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Abstract—In order to face one of the bolt for Proton Exchange
Membrane Fuel Cell, PEMFC’s industrial breakthrough, the
development of Prognostics and Health Management (PHM) is
a promising option. Indeed, the prognostics part of the PHM
whose goal is to estimate the Remaining Useful Life (RUL) of
the system in order to furnish the decision part of PHM the
information needed for select the good actions has not been
really developed for PEMFC. It is then the next step that need
development and that would allow to optimize the use of the fuel
cell and then extend it’s too short life duration. For that purpose,
the development of a behavioral model is necessary as it would be
able to predict the dynamic of the fuel cell. A model of this kind
is developed here, it is composed of a static and a dynamic part.
The ageing in this model can be included by the parameters in
each parts. However it is necessary to analyze which parameters
is critical for the development of the ageing, as the number of
parameter is high face to the data available. The discussion of
the parametric sensitivity of the model is presented here as well
as the validation of the model.

I. INTRODUCTION

Nowadays, in the actual preoccupation about the ecology,
the Proton Exchange Membrane Fuel Cell (PEMFC) is a
technology full of promises. Indeed, with a low greenhouse
gases emission and a high efficiency, the fuel cells appear to
be a solution to face our need of creating energy alternative.
An electrical generator based on a PEMFC is a complex
system because of the numerous multiphysical phenomena
happening inside. It isobviously an electrochemical system,
because the production of energy is coming from two
oxydo-reduction reactions. The oxidized dihydrogen and the
reduced dioxygen trigger a= transfer of electrical charges.
Unlike a battery, the fuel cell has permanent supplies of fuel
and oxidant the gases. The fuel cell can then be characterized
as electrochemical but also electrical, fluidic and thermic,
leading to a complex multiphysical system. This technology
has not been yet fully developed. Indeed even though the
fuel cell has been discovered for more than a century, the
development of PEMFC is not mature enough for allowing
a real breakthrough in industry. Some bolts have still to be
unlocked for making it technically and economically viable.
The life duration which is, at this time, too short and not
enough managed is one of these bolts. This issue brings
unexpected failure at inconvenient timing. In order to meet
the target of the life duration, there can be two possible

complementary approaches: on one side the development of a
more reliable and performing fuel cell stack, and on another
side the development of control algorithms that would allow
limiting the influence or mitigating degradations.

A method to face this kind of issues is the Prognostics
and Health Management [1] which process permits to detect,
diagnose, performs prognostics (estimating the Remaining
Useful Life (RUL)) in order to take the decisions at the
good moment for avoiding degradation and optimizing the use.

According to the litterature [2], for the PEMFC, the first
layers of the PHM development has already been investigated
in the literature [3], [4]. However, the first step with very
few works on it is the prognostics. So, it has to be developed
in order to be able to apply the complete PHM process to
the PEMFC which final goal would allow managing the life
time and expanding it. This is why this paper focuses on the
prognostics part of PHM for PEMFC.

Three different kind of approaches can be distinguished
for prognostics [5], [6]. Indeed, in order to predict the end of
life of a system, its performances has to be reproduced. To
achieve this aim, data-based approaches can be considered.
In this case, a model is trained thanks to a learning phase,
then the model is able to predict the behaviour of the
considered system. This approach is also named a black-box
approach as there is no physical knowledge required. It
implies nevertheless that there is no physical causality
with the phenomenon really taking place in the system.
A second approach is the model-based ones, in which a
precise knowledge of the system is needed but where only
a limited number of experiments are required to tune the
model. This approach allows also being easily modified
regarding new evolving parameters or inputs. A link between
the real ageing and the parameters can be drawn. A third
approach is the hybrid one; it associates the two firsts that
merges their advantages as well as their disadvantages. The
frontier between these three approaches can be fuzzy. Indeed
with the definition given here and for the PEMFC, a purely
model-based approach can’t really exist as some data are
always needed to tune the parameters.



A model-based approach is here proposed as this would
allow obtaining a good precision and even modeling some
important internal variables of the fuel cell stack.

The aim of this paper is to present the parametric sensitivity
analysis of a physics based model in order to reduce the
number that has to be regressed and so minimize the chance of
hitting a local minimum during the regressions. For that, the
Proton Exchange Membrane Fuel Cell technology is presented
in a first part in order to present, in a second part, the
behavioral model. In the third part, the model with the ageing
included is presented in order to allow the last part which is
the parametric sensitivity analysis.

II. PROTON EXCHANGE MEMBRANE FUEL CELL

The model proposed being a physics-based development, it
is necessary to describe, even succinctly the composition and
functioning of a basic cell. As seen on figure 1, a single cell is
composed by an anode / electrolyte / cathode assembly (called
MEA for membrane electrode assembly) [7]. The electrolyte is
a polymer membrane situated between two electrodes. Enough
hydrated, it enables the conduction of H+ protons while
preventing the conduction of electrons. The MEA is included
between two Gaz Diffusion Layer (GDL) which allow the
arrival of gaz to the AME and the evacuation of the water
produced by the electrochemical reaction. Finally, two metal
(or graphite) plates hold mechanically the layers. They are
called bi-polarized plates and ensure different functions. First,
the channels enhance the gaz routing on the whole surface
of AME. Then its thermal properties are used for the heat
evacuation, and so used in order to ensure the temperature
control thanks to a cooling system. This assembly is a single
cell, a PEMFC is generally a stack of cells.

