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Abstract

Prognostics and Health Management (PHM) is a discipline that enables
the estimation of the Remaining Useful Life (RUL) of a system and is not
yet much applied to Proton Exchange Membrane Fuel Cell PEMFC. How-
ever it could permit the definition of adequate conditions allowing extending
PEMFC’s too short life duration. For that purpose, a model that can repro-
duce the behavior of a PEMFC is needed. This paper presents a model of a
PEMFC that could serve for a prognostics purpose. The model is composed
of a static part and a dynamic parts that are independent. On one side, the
static part is developed thanks to equations describing the physical phenom-
ena and is based on the Butler-Volmer law. On the other side, the dynamic
part is an electrical equivalency of physical phenomenon. The models are
validated thanks to experimental data gathered in long term tests. For that
purpose the parameters are successively updated based on characterization
measurements (polarisation curves and EIS (electrochemical impedance spec-
troscopy)). Then the results of the model are compared to the ageing data
in order to evaluate if the model is able to reproduce the behavior of the fuel
cell. The usefulness of this model for prognostics is finally discussed.

Keywords: Proton Exchange Membrane Fuel Cell, Prognostics and Health
Management, Behavioral Model, Static, Dynamic,
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Nomenclature

ηa Voltage drop at the anode [V ]
ηc Voltage drop at the cathode [V ]
τOc Time constante of the diffusion convection impedance [s]
ba Tafel anode parameter V −1

bc Tafel cathode parameter [V −1]
bOc Parameter of the variation law of ROc [V −1]
Cdca Double layer capacity at the anode [F/cm2]
Cdcc Double layer capacity at the cathode [F/cm2]
En Nernst Potential [V ]
i Number of EIS realized at each characterizations
j0a Exchange current density at the anode [ A/cm2]
j0c Exchange current density at the cathode [ A/cm2]
j0Oc Parameter of the variation law of ROc [A/cm2]
JAC Dynamic current density [A/cm2]
JDC Static current density [A/cm2]
JEIS Vector of the current densities for the EIS [A/cm2]
Jpola Vector of the current densities for the polarization curve [A/cm2]
jLc Limit current density at the cathode [A/cm2]
k Number of characterizations
kOc Parameter of the variation law of τOc [A.s/cm2]
L Connectors’ inductance [H.cm2]
Rm Membrane resistance [Ω.cm2]
r Internal resistance (Static and Global model) [Ω.cm2]
ROc Module of the diffusion convection impedance [Ω.cm2]
Rta Transfert resistance at the anode [Ω.cm2]
Rtc Transfert resistance at the cathode [Ω.cm2]
U Stack Voltage [V ]
UAC Dynamic stack Voltage normalised per cell [V ]
UDC Static stack Voltage normalised per cell [V ]
Un Stack voltage normalized per cell [V ]
WOc Diffusion convection impedance [Ω.cm2]

1. Introduction

PEMFC is a promising alternative to the actual production of energy but
has got technical bolts as the distribution and the storage of dihydrogen as
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well as a too short life duration [1]. In order to postpone the end of life,
the development of Prognostics and Health Management (PHM) seems to
be an adapted solution. The part of PHM that is highlighted here and that
has not been investigated much in literature is Prognostics. The idea is to
estimate the Remaining Useful Life of a system. For that purpose, as a
starting point, a behavioral model, including ageing, of a PEMFC is needed.
For modeling the behavior, different kinds of approaches can be highlighted,
like data-based [2] or model-based [3], both largely present in the literature.
However, neither of these models seems to fit the diagnostics purpose. Indeed,
for examples, the ageing phenomena can hardly be added if only the micro
phenomenon happening in the fuel cell are modeled [4]. For that purpose,
a model-based approach is developed in this paper in order to have a good
precision and even to model some important internal parameters of the fuel
cell. A combination of a static and a dynamic model is proposed and fulfills
the need of a model in an efficient way. Indeed, added to the positive aspects
of a model-based approach, this model is rather easy to implement, has a
high enough accuracy with the description of internal parameters, and the
ageing can be easily included.

This paper is structured as follows. First a presentation of the path made
toward a behavioral model usable for prognostics is drawn, then the model
developed is presented. Next the updating procedure, i.e. the tuning of
parameters’ values is explained for finally studying the validation thanks to
the comparison between the simulated behavior and experimental results.

