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Abstract—Proton Exchange Membrane Fuel Cells (PEMFC)
are promising energy converters but still suffer from a too short
life duration. Applying Prognostics and Health Management
seems to be a great solution to overcome that issue. More
precisely, developing prognostics to anticipate and try to avoid
failures is a critical challenge. To tackle this problem, a hybrid
prognostics is proposed. It aims at predicting the power aging of a
PEMFC stack working at constant operating condition and con-
stant current solicitation. The main difficulties to overcome are
the lack of adapted modeling of the aging for prognostics and the
occurrence of disturbances creating recovery phenomena through
the aging. Consequently, this work propose a new empirical
modeling for power aging that takes into account these recoveries
based on different features extracted from the data. These models
are used in a joint particle filters framework directly initialized
by an automatic parameter estimate process. When sufficient
data is available, the prognostics can give very accurate behavior
predictions compared to experimentation. Remaining useful life
estimates can be given with an error smaller than 5% for a
horizon of 500 hours on a life duration of 1750 hours which is
clearly long enough for decision making.

Index Terms—Prognostics, Particle Filter, Proton Exchange
Membrane Fuel Cell (PEMFC), Aging, Remaining useful life.
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UKF Unscented Kalman Filter
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NOTATIONS
P stack power
a, band ¢ coefficients of the power model
a1 to ay coefficients in a model
by to b3 coefficients in b model
Rec power recovery
1 to T4 coefficients in Rec model
t time index
k time index in recursive equations
Tk state of the system at time k
Zk measurement at time k
paramy parameter at time k
o noise standard deviation
i particle index

likelihood function

L()

I. INTRODUCTION

power source failure is very often dramatic as all the
A systems relying on it become inoperative. Anticipating
such a failure thanks to Prognostics and Health Management
(PHM), and more particularly to its prognostics part, can be of
great concern. Especially when the considered power source
is a fuel cell and that the technology considered still suffers
from a too short life duration.
Fuel cells, and more precisely among all the existing tech-
nologies Proton Exchange Membrane Fuel Cells (PEMFC),
are considered as promising electrical energy sources as they
convert chemical energy coming from hydrogen and air into
electricity, water and heat. Moreover they offer a great range
of applications from transportation to micro-CHP (Combined
Heat and Power generation) for building or power supply for
portable devices [1]. Current PEMFC technology hardly meets
the requirements for a large scale deployment: 2000 hours to
3000 hours of functioning can be achieved when 5000 hours
are required for transportation applications and 100 000 hours
for stationary ones.
In [2], the PHM solution is proposed to overcome the life du-
ration issue of PEMFC. Various challenges are highlighted on
all the layers of PHM, but the prognostics one is particularly
empty. Indeed, although prognostics is a key process in PHM
[3], [4], it just starts developing for PEMFCs. Prognostics
approaches are classified in three categories: model-based,
data-driven and hybrid [3]. Among these approaches, two are
present in prognostics of PEMFC applications. Four different
types of works can be found in the literature: two data-
driven approaches using echo-state networks [5] or adaptive
neuro fuzzy inference systems [6] and two hybrid prognostic



approaches with Unscented Kalman Filter (UKF) in [7] and
with Particle Filter (PF) in [8]. In [7], the authors propose
a prognostic model focusing on the degradation of the elec-
trochemical surface area (ECSA) of a 1-cell PEMFC. The
UKF-based framework is used to predict the decreasing of
the ECSA and the Remaining Useful Life (RUL) of the cell.
The results are very interesting when analyzed with the a-
metric defined in [9], even if the RUL estimates are all late
predictions. However, this work suffers from some drawbacks.
First, it is performed on a single cell with a very short period of
functioning (= 300 hours). By looking at the lifetime targets
listed earlier, the prediction horizon remains very short and
in real case applications the PEMFC is never composed of a
single cell. Moreover, although tracking the ECSA evolution
is a good idea as the output power of the PEMFC is closely
linked to its size, this surface is hard to measure without
disturbing the operation of the PEMFC. Additionnaly, this
kind of in-situ measurements tends to aggravate the aging of
the PEMFC. So this prognostics could be hardly used for real
PEMFC applications.

On their side, the authors in [8] use PF to predict the voltage
aging of a 5-cell PEMFC stack responding to a constant
current solicitation. Three empirical models are tested to set a
basis for future prognostics works. The RUL predictions are
promising and allowed to validate the choice of PF as a prog-
nostic tool for such application. Nevertheless, the use of very
simple models does not allow taking into account disturbances
encountered during the aging. This work is pursued in [10] in
which a starting point for a solution to that limit is proposed.
New models are introduced. The prognostics results start to be
better, but the filters have to be initialized manually when the
data or the horizon of prediction change. So although it gives
interesting results, the models proposed are still incomplete
and an automatic prognostics initialization has to be proposed.
This paper pursues the work published in [10]. The objec-
tive here is to set a prognostics able to take into account
disturbances introduced by planned characterization while
estimating with a minimum error the behavior of the PEMFC.
The main contributions rely on a literature review of PEMFC
aging, precise models for power degradation with time vary-
ing parameters, the introduction of an automatic parameter
estimate process to initialize particles filter for prognostics.
To support this, the paper is organized as follows. The first
section is dedicated to PEMFC detailed presentation: the
functioning principle is explained as well as the different
components of the system. This allows introducing the ongo-
ing issue of degradation understanding and modeling related
to that particular system. Section III presents the modeling
methodology adopted. The choice of using empirical models
for prognostics is justified and the different steps for building
an adapted set of models are explained. This set of models
implies the computing of a parameter estimate process but also
models’ transformations to recursive forms. On this basis the
association of different particle filters to perform prognostics
is presented. This is the purpose of Section IV. It is directly
followed by the application of the whole proposition in Section
V. A comparison with our previous work [10] is made to
highlight the improvement of the prognostics estimates. The

