first bending mode, it is possible to find two maximums: one for a ‘low’ resistance and one for a
‘high’ resistance. The ‘high’ resistance is found in Stephen’s article [25], but the ‘low’ one is not.

If we had just considered the energy harvester as a simple damper, we would not have
obtained the second maximal power harvested (node D2) in Figure 10.

5.3. Analytical study

To be able to develop an analytical solution, a two-input two-output system is created and the
static residues are neglected. r011, r012, r022 are then equal to zero, and Equation (26) gives a
formulation that is equivalent to a spring mass system. By noting that a11 � a22 ¼ a2

12, as F
T
N b1

and FT
N b2 are scalars, it is possible to write the power P1 and P2 versus the transfer functions

h22 and G:

P1 ¼
1

2
jjf1jj

2 a11

a22
Re s

h22

11Gh22

� �� �

P2 ¼
1

2
jjf1jj2

a11

a22

h22

11Gh22

				 				2 ReðsGÞ

: ð35Þ

As s ¼ jo, we have Zt ¼ a1job. Hence the power expressions P1, P2 and the efficiency Z can be
written as Equations (36)–(38).

P1 ¼ 1
2
kf1k

2a11o2ð2xNoN ½a21ðboÞ2�1C2
e a22aÞ

½aðo2
N � o2Þ � 2xNoN bo2�21½C2

e a221bðo2
N � o2Þ12xNoN a�2o2

ð36Þ

P2 ¼
1
2
kf1k

2C2
e a2

12ao2

½aðo2
N � o2Þ � 2xNoN bo2�21½C2

e a221bðo2
N � o2Þ12xNoN a�2o2

ð37Þ

Z ¼
P2

P1
¼

C2
e a22a

2xNoN ½a21ðboÞ2�1C2
e a12a

ð38Þ

These expressions allow an analytical resolution of the special points shown in Figure 10.
The notation oNE is the eigenfrequency of the beam blocked on point 2 (points E1

and E2):

oNE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

N 1
C2

e a22

b

r
ð39Þ

The goal is to compare the points (A to E) on the root locus Figure 9 and the maximal
power in Figure 10. Therefore, it is necessary to find the poles of Equation (34). They are the
solutions of:

ða1bsÞðs212xNoN s1o2
N Þ1C2

e a22s ¼ 0 ð40Þ

5.3.1. Point E. In the case a ¼ 0, the solution of Equation (40) is

s ¼ �xNoN � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

NE
� o2

Nx
2
N

q
� �xNoN � joNE ð41Þ

The expression of P1 in Equation (36) becomes:

P1 ¼
1

2
kf1k2

a112xNoN

ð2xNoN Þ
21

oNE

o


 �2
� 1

� �2 ð42Þ
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The maximum of the function P1 ðoÞ is found when o ¼ oNE . Hence from Equations (36) to (38)
we obtain the expressions of P1, P2, and Z:

P1 ¼
a11 f1k k2

4xNoN

P2 ¼ 0

Z ¼ 0

ð43Þ

5.3.2. Point D. Here aoobksk. Consequently, o2
NE
442xNoN

a
b as oNE42xNoN . Then Equation

(40) can be simplified:

s31 2xNoN 1
a
b


 �
s21o2

NE
s1

ao2
N

b
¼ 0 ð44Þ

Since the solution of Equation (44) is s ¼ �xo1jo then s2 ��o22jxo2 and s3 � 3xo3 � jo3 as
xoo1. Using s, s2 and s3 expressions and taking the imaginary part of the solution s of Equation (44),
it is possible to show that o� oNE . Taking the real part of Equation (44) leads to:

xo ¼ xoNE ¼
o2

NE
� o2

N

2o2
NE

a
b

1xNE
oNE ð45Þ

At the node D, a maximizes the function P2 ðaÞ. Taking the expression of P2 in Equation (37) and

solving ð@P2=@aÞ ¼ 0 gives the optimal value of a for each frequency o:

a ¼ bo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2xNoN Þ

2o21ðo2
NE
� o2Þ2

ðo2
N � o2Þ21ð2xNoNoÞ

2

vuut ð46Þ

After developing Equation (37) and neglecting some terms as xNoo1 and aoobo, it is possible to
show that when o� oNE the power P2 is maximized. Using Equation (46), we obtain:

a� b
2xNoNo2

NE

o2
NE
� o2

N
¼

2xNoN

C2
e a22

ðboNE Þ
2 ð47Þ

It is then possible to write the solution of Equation (44): s� �2xNoN � joNE . When o ¼ oNE ,
the function P2 ðoÞ is maximum. Hence from Equations (36) to (38) we obtain the expressions

of P1, P2 and Z:

P1 ¼
a11jjf1jj

2

8xNoN

P2 ¼
a11jjf1jj2

16xNoN

Z ¼
1

2

: ð48Þ

5.3.3. Point C. In this case the function P2 ðaÞ is minimum and the yield ZðaÞ has to be maximum
because the damping of the structure is maximized and the loss is minimized. The yield function
is maximum when a ¼ bo. At this point the minimum power P2 is obtained when ð@P2=@aÞ ¼ 0
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and leads to Equation (46). Those two conditions on a give:

o ¼ oNC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

NE
1o2

N

2

s
ð49Þ

If we suppose that
oNE�oN

oN
oo1, then:

oNC �
oNE 1oN

2
ð50Þ

Equation (40) of the root locus can be simplified using the condition
a
b
¼ oNC :

s31ð2xNoN 1oNC Þs
21ð2xNoNoNC 1o2

NE
Þs1oNCo

2
N ¼ 0 ð51Þ

We use the notation s ¼ �xoNC 1joNC and the approximated expressions of s2 and s3 like for the
study of ‘Point D.’ If we only keep the real part, we obtain:

ðxoÞNC
¼

o2
NE
� o2

N

3o2
N 1o2

NE

 !
oNC ð52Þ

When o ¼ oNC , Equation (36)–(38) give the expressions of P1, P2 and Z:

P1 ¼ jj f1jj
2 a11

boNC

C2
e a22

1� 2xNoN
2boNC

C2
e a22

" #

P2 ¼ jj f1jj
2 a11

boNC

C2
e a22

1� 2xNoN
2boNC

C2
e a22

� �2

Z ¼ 1� 2xNoN
2boNC

C2
e a22

ð53Þ

5.3.4. Point B. Here a44bksk. Then Equation (40) can be simplified by:

aðs212xNoN s1o2
N Þ1C2

e a22s ¼ 0 ð54Þ

The solution of this equation is:

s ¼ �xNo1 �
C2

e a22

2a
� joN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2N 1

C2
e a22

2xNoN a

� �2
s

ð55Þ

To get the resistance a and the frequency o, which maximize P2, we are using the same technique
as the one used to find the parameters for ‘Point D’ Neglecting xNoo1 and a44bo allow us to
prove that P2 ðoÞ is maximized when o ¼ oN and:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðboN Þ

21
C2

e a22

2xNoN

� �2
s

ð56Þ

With the hypothesis a44bo and the expression of a in Equation (56), we get C2
e a22=2xNoN44boN

and thus:

a�
C2

e a22

2xNoN
ð57Þ
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The solution of Equation (55) can be simplified: s� �2xNoN � joN . Hence from
Equations (36) to (38) we obtain the expressions of P1, P2, and Z:

P1 ¼
a11kf1k2

8xNoN

P2 ¼
a11kf1k2

16xNoN

Z ¼
1

2

ð58Þ

5.3.5. Point A. In the case a!1 Equation (40) can be divided by a. Hence the equation to solve is:

s212xNoN s1o2
N ¼ 0 ð59Þ

The solution of this equation is:

s ¼ �xNoN � joN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2N

q
��xNoN � joN ð60Þ

The expression (36) of the power P1 with the condition a44bo is:

P1 ¼
1

2

kf1k
2a11o22xNoN a2

a2ðo2
N � o2Þ21o2ð2xNoN Þ

2a2

( )
ð61Þ

The maximum of the function P1 ðoÞ is found when o ¼ o1. Hence from Equations (36) to (38) we
obtain the expressions of P1, P2 and Z:

P1 ¼
a11 f1k k2

4xNoN

P2 ¼ 0

Z ¼ 0

ð62Þ

5.3.6. Synthesis. The average power harvested by coil 2 is completely dissipated in the passive
feedback loop. The inductance b does not dissipate any power, only the total resistance a does.
The analytical powers P1 and P2 depend on the parameters a (resistance) and o (excitation
frequency). Looking for the frequency o which maximizes P2 for a resistance a leads to a graph
similar to Figure 10. The analytical expression of the points of special interest (which appear on

Figure 10) are given in Table I with: oNE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

N 1C2
e a22=b

q
and oNC ¼ oNE 1oN

� �
=2.

Points A and E are not interesting for energy harvesting as there is no energy transfer when
a ¼ 0 or a!1. In the case a ¼ 0, a feedback effect exists on the structure and changes its
impedance. This explains why for a considered mode N, the natural frequency is different for a
short circuit than for an open loop.