2. Backgrounds

2.1. Prognostics and Health Managment (PHM)

Every machine or system is deteriorating with time until reaching a faulty
state. It can happen at an unsuitable time and trigger negative consequences
as it prevents the system to ensure its mission. The maintenance could take
a lot of time, and meanwhile, all the dependent systems are not able to carry
on. Some loss of money or time and even security troubles can be triggered
by this situation. PHM appears to be a solution to face this kind of problems
[5]. Among the aims of PHM, the principals are:

• To improve the decision making process in order to increase the life
duration of the system;

• To improve the availability and reduce the operational cost;
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• To improve the security of the system.

PHM is described as composed of seven modules (figure 1) that allow defining
the different steps followed in the process [6] . With a first part of obser-
vation composed by the data acquisition (module 1) obtained thanks to the
sensors and by the data processing (module 2) which allows extracting some
features. Then the analysis part is composed by modules 3, 4 and 5. Mod-
ule 3 (condition assessment) aims defining the state of health of the system
by detecting faults. Then, the module 4, diagnostic, assesses the origins of
the faults. Module 5, prognostics, predicts the future state of health of the
monitored system thanks to previous modules. It allows estimating the re-
maining useful life (RUL). The action part of PHM is composed by the last
two modules. First, the decision support provides recommendations about
the actions that should be taken to fulfill the mission while optimizing crite-
ria like cost or time to failure. And then, the human-machine interface that
allows the communication with the user but also the overall link between the
modules.

Figure 1: PHM modules adapted from[7]
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2.2. PHM of fuel cell

Even though the PHM, under its denomination, has not been applied a
lot to the fuel cell, but papers dealing with the different modules of PHM can
be found in the literature. For example different authors [8, 9, 10, 11, 12, 13]
develop the modules of the observation part and even diagnostics [12, 13,
14, 15, 16]. There is a lot of paper already dealing with diagnostics for the
PEMFC and the previous steps. However, there are only few paper dealing
with the step further which is PEMFC pronostics [17], on which focus this
paper.

The ISO definition of prognostics is: “estimation of the operating time
before failure and the risk of existence or later appearance of one or more
failure modes”. It allows defining the Remaining Useful Life (RUL) that is
according to the ISO standard [18] : “estimation of the time past between the
current moment and the moment when the monitored machine is considered
as failed”. So, prognostics aims at predicting the time left for the system
to be functional. In this objective, approaches for prognostics [19] can be
distinguished as follows:

• Data-driven [20, 21, 22] approaches aim at approximating and predict-
ing the behavior of the system thanks to experimental data and without
an analytical model of the underlying phenomena. Those approaches
are usually performed thanks to machine learning tools like neural net-
work. This kind of approaches is generally simple to implement but
has no link with the internal phenomenon. It is then not possible to
correlate the state of health observed or predicted with the real physic
happening. These approaches are effective if a large amount of data is
available, which is not always the case.

• Model-based approaches are based on the description of the physical
phenomena happening. Equations developed thanks to a precise study
of the behavior based on global knowledge as for exemple, chemistry
or electronics is the startpoint of this approach. Indeed, the failure
criteria developed in this approach are the description of the failure
mechanisms by explicit mathematical representation. This approaches
are reliable but require a precise knowledge of the physics phenomenon
happening in order to be able to model it.

• Hybrid approaches are based on the two last approaches. The idea is,
here, to try to combine the first two methods in order to have a more
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accurate and reliable result. Effort has to be made to avoid a two high
computational cost and to reach a satisfying applicability.

The classification of the physic-based approach can be discussed. In-
deed, even though the model is based on the description of the physical
phenomenon, data are needed in order to obtain appropriate parameters of
the model.

The models of PEMFC that can be found in the literature cover different
approaches from physic-based to data-based. Data driven approaches won’t
model any physic phenomenon and will need a significant amount of data
for the learning phase. They can be represented as black boxes [20]. They
presents more or less the same drawbacks than the data-driven approach of
prognostics and don’t comply with our needs. Then it was chosen to study
only the physical-based as this kind of approaches has not been developed
yet for our purpose but also because it would allow keeping a strong link
with the actual physical phenomenon. The physic-based model describe the
physic phenomenon happening. Some are formalized thanks to an electrical
equivalency [23, 24, 25, 26], while others directly exploit the physical and
chemical equations [27, 28, 29, 4, 30].

The black box modeling has already been investigated [21, 31]. The
physical based approach is developed with this first step of modeling.It would
allow gaining in precision and even adding some possible analysis as some
internal parameters with a physical meaning are represented. In this work, we
choose to develop a physics-based approach applied on a PEMFC stack as the
stack is defined as the object of the study (excluding the other components
of the PEMFC system).

3. Literature review: Towards an analytical behavior model

Numerous works has been analyzed in order to define and identify a model
that would comply with the PHM needs. A synthesis is shown thanks to the
table 1.