results are discussed to show the strengths as well as the
weaknesses that should be corrected. Finally, some concluding
remarks are given.

II. BACKGROUNDS: AGING OF PEMFC

Before presenting the new framework for prognostics of
PEMFC, all the key information needed to understand what
will follow regarding PEMFC stacks and their aging is pre-
sented in the section.

A. System overview

A PEMFC stack is a power device that converts chemical
energy into electricity, water and heat (Figure 1). To do so, it
uses the oxidation of hydrogen at a first electrode, the anode, to
obtain electrons that flow into an external electrical circuit and
protons that go through a proton exchange membrane. These
protons and electrons meet again at the second electrode,
the cathode, to reduce the oxygen [11]. The electrochemical
reactions involved are:

2H, — 4H' + 4e™ (1)
Oy +4H™ +4e™ — 2H,0 (2)

(1) occurs at the anode while (2) occurs at the cathode. The
general process can be given by:

2Hs + Oy — 2H50 + electricity + heat 3)

These reactions are not directly happening at the stack level
but at the cell level. Indeed a stack is composed of a certain
number of cells associated in series. The number of cells
depends of the maximum power required from the stack. A
cell is basically composed of:

o 2 bipolar plates to bring the reactant and collect electrons;

o 2 gas diffusion layers (GDL) to diffuse reactants toward
the electrodes;

e 2 electrodes: anode and cathode where occur the oxida-
tion and reduction reactions;

e | proton exchange membrane;

« sealing gaskets to ensure the impermeability of the cell.

As the stack is only an energy converter it cannot work on
its own and different ancillaries surround it for providing
reactants, controlling the operating conditions or collecting the
produced electricity. For our prognostics purpose, we consider
that all the ancillaries work properly with no malfunctioning
and no failure. That allows us to focus only on the stack.
Operating conditions and current mission profiles are very
important as far as the lifetime of a stack is concerned. Indeed,
to respond in the best conditions to the current demand, op-
erating conditions, namely temperatures, pressures, reactants
flows or products evacuations, must be properly controlled.
If not, it can lead to early failures preventing the stack to
provide sufficient power. The value of the power is defined by
the current setpoint imposed to the stack.

In this study, the current profile used in experiments remains
constant and the operating conditions are kept optimal. In that
way, a power drop during aging will only be the result of
inner degradations of the stack. This is a major hypothesis for
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Fig. 1. Stack, cell and functioning

all the following work. It is also important to mention that
the experiments are conducted in a continuous manner. The
stack was never remove from the test bench for storage, nor
stopped and never experienced any current variations in an
other occasion that the characterizations presented in the next
paragraphs.

B. Reversibility and Irreversibility

During its lifetime, the stack looses gradually its ability
to deliver its initial power. This is due to what are known
in the fuel cell community as reversible and irreversible
degradations. Reversible degradation refers to phenomena that
lead to power losses but that can be partially or totally canceled
by changing the operating conditions during a short period
before returning back to nominal ones. Irreversible degradation
refers to degradation as defined by the International standard
[12]: “An irreversible process in one or more characteristics of
an item with either time, use or an external cause”. To avoid
any ambiguity, the terms are redefined as follows:

« reversible degradation, that is in contradiction with the
standard, is left aside in favor of “reversible” or “recov-
erable” phenomena,

« irreversible degradation is now simply called degradation.

The vocabulary set, some further explanations can be provided.

1) Reversible phenomena: These phenomena have been
observed in a lot of works [13], [14], [15], [16] but are still not
well understood. They can be caused by the interruption of the
continuous testing for resting periods or for characterization
with in-situ methods. Main reasons for reversibility of these
phenomena can be water and thermal management which may
change the water content and distribution in the different
components in the cells [17].