The two resistances, which maximize the harvested power P2, are located at points B and D
where P2 is equal to half of P1. Here the electrical damping is equal to the mechanical damping,
which has already been reported for a spring mass magnet moving through a coil with a resistive
load [25]. This corresponds to Jacobi’s theorem. To maximize the electrical power transfer to an
electrical load, the impedance has to be matched to the conjugated generator impedance. Here,

Table I. Synthesis of the analytical results for the particular points.

Point Pole’s real part (root locus) Pole’s imaginary part (root locus) Energetic yield

A �xNoN oN 0
B �2xNoN oN

1
2

C
o2

N�o
2
NE

3o2
N 1o2

NE

oNC oNC 1� 2xNoN
2boNC
C2

e a22
D �2xNoN oNE

1
2

E �xNoN oNE 0
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Jacobi’s maximum power transfer theorem has then to be adapted to a multi-physic problem.
Points B and D can be placed on the root locus (Figure 9) if we consider a direct velocity
feedback at the abscissa �2xNoN . This corresponds to twice the abscissa of the structure for a
short circuit (a ¼ 0) or for an open circuit (a!1). This is a consequence of the fact that P2 is
maximized when the electrical damping is equal to the mechanical one.

The resistance a at point C maximizes the damping of the structure. This corresponds to the
optimal damping effect described by Monnier et al. [18]. This case is not interesting for energy
harvesting if we consider a finite power source as the high damping leads to very small
displacements of the structure.

As points B, C and D are distinct, the stabilization and harvesting strategies are then distinct
in the case of an imposed external force. The maximal average power P2 value depends neither
on the electromechanical coupling coefficient Ce nor on the position of the harvesting device on
the beam. Hence, there is no need to have a high magnetic field or to have the coil placed at the
free end of the cantilever beam to dissipate a lot of energy in a resistance. Equations (47) and
(57) show that the coupling parameter has to be known to choose the two optimal resistances a.
The inverse mass parameter a22 depends on the position of coil 2 on the beam. Hence, the two
optimal resistances have to be adjusted versus the position of the energy harvester.

6. EXPERIMENTAL VALIDATION

The goal of this experimentation is to validate the energy harvesting model developed. The
experimental setup has to correspond to the model proposed in Figure 7. On this beam we can
evaluate easily the provided and harvested power (collocated force and velocity measurement).

6.1. The flexible structure

The flexible structure is composed of a cantilever beam on which two electromagnetic actuators
are fixed (Figure 11). Fixing one side of the electromagnetic transducer on the structure’s
support makes it easier to evaluate the harvested or provided power. Just one velocity and force
measurement will be needed to evaluate the harvested power. The power is provided by the
electromagnetic transducer ‘coil 1’, which appears in Figure 11. The ‘coil 2’, connected to an
electrical impedance, is used to harvest energy. This schematic representation corresponds to the
photo of the experimental setup shown in Figure 12. The beam (525� 50� 9:6 mm) is made of
steel and studied around the first bending mode.

Figure 11. Schematic experimental setup.
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6.2. Actuators

The two actuators are placed respectively at distances L1 ¼ 155 mm and L2 ¼ 335 mm from the
strongly fixed end (Figure 11). These ‘homemade’, contact-less electromagnetic actuators are
constituted of a coil fixed on the structure by a cone and placed in the air-gap of a permanent
magnet fixed on the ground. Both actuators have the same characteristics. The cones are
designed to move the magnet away from the structure in order to decrease the direct magnetic
effect on the structure. They are made of aluminum to increase the stiffness-to-mass ratio and to
avoid magnetic conductivity. Together a coil and a cone weigh 14.3 g. Measurements show that
the power lost when the energy is converted can be neglected.

When the transducer ‘j’ has a small x-axis displacement xj (Figure 11), the coupling laws given
by Equations (21) and (22) are verified. Variable fj is the shear force induced by the
electromagnetic feedback, while ij is the current flow into the coil ‘j’ and emf j the electromagnetic
force. The coupling coefficient’s value Ce 5 2.1 N.A�1 is identified by experiment. Both coils
have an internal resistance of Rb ¼ 0:70 O, and an inductance of Lb ¼ 70 mH.

Coil 1 is used to excite the structure by imposing an external sinusoidal force f1 with a
constant amplitude at a given frequency o(chosen close to the frequency of the first bending
mode). Coil 2 is used to harvest the vibrating energy from the structure and to dissipate the
converted electrical power in a resistive feedback load impedance Zf .