3.1. Aims of the models

The goal of the model should be convenient for a prognostics use. A
comprehensive model could be usable, but the development should present
a capacity of adaptation as allowing the addition of a new input without
too much burden. A model for comprehensive purpose is a model which
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aims understanding the interaction between different electrochemical mech-
anisms. The claimed objectives are variables: Fouquet et al. [23] developed
their model for diagnostic purpose, while Siegel et al. [27] objective is com-
prehension whereas for Hinaje et al. [32] it is a development that would allow
the control. In other references, the underlying aim is not always given, even
if it is a capital fact, as a model developed for purpose of design [33] won’t
fit most of the time for another application.

3.2. Boundaries of the model

The boundaries of the expected model are the terminal of the stack as
it is the stack’s RUL which is here investigated. The modeled objects differ
also among the papers. The ones that model the whole system or a part of
it [34] haven’t been retained as it is beyond the scope of this study. Some
models concern a single cell [4, 24, 27, 28, 29, 32]. Fouquet et al [23] use a
model of a single cell, and extend it for modeling a stack. It is the same for
Shan et al. [35] that presents a cell model and then use it for modeling a
stack. So, some models of single cell can match with our needs, if they can
be extended to a stack, implying a few assumptions or modifications. Finally
some authors model directly stacks [3, 25, 36].

3.3. Static or dynamic models

A static model would be convenient as the objective is to model the
behavior for a long time scale under a constant load in a first step. But
a dynamic model would be convenient as it brings more precision on the
behavior’s description and would make the model more reliable under variable
load. However it is an open question. Defining a model as static or dynamic
is not an easy task. Indeed, there is no clear agreement in the literature
about a definition. A model with a time dependency can be considered as
dynamic regardless to the value of the time constant, while for some authors
a model with a low time constant is a static model. Thus, some models are
are labeled as dynamic as [4, 25, 30, 35] whereas other as static [23] but not
always with the same definition. However a lot of authors don’t even define
the nature of their model, and some can appear static [24, 27] or dynamic
[36] with the analysis of their work face to our definition.

3.4. Space and time scale

The space scale of the phenomenon described in the models is also variable
as well as the dimension of the model. A thin granularity, down to the
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nanometer, is often linked to a high dimension description and suits more
the design purposes. A review of this kind of models is available [37], with
detailed models of precise phenomena. For prognostics purposes, a 1D or
even 0D model should be precise enough and have a compatible computing
cost [23, 24, 27, 28, 29, 36]. Furthermore, the time scale of the phenomena
retained in the description doesn’t need to be low as thousands of hours as
simulated time might be necessary to forecast the RUL. However, the fastest
phenomena can be kept then neglected in a second step if necessary.

3.5. Degradation already included in the model

As our final final need is to model the ageing, a model that includes some
degradation would present advantages. For example Fouquet et al. [23]
characterize the flooding and drying of the membrane in order to classify
the degraded operating modes of the fuel cell. Lee et al. [24] as well as
Laffly [38] did try to model the ageing by fitting parameters’ evolution with
polynomial function. In their work, Robin et al. [3] tried to model the Pt
surface degradation mechanism.

3.6. Validation of the models

The model should have been validated with experiments to be reliable
enough.

The validation strategies are variable too, as some authors validate their
models thank to experimentations [33, 36], some others thanks to comparison
done with other publication [39], or even with equations solver results [32].
Lee et al. [24] validate their model by evaluating the fitting of their curve
with the real data, it means that it is the evaluation of the parameters and
the shape of the model that are validated on the example not its predictive
ability. Hou et al. [36] evaluate the parameters thanks to experiments and
then, validate them thanks to another test on another stack.

3.7. Synthesis and discussion

Table 1 presents the characteristics of each model versus all the criterion.
At the first sight, on table 1, some model appear to fulfil the criteria but a
deeper analysis is needed:

1. The model of Robin et al. [3] presents a combination of an analyti-
cal model and a semi-empirical one. A degradation : the Pt surface
degradation is included in this model. But the need of the local partial
pressure is a strong limitation of this model.
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2. The model of Fouquet et al. [23] is an electrical equivalent circuit
that is based on Randles model but improved with a Constant Phase
Element. However in this model the two electrodes are not separated,
which decreases the level of information.

3. The model of Reggiani et al. [25] is a model based on an electrical
equivalent circuit. This model doesn’t present enough precision for the
purpose here as the model proposed doesn’t go really deep in the the
phenomenon modeled, for example, there is not differentiation between
anode and cathode. The gain of using a physics-based approach would
not be as great as expected because the hypothesis of simplification are
pushed too far.

