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Abstract

The use of fuel cells appears to be of growing interest as a poten-
tial alternative to conventional power systems. Fuel cell systems suffer
however from insufficient durability and their lifetime may be improved.
Prognostics results in the form of Remaining Useful Life are proposed
to be used in a Prognostics and Health Management (PHM) framework
to maximize the global useful life of a multi-stack fuel cell system under
service constraint. The post-prognostics decision approach makes use of
convex optimization to define the contribution of each stack over time to
a global needed power output. A Mirror-Prox for Saddle Points method
is proposed to cope with the assignment problem. Resolution method is
detailed and promising simulation results are provided.

1 Introduction and related work

Due to the decline of fossil fuel resources, energy issues are moving to the fore-
front and the search for new energy solutions is on the rise. In this context, the
use of fuel cells appears to be of growing interest as a potential alternative to
conventional power systems [1]. Fuel cells are expected to be used in station-
ary applications, but also in transportation and portable power applications [2].
Durability of fuel cells are however not consistent with such applications. In
fact, their lifetime reaches between 1500 and 3000 hours, whereas 5000 hours
are required for transportation applications and up to 100000 hours for station-
ary ones. An important challenge highlighted by Borup et al. [2] consists then
in improving the performance, reliability and lifetime of fuel cells.
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As pointed out by Jouin et al. [1], prognostics techniques of Prognostics
and Health Management (PHM) domain can help increasing fuel cells lifetime.
In particular, the study of the degradation allows to evaluate the current sys-
tem health state and then to estimate its Remaining Useful Life (RUL). In their
state-of-the-art [1], Jouin et al. have pointed out that researches in PHM dealing
with fuel cells have been mainly focused on data acquisition and data processing.
Less attention has been paid to condition assessment and diagnostics and very
few works address prognostics and decision making. Papers taking into account
the decision part propose furthermore only corrective actions (see [3] and [4]).
For this kind of decision, physical parameters are controlled to master each fuel
cell operating conditions as accurately as possible. These internal parameters
include inlet and outlet gas flows, pressures and temperatures, single cell and
stacks voltages and current. This real-time control (from nanoseconds to sec-
onds) is necessary to compensate the natural fluctuation of these parameters
and to avoid too early irreversible degradations. At each time it allows also to
set the operating current to meet the needs in power for each fuel cell. In this
paper, decision making process is considered at a larger scale of time (hours to
weeks). In the considered PHM framework, decision comes within the scope of
Prognostic Decision Making (PDM), which aims at choosing an appropriate sys-
tem configuration [5]. Basically, the addressed problem is to provide the power
output value for each fuel cell as a function of time, on the basis of a global
power demand. Target application considered here is based on stationary power
generation for domestic usage, also known as micro combined heat and power
(micro-CHP).

In order to deliver suitable power outputs, fuel cells are used in the form of
stacks, composed of many individual connected cells. Each stack is supposed
to be independent, but the multi-stack fuel cell system has to deliver a given
global power output based on a need of energy. At each time, the total provided
power output is the sum of each output of the stacks that are currently running.
Each fuel cell stack is able to deliver an output that can vary continuously and
take any value within a given interval. The optimization problem consists then
in determining the appropriate output for each fuel cell stack during the whole
production horizon. All the stacks are not supposed to be running at each
time if the target output can be reached by using only a subset of them. All
of the stacks are not always available, their end of life being reached or not.
Considering a global needed power output, the multi-stack system useful life
depends not only on each stack useful life, but also on both the schedule and
the operating condition settings that define the contribution of each stack over
time. The same statement applies to batteries in a health management context.
Saha et al. [6] have for instance addressed the maximization of the battery
charge used while constraining the probability of a battery shut off in flight for
electric unmanned aerial vehicles. Predictions on remaining battery life are used
to optimize mission plans without exceeding the available battery charge. In a
same way, we propose to use prognostics results in the form of RUL to maximize
the global useful life of a multi-stack fuel cell system under service constraint.