2) Degradation: Degradation of a PEMFC stack is quite
complex due to the different levels (stack-cell-components)
and the numerous phenomena involved (chemical, electro-
chemical, mechanical, thermodynamics). Indeed degradations
can come from:

« individual components in one cell (electrodes, membrane,
etc.);

« interfaces between components of a same cell;

¢ interactions between two consecutive cells;

« position of a cell within the stack (in the middle or near
the edge of the stack);

TABLE I
PROPOSED LECTURES FOR DEGRADATION OF COMPONENTS

References

[19], [18], [22], [23], [24],
[25], [26], [27], [28], [29],
[301, [311, [321, [33], [34]
[71, [18], [20], [21], [32],
[35], [36], [37]. [38], [39],
[40], [41], [42], [43]
[18], [44], [45], [46], [47],

Degradation type

Membrane aging

Electrodes aging

GDL aging

[48]
Bipolar plates aging [20], [21], [49], [50]
Sealing gasket degradation [21]

Aging of interfaces between components [511, [52], [53]

o gradients (temperature, water) creating heterogeneities
within the stack and affecting the aging;

o varying operating conditions accelerating some specific
degradation phenomena;

All of these degradations have not been studied, and precise
modeling of the ones that have been studied is very often
not available. As writing a deep literature review of PEMFC
degradation phenomena is not the point here, the reader
may refers to [18], [19], [20], [21] for global reviews and
to the references given in Table I for component-specific
explanations. An important fact regarding degradation is that
all the consequent dramatic failures that can prevent the stacks
from providing an expected power have time constants in
hours. As regards the failure definition, again it refers to the
International standard [12]: “termination of the ability of an
item to perform a required function”. As examples, failures
in a PEMFC can be the impossibility for the stack to deliver
a minimum power or the impossibility of the membrane to
perform its hydrogen-oxygen separator by letting the hydrogen
crossing to the cathode side. Having time constants in hours
is interesting for prognostics as it means that one data point
per hour can be enough to use prognostic algorithms.

C. Existing aging models at the stack level

A complete aging model of a PEMFC stack should be able
to take into account all previously listed: the aging of all the
components within the stack, the interactions of the aging
phenomena one with each others and the way they impact
the efficiency of the stack, etc. Such a modeling is proposed
in [54], but all the parts of the model are not explicitly
given and reaching nano-scales does not seem appropriate for
prognostics.

Other models focusing on voltage or power modeling seem
closer to prognostics expectations. In [55], the authors propose
a semi-empirical modeling of the voltage degradation at low
pressures to explain and model the data observed from a
PEMEC stack used in a bus. The main idea is to model the
different losses that can be observed on polarization curves
(i.e. curves representing the voltage in function of the current)
in which the model is not time dependent in its classic
form and to introduce a time dependency. The same idea
is also used in [56] where a hundred stacks aged in small
demonstration vehicles are modeled. But in both cases, most of
the parameters of the models are empirical, so closely linked to



TABLE I
CHARACTERISTICS OF THE DATASETS

Name | Current profile Duration Nb charact.

U pac

D1 0.64/em?

1750 hours 12

t=1750h

their data. Moreover, in the applications considered, the stacks
functioned with dynamic load profiles which is not our study
case.

For prognostics, modeling of the power seems the most
appropriate. Indeed, the standards for PEMFC stacks end of
life (EoL) are all expressed in terms of power, as in [57]
where the standard EoL is set at 10% of power loss during
the lifetime.

The context set, the modeling choice made for prognostics can
be now explained in details.

III. MODELING OF PEMFC POWER DEGRADATION
A. Physic-based vs empirical models

To use a particle-filtering-based prognostics, an aging model
of the stack is needed. Two main criteria to define this model
are its complexity and the possibility to access and measure its
parameters on the stack. As described before, modeling all the
aging process occurring within the stack, also the reversible
phenomena that cannot be ignored, can lead to very complex
models. In this case leaving aside physic-based modeling
and using empirical models based on parameters monitored
during the experiments offers a great alternative. Moreover,
as we are working with constant operating conditions and
constant current demand, the influence of parameters such as
temperature, reactant pressures or current has not to appear
explicitly in the model. The only mandatory parameter in this
application is time.

B. Data

As this can be helpful to have visual examples to illustrate
the modeling process, the data used for the experiments
are described. Only one dataset is available, it comes from
a commercial 5-cell PEMFC stack with an active area of
100cm?. The measurements performed on this stack are made
thanks to the test bench and procedures described in [58].
The experiment, realized on another FCLAB project, matches
perfectly our hypotheses with a constant current profile and
constant operating conditions and can be used for this prog-
nostics purpose. For more clarity, the description of the dataset
is given in Table II. This table provides the name that will be
used in this paper for the dataset (D1), the mission profile in
terms of current, the duration in hours of the experiments and
also the number of characterizations performed on the stack
during its lifetime.

For the experimentations, different measurements are per-
formed:

¢ voltage measurements in continuous;

« current measurements in continuous (to compare with the
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Fig. 2. Top: Dataset D1 - Bottom: Normalized voltages of the aging parts

o punctual characterizations: polarization curves + electro-
chemical impedance spectroscopy.

In this study, we propose to focus only on the power delivered
by the stack. Consequently, as P = U.I only the voltage
and current measurements are used. However, as their effects
cannot be ignored, characterizations have to be mentioned.
Power measurements can be seen on Figure 2.
Let’s now focus on how to model the power during the aging
of the stack.

C. Power global modeling

1) Formalisation: The main idea is to create a set of models
that is able to describe accurately the behavior of the stack
during its aging. Although it will lead to purely empirical
models, it can be interesting to chose trends or descriptors
that could be linked to real phenomena occurring within the
fuel cell stack.