4. The model of Hou et al. [36] is a model that has an objective re-
ally focused, indeed, models for the voltage overshoot and undershoot
are developed here. So these models are not complete enough for the
purpose of this paper.

As no model that could be found in literature complies with each criterion
(table 1), a new model is presented in this paper that is more adapted to our
need of prognostics purpose.

4. Behavioral model description

4.1. Overall presentation

The proposed behavioral model is depicted in figure 2. The only input
of this model is the current which is then normalized in the current density
to be decomposed in direct and alternating current densities thanks to a low
pass filter. These current densities are then used as the inputs of the models
in order to furnish the output that are direct and alternating voltage per
cell which are finally recomposed in voltage per cell to be denormalized in
voltage.

Figure 2: Scheme of the model
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First Model Object Static or
Ref. author type Aim modeled dynamic Degradation

Physical &
[3] Robin chemical desc. Comprehensive Stack Dynamic Modeled

Phys. & chem.
[39] Asl des. & electrical Not clearly Stack Dynamic No

eq. circuit defined
Electrical

[23] Fouquet equivalent Diagnostic Cell Dynamic Characterized
circuit → stack (Classified)

Electrical
[24] Lee eq. circuit Diagnostic Cell Static Modeled

Electrical Not clearly
[25] Reggiani eq. circuit defined Stack Dynamic No

Electrical Not clearly Cell
[26] Lazarou eq. circuit defined → stack Dynamic No

Physical &
[27] Siegel chemical des. Comprehensive Cell Static No

Physical & Not clearly
[28] Martins chemical des. defined Cell Static No

Physical &
[29] Chevalier chemical des. Diagnostic Cell Static Modeled

Physical & Not clearly
[4] Ceraolo chemical des. defined Cell Dynamic No

Physical & Not clearly Cell
[30] Philipps chemical des. defined → stack Dynamic No

Phys. & chem.
[32] Hinaje des. & electrical Control Cell Dynamic No

eq. circuit
Phys. & chem.

[33] Park des. & electrical Conception Cell Dynamic No
eq. circuit → stack
Physical & Cell

[35] Shan chemical des. Conception → stack Dynamic No
Logarithmic

[36] Hou & semi- Not clearly Stack Dynamic No
empirical defined

Table 1: Synthesis table of the literature study
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The objective of a prognostic approach is to be able to reproduce the
behavior of the system in order to obtain information estimated like the
state of health (SOH) or the remaining useful life (RUL). It is in this frame
that this model appears to be exploitable for prognostics (figure 3). Indeed,
thanks to the model and to ageing data, the prognostic approach can be
developed, this would allow providing the informations needed for the next
steps of PHM, i.e. the decision process.

Figure 3: Insertion of the model in prognostics

4.2. Static part of the model

The static model based on the Butler-Volmer law is in a first step a vari-
ation law that takes into account the activation phenomenon at the cathode
and at the anode by the two voltage drop ηa et ηc.

UDC = En − r · JDC − ηa − ηc (1)

Where r is the internal resistance of the fuel cell, JDC the static current
density and En the Nernst potential.

With the hypothesis that the influence of the hydrogen diffusion can be
neglected face to the oxygen ones, the final expression is (2). Indeed during
measurements it can be noticed that the diffusion at the cathode has a bigger
influence than the diffusion on the anode side [38]. With at the anode and
cathode :

• ba, bc the Tafel parameters;

• j0a, j0c the exchange current density;
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• jLc the limit current density at the cathode only.

UDC = En− r ·JDC − 1

ba
· asinh

(
JDC

2 · j0a

)
− 1

bc
· asinh

 JDC

2 · j0c ·
(
1− JDC

jLc

)

(2)

4.3. Dynamic part of the model

Here, the aim is to link the voltage variation to the current variation,
with the hypothesis that the variations are around a static operating point.

4.3.1. Summary of the model

The phenomena that are represented in the dynamic model are expressed
thanks to an electrical equivalency (figure 4). Indeed, the multi-physical
phenomena are represented by electrical impedances with a similar behavior
:

• A part of the diffusion convection of the different gases at the cathode
is modeled by a Warburg impedance.

• The double layer capacities at the interface electrode-electrolyte on the
anode and cathode are modeled respectively by capacitor Cdca and Cdcc.

• Two transfer resistances Rta and Rtc represent the electrons transfer at
the electrodes.

• The ionic conductance of the membrane is modeled by an equivalent
resistance Rm. A different writing than the internal resistance on the
static part as they are here not linked yet.

• And finally, the inductive behavior due to the connectors is taken into
account by an inductance Lcon.