In a PHM framework, as shown in [7], a platform useful life can be extended
by managing the usage of machines thanks to the knowledge of each machine
RUL. In this study, machine throughputs have been considered to be in a
discrete domain. Complexity results have been proposed in [8] for different in-
stances of the optimization problem. The problem can be solved in polynomial
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time under some restrictive assumptions, while it turns out to be NP-complete
in the general case. Optimal solutions can be found in limited time only for
small size instances considering a very limited number of machines, very few
throughput values and short production horizons by solving an integer linear
program. For larger problems, many polynomial heuristics have been provided
in [7] and [8] to cope with the problem of maximizing a platform useful life un-
der service constraint. Efficiency of these heuristics have been assessed through
exhaustive simulations. In this paper, the model for machines is more complex
to fit the fuel cells behavior. The approach described before does not match in
the focused fuel cell management context. The main difference is that the power
of a fuel cell stack is controlled continuously. Moreover, each fuel cell lifetime
depends on both its current power output and its previous use, in addition to
environmental and operating conditions, cell design, assembly and degradation
mechanisms [1]. Another specificity of the considered application leads to ob-
serve a continuous use of machines during the schedule. Change of output is still
allowed, but the number of scheduled shutdowns has to be minimized for each
fuel cell stack. Indeed, each stop-and-start of a fuel cell induces damages [2].

The proposed approach is based on the convex programming paradigm. In
order to solve the considered type of problem in the framework of convex op-
timization, a penalized optimization problem which incorporates `1 norms is
introduced, leading to solutions with sparse first derivative, while uniformly
controlling the slopes of considered functions. This non-smooth penalized ap-
proach is the subject of extensive research in the machine learning, compu-
tational statistics and signal processing communities [9]. The `1 penalization
approach has been recently advertised for the search of the sparsest solution of
an under-determined system of linear equations [9] and for the piecewise affine
approximation [10]. These ideas have lead to very important discoveries in the
fields of mathematics and computer science in relation to the frontier between
P and NP [11]. Using the `1 penalization approach, the considered schedul-
ing problem is proposed to be addressed via optimizing a composite function
subject to several constraints due to fuel cell intrinsic characteristics.

2 Problem statement

2.1 Application framework

A fuel cell system is composed of a set M of M fuel cell stacks Mm (1 6 m 6
M) with M = {M1, . . . ,MM}. All the stacks, composed of many individual
connected single cells, are supposed to be always supplied with all reactants
required for fuel cell internal chemical reactions leading to the power conversion.
Resulting outcome is an instant power output Pm(t) for each stack Mm. Stacks
are supposed to be able to deliver outputs that can vary continuously within
a given power output interval such that 0 6 Pmin,m 6 Pm(t) 6 Pmax,m(t)
for all m ∈ {1, . . . ,M}, with Pmax,m(t) typically decreasing over time. Up to
now, the impact of variable operating conditions on fuel cell lifetime is not well-
known and prognostics methods are not consistent with dynamic conditions.
In fact, fuel cells being multi-physics and multi-scale systems [1], the study of
their degradation process is very difficult. Thus a simplified trend depicting
the behavior of fuel cell stacks controlled with variable operating conditions is
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proposed in Figure 1 and used to determine at each time the range of available
power outputs and their associated RUL. This representation respects main
properties of fuel cells: power amplitude is decreasing over time and RUL values
depend on previous usages. Considering this, two periods of time using two
different outputs for the same fuel cell stack can not always be permuted in a
schedule.

Pm(t)

time

Pmax,m(0)

100%

Pm

RUL(Pm)

20%

Pmax,m(t) = amt+ Pmax,m(0)

Pmax,m(0)

Pmin,m 10%

RUL(Pmin,m)

Figure 1: Evolution over time of the range of available outputs for a fuel cell
stack Mm

Fuel cell stacks can be used simultaneously and independently from each
other. At each time, the global outcome Ptot(t) corresponds to the sum of
each stack power contribution. During the whole production horizon T , this
global output has to reach a given load demand σ = σ(t), based on the energy
requirement of the considered application. At any time t such that 0 6 t 6 T ,
the required service level σ(t) is supposed to be lower or equal to the maximal
global power output that the considered set of fuel cell stacks is able to deliver
considering each stack initial health state (at time t = 0).