6.3. Instrumentation

A force cell is placed between the coil and the structure to measure the effort produced by each
actuator. Accelerometers are collocated with the force cells, but are placed on the other side of
the beam (Figure 11). These sensors permit the evaluation of the provided and harvested
mechanical power by the transducers. The energy harvested is dissipated in the storing
impedance Zf connected to coil 2. The measures of Zf and of the current flow i2 give the
electrical power dissipated and is compared to the energy harvested. The storing impedance Zf

is obtained by an ohmmeter. The electrical current is measured by a Hall effect probe. The Hall
effect probe is chosen to not disturb the harvesting circuit as the current flow is low.

6.4. Modeling of the experimental setup

The cantilever beam is discretized by Euler-Bernoulli elements such that some points coincide with
the positions of the two actuators. Let us call them point 1 and point 2 as shown in Figure 7. The
accelerometers and the force cells are modeled by lumped masses on points 1 and 2. x1, f1 and x2,
f2 represent the displacement and the shear force applied at point 1 and point 2. The theoretical
Young’s modulus of the steel beam has been lightly modified in order to minimize the error
between the numerical first bending frequency and the one measured experimentally (Table II).

On the experimental setup the natural frequencies without feedback loop have been
measured. Table II shows that all the modes are separated and that the structure is slightly
damped (xioo1). Here N is chosen equal to 1.

We can see that the comparison of numerical FRF at point 1 with 1 mode and 6 modes are
well superimposed on the frequency band [25Hz; 40Hz] as shown in Figure 13. The assumption
of modeling the flexible structure by a one degree of freedom system is validated. The

Figure 12. Experimental setup.
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comparison between experimental and numerical results in Figure 13 shows that the curves are
well superimposed too. This confirms that the chosen beam model is valid for the natural
frequencies considered. We can then use the system defined in Equation (26).

6.5. Prediction from the numerical and analytical model

The energetic models developed in Section 5.2 are applied to the experimental setup. Table III
shows the numerical and analytical results for points B, C and D. Despite the fact that the
modeling of the structure has been simplified to obtain analytical results, it can be noted that
there is a good agreement between the resistances a and the energetic yield Z at the special
points. The assumption of neglecting the static residues r0ij in Equation (26) is then valid.

It will not be possible to observe experimentally the maximum power P2 of point D for a
purely resistive feedback as the resistance a ¼ 2� 10�4 O at this point is below the coil’s internal
resistance Rb ¼ 0:7 O. Equation (47) shows that it might be possible to reach this point by
adding a high inductance with a low internal resistance to the feedback loop. Therefore, the only
storing impedance Zf opt to plug onto the coil which optimizes the average power P2 is:

Zf opt ¼
a22C2

e

2xNoN
� Rb ð63Þ

Zf opt depends on: the electromechanical coupling coefficient Ce, the coil’s resistance Rb and the
structure’s damping ratio xN .
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Figure 13. FRF h11, open loop beam: experimental (�), simulated with 1 mode (�), simulated with 6 modes (	).

Table III. Comparison of the analytical and numerical results.

Resistance aðOÞ Energetic yield Z

Numeric Analytic Error Numeric Analytic Error

B 3.16 3.17 0.32% 0.5025 0.5 0.5%
C 2:51� 10�2 2:22� 10�2 11.5% 0.9858 0.9860 0.02%
D 2:00� 10�4 1:97� 10�4 1.5% 0.4959 0.5 0.82%

Table II. Experimental and numerical results for the open loop beam.

Mode 1 Mode 2 Mode 3 Mode 4

Experimental natural frequency (Hz) 28.09 174.2 478.7 942
Experimental damping ratio xi (%) 0.205 0.195 0.098 0.158
Numerical natural frequency (Hz) 28.11 174.1 477.6 970.6
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6.6. Experimental energy harvesting results

The experimental flexible structure is excited by an external sinusoidal shear force f1 with a
constant amplitude of 1N. The frequency o is chosen around the first bending mode to
maximize the power P2 dissipated in the resistance a. The optimal frequency is experimentally
found at o ¼ o1 ¼ 178 rad:s�1. Only the resistances higher than the coil’s internal resistance
Rb ¼ 0:7 O are tested during the experimental measurements.