12



Figure 4: Electrical equivalency of the dynamic model

4.3.2. Warburg impedance

The Warburg WOc is defined by its module ROc and its time constant τOc

expressed in the Laplace space(eq. (3)).

WOc (p) = ROc ·
tanh

(√
τOc · p

)
√
τOc · p

(3)

Figure 5: Electrical equivalent circuit of an electrode with a Warburg represented by N
RC filter in series

An equivalence for this impedance is a network of n RC filters in series
(figure 5). The values of the parameters Rn (eq. (4)) and C (eq. (5)) are as
follows.

Rn =
8 ·ROc

(2 · n− 1)2 · π2
(4)
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C =
τOc

2 ·ROc

(5)

The equivalent impedance then have for expression (eq. 6), with Rn

developed on (eq. (4)) and Neq the number of RC filters :

WOceq (p) =

Neq∑
n=1

Rn

1 +Rn · C · p
(6)

When using more than 5 RC filters the error between the model and the
measures is under 4%. Yet the experiment measures error have the same
order of value, we can consider that 5 filters are enough as up to 5 filters.

4.3.3. State space representation

The equivalent electrical circuit is then expressed thanks to a state space
representation in which each electrode has a state space representation. We
consider that the current density is well separated in its static JDC and dy-
namic part JAC as they are the different input for the static and the dynamic
model.

A state space representation is expressed as :

Ẋ = A ·X +B · U (7)

Y = C ·X +D · U (8)

For the anode (figure 4), with no diffusion convection impedance, the
state vector is (eq. (9)) and the matrix of the representation are (eq. (10),
(11), (12) and (13)) :

X = [IRta ] (9)

A =

[
− 1

Rta · Cdca

]
(10)

B =

[
1

Rta · Cdca

]
(11)

C = [Rta] (12)

D = [0] (13)
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The state space representation at the anode is thus finally (eq. (14)):{ [
˙IRta

]
=

[
− 1

Rta·Cdca

]
· [IRta ] +

[
1

Rta·Cdca

]
· [jAC ]

[UACAnode
] = [Rta] · [IRta ]

(14)

For the cathode, with one diffusion convection impedance, the state vector
and the matrix of representation are given bellow on equations (15), (16),
(17), (18) and (19). Where Vi is the voltage across the ith RC cell of the
equivalent circuit of the Warburg.

X =


V1

V2

· · ·
VN

IRtc

 (15)

A =



−1
R1·Ceq

0 · · · 0 1
Ceq

0 −1
R2·Ceq

· · · 0 1
Ceq

...
...

. . .
...

...
0 0 · · · −1

RN ·Ceq

1
Ceq

−1
Rtc·R1·Ceq

−1
Rtc·R2·Ceq

· · · −1
Rtc·RN ·Ceq

− N
Rtc·Ceq

− 1
Rtc·Cdcc

 (16)

B =


0
0
...
0
1

Rtc·Cdcc

 (17)

C =
[
1 1 · · · 1 Rtc

]
(18)

D = [0] (19)

Finally the whole state space representation at the cathode is given by
equation (20).
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


V̇1

V̇2

· · ·
˙VN

˙IRtc

 =



−1
R1·Ceq

0 · · · 0 1
Ceq

0 −1
R2·Ceq

· · · 0 1
Ceq

...
...

. . .
...

...
0 0 · · · −1

RN ·Ceq

1
Ceq

−1
Rtc·R1·Ceq

−1
Rtc·R2·Ceq

· · · −1
Rtc·RN ·Ceq

− N
Rtc·Ceq

− 1
Rtc·Cdcc

 ·


V1

V2

· · ·
VN

IRtc



+


0
0
...
0
1

Rtc·Cdcc

 · [jAC ]

[UACCathode
] =

[
1 1 · · · 1 Rtc

]
·


V1

V2

· · ·
VN

IRtc


(20)

4.4. Global model

As it can be seen on figure 2, the recomposing block is using the two
outputs of the static and dynamic model. For the static model, the output
UDC is simply described in equation (2).

For the dynamic model, the expression of UAC can be developed as :

UAC = UACAnode
+ UACCathode

+ UACRm
+ UACL

(21)

The recomposing block consists in simply adding up the AC and DC of
the current density.

5. Model updating procedure

5.1. Global tuning process

In order to validate the model and its capacity to fit with experimental
data, but also to confirm its suitability to simulate the behavior of a PEMFC,
an estimation of the parameters based on real data is done. Indeed, the
objective is to tune the model to actual data, i.e. to adapt the parameters
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in order to take into account their evolution due to ageing. This would also
enable the model to be applied to different stacks. For that are used the
characterization results considered as composed of one polarization curve
and i (i = 3 in the reported data) EIS realised at different currents.