2.2 Optimization problem

Considering a multi-stack fuel cell system such as defined in the application
framework (Section 2.1), the purpose is to exhibit a commitment strategy by
defining at each time the contribution of each fuel cell stack to the global output
so as to reach the power demand σ(t) as long as possible. In the considered
stationary power generation framework, this demand is supposed to be piecewise
constant over time. Overproduction is tolerated if it allows to extend the global
system useful life, but should be avoided as far as possible. Actually, storage
of fuel cell stacks outcomes being not considered in this paper, overproduction
is lost. All the fuel cell stacks are not supposed to be in use at any time if a
subset of them is enough to reach the demand. Since fuel cells suffer from wear
and tear, some stacks can also be not available if their end of life (EOL) has
been reached. Moreover, when a stack has been started up, a continuous use is
all the same observed as far as possible until its end of life. Change of output is
still allowed, but scheduled shutdowns are avoided. Stopping and restarting a
fuel cell can indeed induce damages [2]. Available power outputs for each stack
are determined using the fuel cell behavior representation described in Figure 1.
The issue is then to find the appropriate assignment of stacks over time during
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the whole production horizon.
The combinatorial optimization approach proposed in previous works deal-

ing with a similar optimization problem (see [7] and [8]) and considering time
discretization allowed to find optimal solutions in limited time only for small
problem instances. However, in the application framework considered here, the
horizon and/or the number of machines may be quite large. Considering this, an
approach making use of a time discretization may be intractable and relaxations
or heuristics may be mandatory to cope with large instances of the optimization
problem. In order to avoid this, we propose to change completely the paradigm
used to search for solutions and to reason on the scale of the whole production
horizon. The contribution of each fuel cell stack during its whole lifetime is con-
sidered in this case as a whole and its evolution over time is determined using
convex optimization. A new formulation of the scheduling problem, that leads
to a convex programming problem taking into account fuel cell properties and
associated constraints described in Section 2.1, is then proposed in Section 3.

3 Mathematical formulation

The use of convex optimization is proposed to cope with the optimization prob-
lem, so that solutions can be found in polynomial time even if large scale prob-
lems are considered. Some mathematical notations are first defined to formulate
the problem as the solution of a convex program. An `1 penalization approach is
then proposed to obtain polynomially shaped vectors which can be interpreted
as the discretized version of a polynomial function of time. The main interest in
using such penalties is that they are well structured convex and thus amenable to
efficient methods of convex optimization. This `1 penalization approach leading
to a non-smooth objective function, the use of Nesterov’s smoothing technique
is finally proposed. This first-order method for convex optimization, based on
an optimal scheme for smooth optimization of a differentiable and convex func-
tion, allows to improve the convergence properties of the proposed resolution
method detailed in Section 4.

3.1 Notations

Let fm(t), t = 0, . . . , T , be the contribution of fuel cell stack Mm to the global
output. For each stack, this contribution can vary over the time span [0, . . . , T ],
with T the production horizon. Let us assume that each fm(t) satisfies:

fm(t) > 0 ∀ t ∈ [0, . . . , T ] (1)

The constraint associated to the required service level σ(t) can be expressed
as follows:

M∑
m=1

fm(t) > σ(t) ∀ t ∈ [0, . . . , T ] (2)

The following upper bound is also imposed on each fuel cell stack contribu-
tion over time:

fm(t) 6 fmax,m(t) ∀m = 1, . . . ,M, ∀ t ∈ [0, . . . , T ] (3)
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This upper bound corresponds to the maximal reachable output, which typically
declines during the use of a fuel cell stack Mm.

A certain consumption rate constraint is finally set for each stack Mm and
may be written as:

T∑
t=0

Φ(fm(t)) 6 1 (4)

with Φ a convex function. These consumption constraints express each stack
limited lifetime. In accordance with the representation of fuel cells behavior
proposed in Figure 1, the consumption rate considered for a stack Mm is the
following:

Φ(fm(t)) =
am

fm(t)− fmax,m(0)
(5)

with am the speed associated to the maximal power output decrease (see Fig-
ure 1).