First, the data set can be divided into two types of events (see
Figure 2):

1) parts of continuous aging

2) interruptions due to characterization processes

As the operating conditions and current are varying during the
characterizations, these phases will not be modeled. However,
assumptions will be made a little further regarding the conse-
quences induced.
Let’s focus on the different parts of continuous aging. DI
counts thirteen parts of continuous aging of different durations.
Based on existing works [8], [59] and different model fittings,
it appears that each part follows the equation:

P(t) = —a.n(t) — bt +c 4)



with ¢ representing time but with different values of coeffi-
cients a, b and c. For comparison purpose, ¢ is set to zero
in the beginning of each segment. This empirical modeling is
now justified by actual phenomena occurring within the stack.
2) Justification: Tt can be observed that as time evolves,
the aging effects occur faster and faster leading to more
serious power drop. Moreover the impact of the logarithmic
part of the model seems to accentuate and last longer. It is
illustrated in the bottom part of Figure 2, which shows the
normalized powers of all segments to compare them visually.
It is resulted from dividing the power by its initial value in each
segment. This can be explained if we give a physical meaning
to the different parts of the model. Due to the diffusion
phenomena of gas and water and also to reversible phenomena,
the stack goes through a transient phase after the operating
conditions are set to their nominal values. It is represented by
the logarithmic part of the model. Once that transient phase
is over, the stack enters a steady power decay represented
by the linear part. This distinction between the transient and
steady parts is further explained in [14]. As the stack ages,
its components might have some difficulties to fulfill their
functions leading, for example, to slower gas diffusion through
the gas diffusion layers, to presence of contaminants at the
membrane and electrodes or to greater water accumulation
at the cathode by loosing hydrophobic properties. Combined
together, these phenomena, coming from both degradation and
reversible events, may lead to longer transient phases with a
greater power drop. Degradation, namely of conductivity and
activity of the membrane and the electrodes, also lead to more
severe power drop during the steady state, reflected by greater
coefficients in the linear part of the model.
It is now obvious that our model coefficients, a and b (c left
apart because not used afterward), will evolve with time. It
can be interesting to figure out if they will follow particular
predictable trends.

D. Parameter trend modeling

To extract trends for a and b from (4), these coefficients are
determined by fitting the equation to the data on the different
aging segments. The whole data set is used to that goal.
Equation (4) is fitted successively to all the aging segments
and the different values of a and b are determined. This is
achieved by using a least squares fitting. These values, which
are constant in each segment, are shown on Figure 3 by the
blue dots. Both coefficients seem to follow trends that can
be modeled easily with exponential functions (Figure 3, red
curves). Indeed the evolution of the transient phase (coefficient
a) can be easily modeled by:

a(t) = a1.€33p(a2.t) + ag.e:cp(a4.t) 5)

whereas the acceleration of the linear part is harder to model
precisely:
b(t) = by.exp(ba.t) + b3 (6)

However, although this last seems less obvious when the global
trend is compared to the data, it might not be so far from the
reality. Indeed, the authors in [60] showed that the degradation
rate for constant current follows a bathtub-like curve. Here,
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Fig. 3. Trends extracted for coefficients a and b

if we consider that the linear part of the model (4) can be
assimilated to a degradation rate in a steady state and that the
stack has already left its early life (manufacturers usually let
the stack working around 100 hours to leave the early life stage
before delivering the stack to the customers), the equation (6)
can find a justification.

Now that we are able to model the different continuous aging
part, we have to wonder what the initial power at the starting
point of each part is .

E. Recovery modeling

After each characterization phase, the stack seems to recover

some power (see Section II-B). However, it is not clearly
explained. It may be linked to change in gas and liquids’
repartitions within the stack when the operating conditions
return to their nominal values after variations during the
characterizations. It can be seen on Figure 4 that this recovery
does not remain constant during the aging. In terms of differ-
ence of power between and after the characterization phase,
it increases. But by looking at the values reached after all
the characterizations, the maximum recovery power decreases
with time. Indeed, as the stack ages, the recovery is limited
by the degradation of the stack components.
For our prognostics purpose, we choose to follow the evolution
of the maximum recovery power through time. As for the
previous parameters, the recovery is extracted from the data
and a global trend of it as aging is found. It follows an
exponential form:

Rec(t) = ri.exp(ra.t) + r3.exp(rs.t) 7

This exponential trend is not a surprise, it is coherent with
the fact that the main degradations impacting the power drop
follow exponential trends. Among these degradations, the
loss of active surface area [7] and the increase of hydrogen
crossover from the anode to the cathode [20], [31] can be
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highlighted.

In this part, we have selected different parameters and built
models that will help follow the aging of the stack. To stick
to the reality, all the parameters chosen can have physical
interpretations. This has now to be integrated in a prognostics
framework to help predicting the remaining useful life of
PEMEFC stacks.

IV. PROGNOSTICS OF PEMFC

To achieve power behavior prediction and RUL estimation,
our prognostics framework is divided in two main part:

1) a parameter extraction part;
2) a particle filter-based prognostics.