The global process can be seen on figure 6. A quick description of the
tuning of the static model and tuning of the static model is proposed here
with a complete development in the two next subsections.

Figure 6: Parameters tuning procedure

On a first step non linear regressions are realized on the i Nyquist plots
at the k characterizations. The regressions permit to obtain a first set of the
following parameters. As k.i. EIS are used, k.i. values are obtained for each
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of these parameters.

• The impedance module ROc and the time constant τOc of diffusion
convection of the oxidant at the cathode

• The double layer capacities at the anode and the cathode Cdca, Cdcc

• The transfer resistance at the anode and the cathode Rta, Rtc

• The membrane resistance r

• The connector inductance L

Then the tuning of the static model is realized on each polarization curve,
the matrix of parameters calculated on the previous step being necessary.
This step allows defining the values of the other static parameters (which
have not been tuned in the first step and listed below) for each considered
characterization :

• Nernst potential En

• Exchange current density at cathode and anode j0c j0a

• Membrane resistance r (that takes the mean value of Rm)

• Tafel parameters at cathode and anode bc ba

• Limit current density at the cathode jLc

Next as τOc and ROc depends on the current, the parameters of their time
function are regressed thanks to the current at which the EIS is done. This
last tuning will provide for the concerned characterization (and not only for
each EIS of this characterization) the following parameters:

• The impedance module ROc and the time constant τOc of the diffusion
convection’s under parameters (j0Oc, bOc and kOc)

• The double layer capacities at the anode and the cathode Cdca, Cdcc

• The transfer resistance at the anode and the cathode Rta

• The membrane resistance named r for the global model

• The connector inductance L
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All of the needed parameters are obtained for tuning the global model.
However Rtc’s value has not been defined for the global model. It is also
dependent on the current and the cathode parameters values obtained on
the static tuning procedure are used. The expression of Rtc is developed in
equation (22).

Rtc =
1

bc
· 1√(

JDC

2·j0c·1−
jDC
jLc

)2

+ 1

· 1

2 · j0c ·
(
1− jDC

jLc

)2 (22)

The parameter values obtained by the update of the static and dynamic
model permit to define the model. However, as it is based on a given char-
acterization set, the model updated only concerns the evolution around or
after the used characterization.

5.2. Tuning of the static model

Here is developed the block update of the static model. A more precise
description can be seen on figure 7.
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Figure 7: Static model update

For each characterization k, a unique value is necessary for Rm, because
only one is needed on the static equation at each characterization as Rm
shouldn’t depend on the current level. The mean of all the values obtained
for this parameter at each characterization is thus considered, this parameter
is then written r.

The value of Rta at each EIS are already obtained. Yet the transfer
resistance at the anode evolve with the current thanks to the equation (eq.
(23) with the exchange current density at the anode j0a and the anode tafel
parameter ba. A regression is then realized with the value of Rta, the values
of the level current density at which are done the EIS, and the analytic
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equation.

Rta =
1(

ba.2.j0a.

√(
JEIS

2.j0a

)2
+ 1

) (23)

Meanwhile, on an other side an other regression is done on the data of the
kth polarization curve with a model of the fuel cell ”before” the differentiation
anode/cathode (eq. (24)) i.e. the voltage drop is for the whole cell.

Upola = En − r.Jpola −
1

b
.asinh

 Jpola

2.i0.
(
1− Jpola

iL

)
 (24)

All the parameters necessary to obtain the values of the global and an-
ode voltage drops are then known. Thanks to their expressions (eq. (25)
and (26)) it is now possible to calculate them for all the currents of the
polarization curve.

η =
1

b
.asinh

 Jpola

2.i0.
(
1− Jpola

iL

)
 (25)

ηa =
1

ba
.asinh

(
Jpola
2.j0a

)
(26)

From the previous values the cathode voltage drop can be deduced as
η = ηa + ηc. As the expression of ηc is also know (eq. (27)), a regression on
its values is done in order to obtain the tafel parameter (bc ) and the exchange
and limit current density (j0c) at the cathode at this characterization.

ηc =
1

bc
.asinh

 Jpola

2.j0c.
(
1− Jpola

jLc

)
 (27)

With this process, the static model is completely tuned as all the pa-
rameters in equation (2) are updated. The model is finally usable after the
characterization that allows tuning it.
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5.3. Tuning of the dynamic model

The dynamic updating procedure is described on figure 8. For L, Cdca,
Cdcc, and Rm the average value is calculated. It is done on all values obtained
at the characterization k considered. Indeed, only one value is needed, taking
the i values obtained on the EIS and calculating the mean also permits to
smooth if there is errors on the measures.