3.2 `1 penalization approach

The purpose is to find the functions fm(t) (m = 1, . . . ,M and t = 0, . . . , T ). The
main idea is to use an approach which was recently promoted in signal processing
and computational statistics. In [12], Kim, Koh, Boyd and Gorinevsky showed
the practical interest of minimizing the `1-norm for obtaining sparsity in the
context of function modeling over time. More precisely, they showed through
multiple experiments that minimizing the `1-norm of the finite differences of a
vector leads, under very mild conditions, to a vector which is piecewise constant.
The same idea can be used to obtain polynomially shaped (of any order) vectors
which can be interpreted as the discretized version of a polynomial function of
time. `1 penalization is then used to impose a small number of jumps for each
function fm (m = 1, . . . ,M). Let ∆ : RT+1 7→ RT denote the operator which
takes the successive differences, i.e.:

f =

 f(0)
...

f(T )

 ∆f =

 f(1)− f(0)
...

f(T )− f(T − 1)

 (6)

Under the constraints described in previous section, many power output
values may be feasible for a given horizon T . Optimizing the horizon may
provide solutions which have unreasonable shapes with respect to the physical
properties of the machines. In particular, all the machines may not be involved
at any time. Thus, we expect to see working windows occuring in the solution.
This is modelled by the sparsity of fm and its first derivative. The solution may
also be very oscillatory. Such bad features could be overcome by imposing the
sparsity of the various components to be less than prescribed by certain physical
constraints. A bad news is that sparsity is not convex and leads to NP-hard
feasibility problems. A simple solution can be incorporated into the approach.
The idea is to replace sparsity by a convex surrogate. Such surrogates have
proved to be very efficient in the signal processing field [9, 12]. In most cases,
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the corresponding relaxation sums up to minimize the `1-norm of the quantity
whose sparsity is to be controlled.

Using the `1 penalization approach, one obtains that the considered problem
can be addressed via optimizing the following composite function:

φ(F ) =

M∑
m=1

λm‖∆fm‖1 (7)

subject to the constraints (1), (2), (3) and (4). ‖∆fm‖1 is a penalty for impos-
ing a certain sparsity on ∆fm, used to minimize the discontinuity of the final
solution (small number of jumps). In order to enforce that fm equal zero more
often than would lead the previous objective, one can propose the following
objective function:

F(F ) = λ0‖F‖1 +

M∑
m=1

λm‖∆fm‖1 (8)

3.3 Nesterov smoothing technique

`1 penalization approach proposed in previous section ensures that the objective
function taken into account is convex. This objective function is however non-
smooth. Improvement of the convergence properties of the resolution method
proposed in Section 4 for the minimization of the objective function can be
achieved in the scheme proposed by Nesterov in [13] for non-smooth convex
optimization. Nesterov’s smoothing technique makes use of smooth approxima-
tions of non-differentiable functions. Becker et al. [14] have used this technique
for `1 norms as needed for the LASSO and also for the objective function con-
sidered in the present paper (see Equation (8)).

In this framework, the minimization problem is proposed to be recast as a
saddle-point problem. The considered objective function, say g, being convex
but non-smooth, may be written as a maximization. Minimization can then be
written as:

min
x∈Qp

(g(x)) with g(x) = max
u∈Qd

< u,Wx > (9)

with Qd the dual feasible set, supposed to be convex. The corresponding saddle-
point problem is then the following:

min
x∈Qp

max
u∈Qd

< u,Wx > (10)

Substitution of the non-smooth objective function by the following smooth ap-
proximation is proposed by Nesterov [13]:

gµ(x) = max
u∈Qd

< u,Wx > −µpd(u) (11)

with pd(u) a prox-function for Qd, that is, pd(u) is continuous and strongly
convex on Qd. In the algorithm NESTA (shorthand for Nesterov’s algorithm),
based on the smoothing technique introduced by Nesterov, Becker et al. [14]
propose a convenient choice for the prox-function: pd(u) = 1

2‖u‖
2
2. In the

following, it will be defined as pd(u) = ‖u‖22.
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Considering that each `1 norm in the objective function defined in Equa-
tion (8) is of the form ‖x‖1 = maxu∈Qd

< u, x >, where the dual feasible set is
the `∞ ball (Qd = {u s.t. ‖u‖∞ 6 1}), a natural smooth approximation to the
`1 norm is then:

gµ(x) ≈ max
‖u‖∞61

< u,F > −µ‖u‖22 (12)

Then, the objective function previously defined in Equation (8) can be approx-
imated by:

F(F ) ≈λ0 max
‖u‖∞61

< u,F > (13)

+

M∑
m=1

(λm max
‖um‖∞61

< um,∆fm >

subject to the constraints (1), (2), (3) and (4).