This is illustrated by Figure 5. The main reason why parameter
extraction and prognostics are computed together is that the
parameter estimate part directly creates the initial distributions
needed by the particle filters. When the length of the learn-
ing set varies, the parameter estimate results change giving
different initializations to the prognostic part. As more data
become available, the parameter estimate part gives better
results and this directly impacts the prognostics predictions.
Before detailing the whole framework, a short reminder on
particle filters theory is given here.

A. Particle filters

Particle filters are great tools to solve nonlinear Bayesian
tracking problems. Indeed, the models defined above meets
completely the hypotheses of this kind of problems as they
are nonlinear, non-exact (with unknown coefficients), non-
stationary and they might contain non Gaussian noise.

A Bayesian tracking problem is defined by two equations [61],
[62]:

« the state equation

zp = f(ap—1,V%, k) ®)
e and the observation model
zx = h(xk, ) 9

In the state equation, {xy,k € N} represents the state that
has to be followed and predicted, ¥4 parameters of the model
and v an independent identically distributed (i.i.d.) noise.
These variables change at each step and the passage from
step k — 1 to k is made thanks to the transition function
f. Regarding the observation model, {zx,k € N} represents
the measurements, pj an ii.d. noise and h the observation
function. As measurements are directly available from the data,
no observation model has to be built in this work.

To obtain a distribution of the possible states of = at time
k, the probability density function p(z|21.;) has to be built.
The starting point is given by the initial state distribution
p(xo|20) = p(xo). It is assumed that this initial pdf is known.
The optimal Bayesian solution is obtained by repeating a
prediction and an update stages:

1) prediction

P(xk|21:0—1) = /p(xk|xk—1)p(xk—1|Zk—1)dxk—1
(10)
2) update

p(zr|zr)p(@r]21:0)
P(2k|21:k-1)

p(2k|z16) = (11)
However, this optimal solution cannot be obtained analytically
in most of the cases. Here comes the particle filter to give an
approximate solution.

Particle filters are from the family of Monte Carlo-based tools
using the Baye’s theorem as basis. The first stage consists
in splitting the initial state distribution p(z() into n samples
named particles. Three steps are then repeated until the desired
results is obtain (Figure 6):

1) Prediction: particles are propagated thanks to the state
model from step £ — 1 to k giving a new pdf.

2) Update: the measurement zj is used to calculate the
likelihood function p(zx|xy) and give weights to the
particles. Particles representing states close the last mea-
surement have the higher likelihood and represent the
most probable states.

3) Re-sampling: particles with the lower weights are elim-
inated and particles with the higher weights are man-
ifolded. This procedure allows avoiding a degeneracy
of the filter, namely the increasing number of particles
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with low weights that would lead to bad results in the
previous stages.

This process is applied all along the learning of the prog-
nostics. In fact, as soon as no data become available, no
measurements z; can be used to calculate the likelihood
function and the prognostics enters its prediction phase. In that
step, the particles are simply propagated by the state model.
Once the failure threshold is reached, the final distribution
of the particles give the most probable state, i.e., the state
represented by the weighted average of the particles, and its
uncertainty distribution, i.e., the distribution of the particles.

B. Parameter extraction

1) Parameter extraction on raw data: The raw data at the
entry of the parameter extraction box is composed of the
power signal and the characterization calendar. Thanks to the
calendar, the different parts of continuous aging available for
the learning are identified. The fitting procedure uses the data
to identify the coefficients a and b from equation (4). A robust
least squares algorithm is used for that purpose. The recovery
values after each characterization are also identified at that
stage. These values are stored in tables.

2) Model identification and filter initialization: In the pre-
vious section, we have defined four models and three of
them (5) to (7) have unknown coefficients that should be
identified. Thanks to the data stored in the previous step the
parameters a; to ay, b1, by and r; to r4 are estimated. As their
identification relies on values estimated on the previous step,
these estimates may come with uncertainties. As our procedure

does not estimate this uncertainty, we decide to associate
uncertainty ranging from +1% to £5% depending on the
order of magnitude of the parameter. Consequently, our model
identification directly gives us distributions for intializing the
particle filters used just after. These distributions are uniform
distributions centered on the value obtained by identification
with a width given by the associated uncertainty.

This step imposes a first limitation to the prognostics frame-
work. Indeed, as equations (5) and (7) have each one four
coefficients to identify, it implies that four characterizations
have already been performed in the data used for the learning.
Now that the extraction of parameters is done, the information
extracted is used to perform prognostics.