Figure 8: Dynamic part update

For the development of the diffusion convection parameters, ROc and τOc

some regressions are realized too thanks to their expressions (eq. (28) and
(29)). As the i values obtained of the parameters at the characterization k
are already known thanks to the very first step of the global tuning process, a
regression can be realized. Indeed, their variation laws depend on the current
density. For the regression, the current densities at which are realized the i
EIS are used.

ROc =
1(

bOc.2.j0Oc.

√(
JEIS

2.j0Oc

)2
+ 1

) (28)

τOc =
kOc

JEIS

(29)

22



6. Experiments, results and discussion

6.1. Experimental setup

The model is validated thanks to two long-term tests carried out on two
different stacks of similar technology (PEMFC composed of 5 cells with an
active area of 100cm2).

• A first stack (named FC1) is operated in stationary regime, with a con-
stant load expressed by a current of 70A, at roughly nominal operating
conditions during 1000 hours.

• A second stack (named FC2) is operated under dynamic current test-
ing conditions, i.e. with high-frequency triangular current ripples. The
current is 70A with a ripple part of more or less 10% at a 5kHz fre-
quency. The operating conditions are set constant. The test lasted
1000 hours.

The latter experiment has been realized in order to estimate the per-
turbations caused by a power converter usually connected to the fuel cell
compared to a constant current in the first experiment. It permits to ensure
that the model can still be accurate with the current oscillations caused by
the power converter.

For both tests, some values as the voltage, current, or humidity were
monitored all along the 1000 hours in order to obtain global historic curves
(i.e. evaluating the evolution over time of voltage levels). Besides, character-
izations were carried out once per week (around every 160 hours) according
to an identical protocol:

• Polarization curve test (i.e. measuring the static I/V curve of the fuel
cell stack)

• Electrochemical Impedance Spectroscopy (EIS) measurement (i.e. plot-
ting the Nyquist diagram of the fuel cell stack over a frequency range
from 50 mHz to 10 kHz) at three different current density 0.70A/cm2,
0.45A/cm2 and 0.20A/cm2.

All along the 1000 hours test, 8 characterizations were performed.
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6.2. Static part tuning validation

In order to validate the model, the whole updating procedure described
on figure 7 was realized for each characterization. Indeed, the objective is
here to confirm that the model reproduces the behavior of a PEMFC stack.
The results presented are the results of the experiment on the fuel cell 2, as
this is the more complex load.

On figure 9 an exemple of the results of this procedure, at the third
characterization (after around 182 hours of test) can be seen. The fitting of
the polarization curve simulated with the static model is in plain line and the
experimental data is in dots for the fuel cell under ripple solicitation. The
fitting appears to be satisfying.

Figure 9: Fitting of a polarization curve during the tuning of the static model for the FC2
at the third (182h) and the eight (1016h) characterization

In order to discuss further the accuracy of the model, the results errors
MAPE (Mean Absolute percent error) and RMSE (Root Mean Square Error)
between the simulated polarization curve and the real data are calculated.
As the updating of the static model is realized for each characterization the
evolution of the error versus time can be drawn. That allows studying if the
model is still adapted when the stack ages. There is no clear evolution with
the time (figure 10). It is validated on the experiment under stabilized load
as the calculations of error were similar and with no clear tendency. The
model is as well adapted at the start of the life of a stack than at its end of
life. It is a convenient point, as the goal is to use this model for modeling
the ageing.
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Figure 10: Evolution of the RMSE and MAPE of the difference between the model and
the data with the time for the FC2

The global errors MAPE and RMSE of the static tuning on the two
experiments is then calculated. This value is obtained by taking the average
of all the errors obtained on each characterization. The results are gathered
on table 2. The good quality of the fitting is one more time validated. The
static part of the model reproduces the behavior that can be seen on the
experimental data and stay accurate during the 1000 hours of the two tests
and for each polarization curve of each test.