4 Resolution method

4.1 Intermediate definitions

Consider first the entropy function h(x) =
d∑
i=1

xi ln(xi). The gradient of this

function is then:

∇h(x) =

ln(x1) + 1
...

ln(xd) + 1

 (14)

Let us then introduce the following functions which adequately describe the
constraints defined in Equations (1), (2), (3) and (4):

ψ0(F ) =

M∑
m=1

fm(t)− σ(t) ∀ t = 0, . . . , T (15)

ψ1,m(F ) = fm ∀m = 1, . . . ,M (16)

ψ2,m(F ) = fmax,m − fm ∀m = 1, . . . ,M (17)

ψ3,m(F ) = 1−
T∑
t=0

Φ(fm(t)) ∀m = 1, . . . ,M (18)

with ψ0 : RM(T+1) 7→ RT+1, ψ1,m : RM(T+1) 7→ RT+1, ψ2,m : RM(T+1) 7→ RT+1,
ψ3,m : RM(T+1) 7→ RM and

F = [f1(0), f2(0), . . . , fM (0), . . . , f1(T ), . . . , fM (T )] .

4.2 Mirror-Prox for Saddle Points (MP-SP)

A Mirror Prox method is proposed to cope with the problem of minimizing
the objective function detailed in Equation (8). The Mirror Prox algorithm is
a variant of the Mirror Descent algorithm, which has first been proposed by
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Nemirovskii and Yudin [15] for convex programming. It has been extensively
studied recently and several relationships have been discovered between the
Mirror Descent scheme and Bregman-proximal methods. We refer the interested
reader to [16] for a detailed and very pedagogical description of Mirror Descent
algorithms.

4.2.1 Main ideas

Assume for a moment that the objective function F is differentiable. The prob-
lem can be described as follows:

argmin
F∈R2M(T+1)

(‖F‖1 + φ(F )) (19)

such that ψ0(F ) ≥ 0 and ψK,m(F ) ≥ 0, ∀ K = 1, . . . , 3 and ∀ m = 1, . . . ,M .
Let us denote the constraint set by C. The standard projected gradient algo-
rithm is of the form

F (l+1) = PC

(
F (l) − λ(l) ∇F(F (l))

)
(20)

where PC is the projection operator onto the set C.
A mirror function is a convex function whose gradient is one-to-one and has

a defining set which may conveniently incorporate simple constraints. Let θ be
such a function. Then, the mirror descent iteration is given by:

∇θ(G(l+1)) = ∇θ(F (l))− λ(l) ∇F(F (l))

F (l+1) = PC(G
(l+1)).

As a very useful example, one might consider θ, a mirror map on RM(T+1),
defined by:

θ(F ) =

T∑
t=0

M∑
m=1

F (m, t) ln(F (m, t)). (21)

In accordance with the gradient of the entropy function defined in Equa-
tion (14), we have then:

∇θ(F ) = ln(F ) + 1 (22)

4.2.2 The Mirror-Prox for Saddle Points algorithm

The main difficulty in the Mirror Prox scheme is that projecting onto the con-
straint set C might not be so easy. In order to overcome this problem, one
possibility is to consider an algorithm which solves the primal-dual saddle point
problem for the Lagrange function. An other possibility, which is addressed in
this paper, is to include the constraints in the objective function. In this case,
satisfaction of each constraint is ensured by the optimization of an associated
function. For this purpose, one can define the Lagrange function as follows:

L(F, u) = F(F ) + Cdem(F, σ) + Cslope(F, fmax) (23)
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and find a saddle point of this function, with

Cdem(F, σ) = λdem

T∑
t=0

1

t+ 1
exp

(
− γ
( M∑
m=1

fm(t)

− σ(t)
))

(24)

the function associated to the constraints (15), with λdem and γ ∈ R and

Cslope(F, fmax) =λslope

T−1∑
t=0

M∑
m=1

exp
(
β
(
fmax,m(t+ 1)

− fmax,m(t) + αmfm(t)
))

(25)

the function associated to the constraints (15) with λslope, β and αm ∈ R ∀ m =
1, . . . ,M .