C. Joint particle-filtering-based prognostics

For the record, the final objective of that work is to predict

the behavior of the power delivered by the stack through time
and to estimate the RUL at various points in time. To achieve
this goal, we have a global power model (4) and three other
models dedicated to specific parameters from model (4). As
all the future evolutions of these models have to be predicted,
a framework with four particle filters is set. Of course, the
framework could have been reduced to two by including
equations (5) and (6) in the first one. But, in order to evaluate
the quality of the different models, keeping them separate is
more interesting for further investigation.
To integrate them in the particle filters as state equations,
all the equations have to be written in a recursive manner.
However, one important assumption is made regarding the
global power model: coefficients a and b remain constant on
the full length of a continuous aging part. This assumption
is made to remain consistent with the way these parameters
were extracted in the first place. The continuous aging parts
are numbered and this is represented by the index ¢ in the
next equation. Consequently, although the parameters a and b
are estimated continuously, only the first value estimated at the
beginning of the aging part 7 is stored as a; and b;. Then when
a characterization happens and a new aging part starts, the last
value of a and b obtained at time (k + length of segment ¢)
is used to define a,;4+; and b; 1. So, the characteristics of the
different filters are as follows:

« Filter 1: Global power
— State equation:

Py = a;log(k —1/k) — b; + Px—1 (12)

— Measurements: power obtained from voltage and
current measurements

« Filter 2: Coefficient of the logarithmic part a

— State equation:

ar = ay.exp(as.k).(1 — exp(—az))

+ az.exp(ag.k).(1 — exp(—aq)) + ag—1 (13)

— Measurements: values of a extracted during the pa-
rameter extraction

o Filter 3: Coefficient of the linear part b



— State equation:
by, = by.exp(ba.k).(1 — exp(—ba)) + byp_1

— Measurements: values of b extracted during the pa-
rameter extraction

(14)

« Filter 4: Power recovery
— State equation:

Recy, = ry.exp(ra.k).(1 — exp(—r2))

+ r3.exp(ry.k).(1 — exp(—rq)) + Reck—1 (15)

— Measurements: recovery extracted during the param-
eter extraction

It can be noticed that no noise has been introduced in the
different state equations. As general trends and not precise
models are expected, we consider that this noise can be
ignored for prognostics. As far as the measurement noises
are concerned, as the raw data are used, the noise is already
included in them. So for each filter, the z; used are the
noisy measurement. However, the noise contained in z; should
be taken into account when comparing the filter estimation
to the actual data. As the characteristics of the noise are
unknown in that application, it is assumed that it is a Gaussian
noise with an unknown standard deviation o. It allows to
use the method proposed in [63]. It states that the standard
deviation of the measurement noise can be considered as a
variable to be estimated and that it becomes part of the state
vector. Consequently, this standard deviation is estimated and
propagated thanks to the particles. It then intervenes when
the likelihood of each particle is calculated which becomes
a function of the state, the model parameters and the noise
standard deviation estimates: L(zx|z}, parami,o}).

The four filters are working in parallel, synchronized on
the same time step. During the period of continuous aging,
they are all predicting their attributed state model with no
interaction with each other. When the date of a characterization
is met, the particles distributions for parameters a and b in
Filter 1 are updated thanks to the last distributions predicted
by Filter 2 and Filter 3. Moreover, the last distribution of the
recovery Recy, is used to replace the state particles of Py. This
process is represented on Figure 7 for more clarity.

D. Uncertainty propagation

The uncertainty coming all along the prognostic process
is one of the major issues of prognostics applications. This
uncertainty may come from the data, the parameter estimate
and the prognostic part. Consequently, all the framework was
built to take into account the uncertainty and to propagate it
from one step to another.

Regarding the extraction part, the treatment of uncertainty
has already been explained: distributions centered on the
parameters identified are drawn. For the prognostics part, the
uncertainty propagation is ensured by Filter 4 before the last
characterization and after by Filter 1. Indeed, as particle filters
are working with particle distributions, they naturally give the
uncertainty coming with the prediction (see Section IV-A). As
the power given by Filter 1 is regularly updated by external
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parameters, the uncertainty coming with power behavior pre-
dictions changes after each characterization. When the power
is concerned, only the recovery prediction given by Filter 4
propagates the same uncertainty from the beginning to the last
characterization. After this last one, the last distribution given
by Rec is used by Filter 1 to predict the power until the failure
threshold (Figure 8).

By proceeding that way, the RUL distribution, which is the
final goal of our prognostics framework, takes into account all
the possible sources of uncertainty of the framework.

To demonstrate the ability of this framework to give good pre-
dictions, series of tests are performed on the dataset presented
earlier.

V. EXPERIMENTS AND DISCUSSION
A. Experiment settings

The main parameters to define for these experiments are the
EoL threshold and the length of the learning. Regarding the
threshold, by referring to what is explained earlier, it should
be set at 10% of the initial power value. Nevertheless, if this
threshold is respected, only a small part of the data would
be used: power would be around 184 W corresponding to less
than 1300 hours. To benefit from all the data available, the EoL
threshold is chosen to be located at 16.3% of the initial power.
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This value is calculated thanks to the difference between the
value of the power at t=0 and the value at the end of the
experiments.

Then, the learning length has to be defined. In order to estimate
the largest prediction horizon that can be reached with a
reasonable prediction error, different length of learning are
tested from 500 hours to 1700 hours with a step of 100 hours.
The minimum value of 500 hours cannot be reduced as at least
four points are needed to identify coefficients in equations (5)
and (7).

It is also important to mention that the four particle filters
are SIR (Sampling Importance Resampling) type [62]. The
filters are programmed in Matlab language and inspired from
[63]. To avoid any degeneracy problem during the testing, they
are all working with 10 000 particles. This can take a long
computing time for obtaining results, but this duration is not
yet a performance criterion in this work.