With stabilized current With ripple current

Mean MAPE % 0,19 0,25
Mean RMSE 1,66E-03 2,25E-03

Table 2: Mean of errors on all the characterization phases for polarization curve fitting

6.3. Dynamic part tuning validation

During the update of the dynamic part, the fitting with the Nyquist plot
is drawn and studied. Figure 11 depicts a Nyquist plot extracted from the
experimental data at 35 hours and at 70A for the FC2 and the simulated
results obtained thanks to the dynamic model. The mean errors for the two
experiments and the simulation of fitting can be found on the table 3. It can
be seen that there is one more time no clear evolution of the error with the
time or even with the current at which is realized the EIS. This is confirmed
as, the same calculation of errors was made on the dynamic part than on
the static one, and nor the aging time nor the current has an effect on the
performance of the dynamic model.
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Figure 11: Fitting of a Nyquist plot at 20 A at the third (182h) and seventh (830h)
characterization for the FC2

With stabilized current With ripple current
Real part Imaginary part Real part Imaginary part

Mean MAPE 0,90 % 8,22 % 0,19 % 0,25 %
Mean RMSE 1,025 12,6 0,0027 0,0026

Table 3: Mean of errors on all the characterization phases for the Nyquist Plot fitting

6.4. Global model simulation

Finally, the global model that can be seen in figure 2 is validated. For
that purpose, the model was completely updated with the data from the
third characterization (after 182 hours of test) for the FC2. The parameters
values obtained thanks to this procedure are gathered in table 4.

The time constant applied to the low pass filter that allows decomposing
the current density in a dynamic and a static part is 0.2s.

The global model is then completely updated, it can finally be validated.
For that purpose, the load of the experiment is imposed to the model; the
simulation and the experiment are then compared.

An example taken after 182 hours around the third characterization can
be seen in figure 12. In this figure, it is obvious that the global model responds
with the same trend than the fuel cell that was experimented.
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Symbol Name Value Unit

r Internal resistance 0.0989 Ω.cm2

En Nernst potential 0.937 V
j0a Exchange current density at the anode 0.1454 A/cm2

ba Tafel anode parameter 36.43 V −1

j0c Exchange current density at the cathode 0.0018 A/cm2

bc Tafel cathode parameter 44.64 V −1

jLc Limit current density at the cathode 1.099 A/cm2

Cdca Double layer capacity at the anode 0.0404 F/cm2

Cdcc Double layer capacity at the cathode 0.0472 F/cm2

L Connector inductance 1.23.10−6 H
j0Oc Parameter of the variation law of ROc 5223 A/cm2

bOc Parameter of the variation law of ROc 0.0012 V −1

kOc Parameter of the variation law of τOc 0.0918 A.s/cm2

Table 4: Values of the parameters after the model updating process with the third char-
acterization data around 182h on FC2

Figure 12: Simulation and experiment comparison (bottom curves) under the same load
(top curve) just after the third characterization
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However, there is a small difference of a constant value between the two
curves when the current is evolving. This can be explained by the change of
operating conditions. Indeed, during the polarization curve measurement the
operating conditions are different than during the ageing test. For example,
the temperature is not stable on this experiment as it exhibits a variation of
fifteen degrees. This is due to the poor control of the temperature on the test
bench in this specific experiment. So, the hypothesis of of constant operating
conditions is not completely verified.

At the open circuit voltage, this difference is bigger and a peak can be
observed. It is due to the decomposing block that split the static and the
dynamic current. Indeed, this block is a low-pass filter and it is not enough
adapted for our needs. Here, the time constant in this block is 0.2s. The
influence of this value is interesting. Indeed, if this value is decreased, the
peak would rise higher, on an other hand, if this value is augmented, the time
the model would take to gain the top of the step, would be too important to
face the real behavior of the fuel cell.

The model reproduces well the behavior of the fuel cell as we can see in
the figure 12. On this part the error RMSE is 0.5103, a good performance.

7. Conclusion

The objective is to define and validate a model that can accurately re-
produce the behavior of a PEMFC in order to be applied for prognostics.
For that purpose, in this paper a model composed of a static and a dynamic
part is proposed and validated thanks to experimental data. In a first step,
the static model is studied by the comparison of experimental polarization
curve and simulated one. The errors have been calculated and prove that
this part of the model is very satisfying. In a second step, but in the same
way, the dynamic part has be examined, the results show a good fitting in-
dependently of the time or of the current. Finally, the whole model has been
simulated, and it shows good hope for the future application. Indeed, the
model is as good on a young stack than on an stack aged of a thousand hours.
The model presents the exact same answer to the solicitation that the fuel
cell itself under the same solicitation: the behavior is well reproduced. It
means that the structure of the model can be kept during the ageing. How-
ever, the difference between the operation conditions during the polarization
curve and the ageing process is an issue that has to be fixed; the integration
of other input might be necessary. The decomposition block would also have

28



to be improved because it triggers a response not as good as hoped as the
decomposition of the current is not well adapted.

This model fits well for the prognostics, and is going to be the starting
point of the following work. Indeed, the ageing can be modeled by giving to
some parameters a dependency to the time.
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