One can propose the following Mirror Descent scheme:

∇θλ0,λ1,λdem,λslope
(F (l+1), u(l+1)) =

∇θλ0,λ1,λdem,λslope
(F (l), u(l))

− η
([

∇FL(F (l), u(l))
−∇uL(F (l), u(l))

])
(26)

where

θλ0,λ1,λdem,λslope
(F, u) = λ0 max

‖u‖∞61
< u,F >

+

M∑
m=1

(λm max
‖um‖∞61

< um,∆fm >

− λdemγ
T∑
t=0

1

t+ 1
exp

(
− γ
( M∑
m=1

fm(t)− σ(t)
))

+ λslopeβαm

T−1∑
t=0

M∑
m=1

exp
(
β
(
fmax,m(t+ 1)

− fmax,m(t) + αmfm(t)
))

(27)

Computational details can be found in the companion research report [17].

4.3 Improvement of the method convergence rate

Consideration of the proposed Mirror-Prox scheme allows to reach better conver-
gence speed than the one that would have been obtained with a Mirror-Descent
scheme. In order to accelerate the convergence of the method, some projection
steps are moreover included. After each iteration of the Mirror-Prox, update
of each fmax,m(t) value is first performed as a function of Fm(t) (see Equa-
tion (28)).

fmax,m(t) = fmax,m(t− 1) + α′mg(Fm(t− 1)) (28)

∀ t = 1, . . . , T, ∀m = 1, . . . ,M

with α′ ∈ RM and g : RM 7→ RM
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Then, for each time for which the global contribution do not reach the de-
mand level, contributions of stacks that are used are increased to the maximal
output reachable if possible, until the needed global output is reached. The new
configuration is stored in an intermediate variable, which is used to guide the
evolution of F in the Mirror-Prox scheme through a gradient step (see details
in the companion research report [17]).

5 Simulation results

The resolution method proposed in previous section has been evaluated through
simulations on random problem instances. After a description of the problem
generation and some remarks on the method configuration, efficiency of the
approach is discussed.

5.1 Problem generation

Random problem configurations have been generated using a simulator and con-
figured with many parameters including the number of stacks in the considered
multi-stack fuel cell system, M , and intrinsic fuel cell characteristics. The latter
have been defined on the basis of fuel cell manufacturer specifications and con-
sidering a maximal lifetime RULmax,m = RUL(Pmin,m) = 1500 hours ±20%.
Power values taken into account are the following: Pmax,m(0) = 500W ± 5%
and Pmin,m = 0.15.Pmax,m(0).

For the results presented hereafter, the power demand has been assumed to
be constant during the whole scheduling horizon: σ(t) = σ. Without any lost
of generality, only one demand value has then been associated to each problem
configuration.

5.2 Method configuration

Some mathematical parameters introduced by the optimization methods need
to be determined to insure the quality of solutions. Tuning of the relaxation
parameters λ1,m, λ2,m and λ2′ (m = 1, . . . ,M) has been done by choosing them
independently of m and by trying several values out until an appropriate shape
is obtained.

Different weights have been associated to the problem constraints and de-
termined depending on their significance level for the solution. A great weight
has then been associated to the constraint ψ0(F ) to favor the reaching of the
load demand. Times for which the load demand is not reached being gathered
at the end of schedules obtained with the resolution method, this insures the
horizon maximization.