Before showing the results, it should be mentioned that in
Figures 9, 11 and 15, vertical lines appear at the time of char-
acterizations as already observed in Figure 2. As the current
varies during the characterization breaking the hypothesis of
constant current solicitation for prognostics, no prediction is
made during that period. For convenience of use, the state
vector is filled with zeros at the dates of these events creating
the vertical lines.

B. Power aging predictions

1) General comments: For each learning the prognostics
returns the curves shown on Figure 9. The left upper part
represents the prediction of the coefficient a by Filter 2, the
right upper part shows b predicted by Filter 3, the left lower
part shows the recovery from Filter 4 and finally the last part
presents the power predictions by Filter 1. For illustration
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purpose, the confidence interval given by the filters appears
on the power and b graphs. A zoom of the confidence interval
coming with power aging can be found on Figure 10.

The results obtained for power aging predictions can be
divided in two parts according to the duration of the learning:
bad predictions with a learning between 500 and 1100 hours
and good predictions for 1200 hours and more. Indeed, for
small learnings, the models seems to fail catching the behav-
ior of the stack (Figure 11). It indicates that one or more
parameters of the models cannot be predicted accurately.

2) Parameter estimate vs learning duration: The results
given by the prognostics are strongly determined by the
parameter estimate part. Indeed, when very few points are
available identifying parameters a, b and Rec trends by fitting
their models can lead to false approximations. As more data
become available, the trends start to draw closer to the reality.
This can clearly be seen on Figure 12.

The recovery Rec seems to be the major limitation when less
than six points are available, corresponding to a learning of
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Fig. 10. Zoom on the confidence interval for power prediction at 1300 hours



TABLE III
RMSE AND MAPE DURING PREDICTIONS

Learning 500 600 700 800 900 1000 | 1100
RMSE (hours) | 15,7 | 40,9 | 11,8 | 10,3 8,9 9.4 4.8
MAPE (%) 1,57 | 5,06 | 477 | 404 | 3,92 | 4,21 1,97

1200 | 1300 | 1400 | 1500 | 1600 | 1700

3,2 49 33 39 1,1 0,7

1,29 2,49 1,33 1,92 0,45 0,33

700 hours. The exponential part of the model is not well
identified leading to a sudden drop in Rec trend. This partly
explains that prognostics for learnings of 500, 600 and 700
hours stop very early.

For 700 hours, another part of the explanation concerns the
coefficient a driving the logarithmic part of the model. For
short learnings, this coefficient is not well estimated. Some
of the extreme data points are gathered between 500 and 700
hours preventing the parameter estimate from approximating
the good trend. However, after 1000 hours the feature extracted
starts to converge toward the real trend.

Regarding the coefficient b which drives the linear part of
the model, the parameters extracted are more dispersed and
most of the time overestimates the trend. The impact of this
dispersion is noteworthy on the results for short training,
particularly for 900 and 1000 hours where a negative sign
appears. However, it seems that the overestimation of this
coefficient is more or less counterbalanced in the power aging
prediction by the error on a approximation.

3) Evaluation of the error: To further evaluate the predic-

tions, it can be interesting to take a closer look a the RMSE
and the MAPE observed during learning and prediction for
the different learning duration (Figure 13 and Table III).
For the learning the MAPE is bounded between 0.4% and
0.9% with a mean of 0.574%. As regards predictions, the
MAPE seems to decrease exponentially with the increasing
of the learning duration. This is more visible by using the
RMSE values available in Table III. The maximum MAPE
value is 5.06% obtained for a learning of 600 hours to reach its
minimum of 0.33% for 1700 hours. The decreasing is logical,
as when more data become available and the EoL is closer, the
predictions become more accurate. These values also reflect
what happens on Figure 11 and the ability of the models to
predict the behavior as discussed above.
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C. RUL estimates

Calculating and representing the remaining useful life evo-
lution through time can give us an idea of the prognostics
horizon that can be expected from the framework. Figure 14
shows the RUL estimates with the lower and upper bounds of
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TABLE IV
DETERMINATION OF THE MAXIMUM PREDICTION HORIZON
Learning | Horizon | RUL | Error (Act. - Estim.) %
1210 538 383 155 40.5 %
1220 528 494 34 6.9 %
1230 518 497 21 4.2 %
1240 508 495 13 2.6 %
1250 498 514 -16 3.1 %
1260 488 533 -45 8.4 %
1270 478 519 -41 7.9 %
1280 468 476 -8 1.7 %
1290 458 454 4 0.9 %

their distribution (red lines) and also the relative error between
actual RUL and estimates (blue lines). Only the results for a
learning equal and greater than 1100 hours are shown on this
figure, as all the previous estimates exhibit errors greater than
600 hours. The reasons for that have already been discussed
earlier.