The accelerometer 1 and cell force 1 (Figure 11) are used to evaluate the value of the provided
average power P1, thanks to the equation:

P1 ¼ P1m ¼
1

2p
o

Z 2p=o

0

f1
dx1
dt

� �
dt ð64Þ

where P1m is the mechanical average power at point 1.
To evaluate the average power P2 at point 2, it was decided not to use the mechanical average

power P2m , as it is not possible to get a precise value of the applied force f2. When the beam is at
its first bending mode the force cell 2 is strongly perturbed by an inertial force. By using
Equations (21) and (22), it is possible to show that the average electrical power P2e is equal to P2m

at point 2.

P2m ¼
1

2p
o

Z 2p=o

0

f2
dx2
dt

� �
dt ¼

1

2p
o

Z 2p
o

0

ðCei2Þ:
V2

Ce

� �
dt ¼ P2e ð65Þ

The electrical power (P2e ) dissipated in the electrical circuit is obtained by using the equation:

P2e ¼
1

2p
o

Z 2p=o

0

V2:i2 dt ¼
1

2
aði2eff Þ

2 ð66Þ

where a is the total resistance of the circuit and i2eff the effective current in the coil 2. A Hall
effect probe gives the current (i2) and an ohmmeter the value of resistance Zf plugged onto the
coil 2 (Figure 6). The value of the total resistance a ¼ Rb1Zf and the value of P2e can then easily
be deduced.

The experimental powers P1 and P2 are compared to numerical simulations for different
values of aXRb. The average error on P1 is 6% and on P2 is 12%. Figure 14 shows a very good
agreement between the numerical simulations and the experimental measurements. The
experiment confirms that there is a maximum of power P2 dissipated around the functioning
point D where a ¼ 3:16 O and the yield Z ¼ 1

2
.

7. CONCLUSION

The present study focuses on optimizing the harvested energy from a flexible structure. The
harvesting device is composed of an electromechanical transducer connected to an impedance
which models the storing electronic. This device is fixed on a flexible structure and creates a
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Figure 14. Maximal power in the actuators versus total feedback resistance: P1 simulated (�); P2 simulated
(�); P1 measured (&); P2 measured (	).
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viscous feedback G on it. This situation is analogous to the case of a classical Direct Velocity
Feedback control.

An analytical model of a flexible structure with a single energy harvester has been developed.
This model enlarges the results given in the case of a spring mass model [25] to a flexible
structure around an isolated mode. It also shows that the maximum dissipated power with an
external electromagnetic energy harvesting device depends neither on the coupling coefficient
nor on the position on the structure as long as the harvesting connected point is moving. It only
depends on the structure’s damping ratio if the excitation frequency coincides with that of the
optimal functioning point. This implies that it is not necessary to have a high magnetic field or
to place the coil at the free end of a cantilever beam to maximize the harvested energy. However,
the impedance plugged onto the coil has to be adjusted versus the coupling coefficient and the
position of the transducer on the flexible structure.

The maximal power is extracted when the electrical and mechanical damping ratios are equal.
This result is valid if the structure is excited at an isolated frequency and submitted to an imposed
acceleration or an imposed force. This corresponds to applying Jacobi’s theorem to a multi-physic
problem. In Stephen’s article [25] only one resistance matching the electrical and mechanical
damping ratios is presented. In our study a second resistance matching the damping ratios has
been obtained as the coil’s inductance (used by the electromechanical transducer) has been added
to the modeling. The analytical spring mass model, derived from the flexible structure, confirms
that both optimal energy harvesting resistances are obtained for matching damping ratios.
Analytical energy transfer expressions give optimal design parameters when a linear device is
plugged on the electromagnetic transducer. They show that for both optimal resistances half of
the provided energy can be harvested. On the root locus, the two optimal energy harvesting
feedback gains have the same abscissa, which is equal to twice the no energy transfer abscissa
(open circuit or short circuit). The root locus can then be used to choose the optimal energy
transfer gain in the case of a DVF law control for an imposed excitation force or acceleration.

The experimental measurements are in good agreement with numerical simulations, and
confirm that it is possible to maximize the average power dissipated in a purely resistive
impedance plugged onto a coil. The value of the optimal ‘high’ resistance is close to those
predicted by the analytical expression and obtained by numerical simulations. The ‘low’
resistance could not be reached experimentally as the optimal resistance is below the
transducer’s coil internal resistance. A possible way to overcome this limitation would consist
in having a storing resistance with a ‘high’ value of inductance.

The analytical results are very useful for choosing the resistance, which maximizes the
dissipated energy while designing a vibrating energy harvesting system. The results obtained are
applicable for macro- and micro-scale electromagnetic generators as shown by Beeby et al. [26].
Future studies will involve optimizing vibrating energy harvesting using a non-linear feedback
loop [27].
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