Consideration of projections on the sets of constraints defined in Section 4.3
allows to improve the convergence speed, but a minimal number of iterations
is all the same necessary to give the method time to converge. Quality of
solutions from the point of view of the reached production horizon globally
increases with the number of iterations and stabilizes starting from a certain
value. This value has been determined on the basis of several tests and used
to define the minimal needed number of iterations, which limits computation
times while insuring solutions optimality.
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Figure 2: Comparison of each stack contribution over time to the corresponding
maximal power output

5.3 Results

A schedule obtained with the proposed Mirror-Prox method associated to pro-
jections on the sets of constraints for a system composed of 3 fuel cell stacks is
proposed in Figure 3. Contribution of each stack to the global power output is
detailed in Figure 2 and compared to the corresponding maximal power output
reachable. One can see in Figure 3 that the power demand is satisfied at the
beginning of the schedule. The production horizon is limited by each fuel cell
stack lifetime, but depends also on the scheduling process. One can also notice
in Figure 2 that the evolution of the maximal power output of each machine
depends on its commitment over time. In fact, when a machine is not used, the
maximal power output remains constant. This delayed evolution of Pmax,m for
each Mm is ensured by both Equations (25) and (28) and allows to optimize
the use of the set of machines. In fact, at each time, no unnecessary machine is
used.

The resolution method introduced in this paper allows then to propose a
schedule of a multi-stack fuel cell system that defines the commitment of each
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Figure 3: Schedule obtained for a set of 3 fuel cell stacks

stack to reach a certain load demand. The proposed Mirror-Prox method gives
furthermore better solutions than strategies that would share out stacks con-
tributions following very basic rules. One can consider a first basic strategy
S1, that divides the load demand equally between the M stacks. In this case,
all the stacks have to provide the same power, which equals σ�M , and the
horizon is limited by the stack which RUL is minimal for the selected power
output. Two other strategies can be based on particular weightings. Let be S2
the strategy that considers a weighting on maximal power output reachable at
time t0. Contribution of each stack to the load demand is then defined as a per-
centage defined as follows: Pmax,m�Pmax,tot, with Pmax,tot =

∑M
m=1 Pmax,m.

In this case, the higher the maximal power output is, the higher is the contri-
bution of the corresponding stack to the global output. Let be S3 the strategy
that considers a weighting on the potential, defined by the area under the curve
depicting the evolution of Pmax,m(t). In a same way as for strategy S2, contri-
bution of stacks with high potential are the most significant. Considering the
same multi-stack system with which results provided in Figures 2 and 3 have
been obtained, horizon reached by strategy S1 is H1 = 1155 hours. In a same
way, H2 = 1160 hours and H3 = 1193 hours. Horizon reached with the pro-
posed strategy based on convex optimization is longer (H = 1653 hours) Then,
in comparison with basic strategies, the strategy detailed in Section 4 defines
better stack commitment allowing to extend the multi-stack system production
horizon. Even better horizons could be reached by relaxing the constraint de-
fined by equation 15, which ensures that the demand is reached at each time
during the production horizon. In fact, solutions provided by the convex opti-
mization program may include periods of time during which the global outcome
falls below the load demand. But this does not mean that the demand can not
be reached anymore afterward. Allowing a certain underproduction rate can
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be consistent in a hybrid global system where the missing power output can be
punctually provided by a secondary energy supplier. As an example based on
the case considered for results provided in Figures 2 and 3, allowing an under-
production rate of 10% (0.1 × σ) permits to extend the system lifetime from
1653 to 1703 hours.

6 Conclusion and future work

A management of fuel cell systems has been proposed in a PHM framework.
Decision coming within the scope of Prognostic Decision Making has been ad-
dressed considering longer timeframes than those proposed so far in the litera-
ture on fuel cells. The use of convex programming has been proposed to cope
with the scheduling problem of multi-stack fuel cell systems under service con-
straint. A mathematical formulation of the problem involving `1 penalizations
and smoothing techniques have been used to control the shape of the solutions.
The minimization of the objective function under constraints has been addressed
through a Mirror-Prox scheme.

The model taken into account to describe fuel cell systems particular behav-
ior has been highly simplified. In fact, the transformation of real properties to
mathematical functions has been restrained to convex functions to allow the use
of convex programming. All the fuel cell properties are then for the moment not
observed by the solutions obtained with the proposed approach, but this first
study is promising. It shows indeed that a global resolution on the scale of the
whole production horizon can be used to define the commitment of machines
over time with the horizon maximization as objective.

As future work, enhancement of the considered mathematical formulation
will be addressed to suit the associated model to a realistic evolution over time of
fuel cell characteristics. The method being relatively fast and scalable, extensive
simulations will also be performed to assess its efficiency when considering a huge
number of machines.
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