RUL estimates are very promising. Indeed, for a learning
greater than 1300 hours, the maximum relative error is 57
hours for 1400 hours. It means that for a prediction horizon
of 450 hours, the RUL can be given with an error smaller
than 5%. To define more precisely what could be the larger
horizon with a maximum error of 5%, new tests are launched.
The step between two prediction is reduced from 100 hours to
10 hours. The results are summarized in Table IV. Although
the error is twice superior to 5% after that date, the maximum
horizon seems to be located around 518 hours for a learning.
Assuming that the stack is working continuously, it gives 21
days to react and to take the right mitigation actions which is
fairly correct.

It can be seen thanks to RUL bounds on Figure 14 and
Table V that RUL distributions are very small. Indeed, the
larger RUL distribution is obtained for a learning of 1500
hours and it is 21 hours long but the mean value is 9.3 hours.
This demonstrates a very small uncertainty coming with RUL
estimates. In a real case application, it means that the date
when the stack is going to reach its EoL could be known
to the precision of a single day. Considering that almost all
the prediction are early predictions, the prognostics will be
very interesting for deciding mitigation strategies or system
maintenance.

TABLE V
UNCERTAINTY ON RUL ESTIMATES IN HOURS

Learning | Lower bound | Upper bound | Dispersion
1100 RUL - 0.2 RUL + 3.9 4.1
1200 RUL - 3,5 RUL + 7.4 10.9
1300 RUL - 6.6 RUL + 9.6 16.2
1400 RUL - 0 RUL + 4.7 4.7
1500 RUL - 9.5 RUL + 11.5 21
1600 RUL - 2.4 RUL + 3.7 6.1
1700 RUL - 0.4 RUL + 1.7 2.1
[ Mean [ RUL-32 [ RUL+6.1 ] 9.3 |

D. Comparison with previous work

As a comparison between models that take into account

disturbances (in [10]) and those that don’t (in [8]), was already
done in [10], showing the improvement in estimating the state
and reducing the prognostics uncertainty, this comparison only
focuses on comparing the results presented here and those
presented in [10]. The EoL threshold was exactly the same as
in this paper.
As stated in the introduction, the main differences rely in the
modeling and in the automatic initialization of the filters. In
[10], no modeling for a existed and the only variations of
the parameter was due to the estimation of the particle filter
in charge of power prediction. Without the model, the linear
part was dominating leading to poor behavior estimations on
the parts where the logarithmic effect was accentuating. The
RUL estimates seemed to be globally better mainly thanks to
2 factors:

1) the behavior prediction luckily meets the EoL threshold
at the right place, if another threshold was defined the
RUL estimates would not be so good;

2) the particle filters were manually initialized, different
tries were required to define the initial distributions that
would lead to acceptable results: in practical applications
such a practice would not be usable.

So, the RUL estimates are left apart and only the behavior
prediction is considered. Figure 15 shows both the old and new
models behavior estimations when using all the data available
for training. The new model catches better the behavior of
the power during the aging of the stack. The adding of
the logarithmic part modeling improves clearly the results.
Moreover, it shows that the automatic initialization of the
filters can lead to results as good as for manual initialization,
with the exception of the learning duration limitation.

E. Discussion

The analysis of the results shows some good points as well
as some limitations to the prognostics developed here. First,
the occurrence of the characterizations is defined by a calendar.
This calendar is known to perform prognostics. The framework
should also be able to deal with unplanned characterization.
Then, modeling independently the different phenomena related
to the occurrence of disturbances seems to be a good solution.
Indeed, it allows modeling precisely the aging of the different
parameters with time. The empirical expressions defined for
each of them are simple but sufficient to obtain behavior
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predictions with a small MAPE. But using different models
with unknown coefficient also creates one major limitation
of that work: the amount of data needed to have good trends
from the parameter estimate based on the least squares method
covers more than 1100 hours which is around 60% of the
stack lifetime in this case study. Using a different parameter
extraction method could be a solution to that problem. Trying
to find a deeper link with physics to have fix values of some
coefficients might be another one.

VI. CONCLUSION

This work presents a new modeling for prognostics of
PEMFC under constant current solicitation but facing events
creating disturbance in the natural aging behavior. A global
model for power aging is set including time-variant parame-
ters. These parameters can be modeled independently as they
show specific trend as the stack degrades. Moreover, they allow
highlighting different physical phenomena as transient effects,
steady state aging and recoveries.

These models are parts of a global prognostics framework
composed by a parameter extraction part and a particle filtering
part. The automatic parameter estimate based on least square
fitting allows identifying the unknown coefficients of all the
models and thereby initializing four particle filters. These lasts
interact together to allow predicting the power aging of the
stack and estimating the remaining useful life.

The whole proposition is quite convincing as it can predict the
RUL with less than 5% of error with a horizon of more than
500 hours. However, a major limitation relies in the length of
the data needed for the learning as more than 1100 hours
are needed, covering more than the half of the stack life.
Consequently, the parameter estimate part should be improved
to use less data while the prognostics keeps offering good
results.

To ensure that this prognostics is sufficiently generic, new
experiments are conducted to provide new aging data coming
from different fuel cell stacks. Once this method is definitely
validated, the next step of this work will be to include the
current in the modeling and so being able to manage variable
current profiles. This will lead to prognostics closer to real
automotive or stationary applications.
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