Fig. 1. Composition of a cell

As it can be seen on figure 2, on the anode side, dihydrogen
is supplied, on the cathode side, it is dioxygen or air. The
conversion of chemical to electrical energy is possible thanks
to the reactions happening at the electrodes. At the anode, the
dihydrogen is decomposed into H+ and electrons. The protons
obtained cross the electrolyte while the electrons go through
the external load to reach the cathode. There, the dioxygen
react with the ions H+ giving water. Finally, a PEMFC product
electricity, water, but heat too.

Fig. 2. Description of the operating of a single cell

There are different kind of losses of a PEMFC :

• Fuel crossover losses : results of electrons and wast of
fuel passing through the electrolyte.

• Activation losses : caused by the slowness of the reaction
taking place on the surface of electrodes.

• Ohmic losses : due to the resistance to the flow of
electrons through the electrodes.

• Concentration losses : results from the change of concen-
tration of the reactants through the gas diffusion layer.

III. INSTANTANEOUS BEHAVIOR MODEL

A. Behavioral model description

1) Global model: The model is here a combination of two
distinct models as it can be seen on figure 3. The first input is
the current and it is normalized as current density to be then
decomposed on direct and alternative component. The static
and dynamics model are then giving direct and alternative
voltage that is finally recomposed as voltage per cell in order
to provide the output of the model that is the voltage (for more
details about the model refer to [8], [9]).

Fig. 3. Scheme of the model

2) Static part of the model: On one side, the static part
of the model is based on the Butler-Volmer law with the
expression of the voltage drop at the anode and the cathode
(ηa and ηc).

UDC = En −Rm · JDC − ηa − ηc (1)

The expression developped is as follows : (eq. (2))
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The parameters at the anode and at the cathode stand for :
• ba, bc the Tafel parameters;
• j0a, j0c the exchange current density, related to the

activation phenomenon.
• jLc the limit current density, related to the diffusion of

the oxygen through the gas diffusion layer (GDL).
3) Dynamic part of the model: On the other side, the

dynamic part of the model is based on an electrical equivalency
(figure 4).

Fig. 4. Scheme of the model

It is chosen to represent the Warburg impedance WOc by
its module ROc and its time constant τOc expressed in the
Laplace space(eq. (3)).

WOc (p) = ROc ·
tanh

(√
τOc · p

)
√
τOc · p

(3)

The dipoles stand for, respectively at the anode and cathode
: Cdca and Cdcc are the double layer capacities, Rta and
Rtc two transfer resistances, Rm the ionic conductance of the
membrane and L the inductive behavior due to the connectors.

B. Validation of the behavioral model

For validating the model, some real experiment are realized.
A 5 cells stack of 100 square centimeters of active area is
experimented with a ripple current of 70 A more or less 10%
at a 5kHz frequency. The experiment is a long term test that
lasted around one thousand hours. Some measures as current
and voltage are monitored during the whole experiment. Each
week, an experimental characterization is realized, which is
composed of polarization curves (current - voltage curves) and
Electrochemical Impedance Spectroscopies (EIS) at three DC
current values.

The static model is validated at each characterizations with a
fitting process on a polarization curve. For the dynamic model
the same step is realized with a fitting on the Nyquist plots

obtained thanks to the EIS. This step shows a good efficiency
as the Root Mean Square Errors are very low [9].

The global model need to be simulated entirely in order to
evaluate the accuracy. At each characterizations, the model is
updated as the fitting on the two parts are realized and then
furnish the new set of parameters tuned to the actual state
of health of the stack. However, the model then obtained is
only accurate around the characterization as it can be seen on
figure 5, the curve of the simulated voltage doesn’t follow the
trend during the 1000 hours, this demonstrates the real need
for including the ageing. Nevertheless, the global model is
efficient and accurate during a short period of time and after a
tuning. Indeed, as it can be seen on figure 6, which represents
the model and the real behaviour of the PEMFC tested under
the same load; the model is well following the trend during
the sixty seconds presented under the dynamic and the static
part of the solicitation. The figure 6 is focused on one of the
peaks that are going out of the view on figure 5. These peaks
are due to the solicitation going at zero for a bit, but showing
them in the figure 5 would have no interest as it would prevent
us to see the real response of the model during a long amount
of time as this is included between 3 V and 3.3 V.

Fig. 5. Comparison of the simulation and the real data under the same
solicitation during around 1000 hours

Fig. 6. Comparison of the simulation and the real data under the same
solicitation during around 60 seconds



IV. MODELING THE AGEING

This model is a behavioural one, that reproduces efficiently
the fuel cell’s voltage under the same solicitation. However,
the purpose is here prognostics. For that, the ageing time is
added : an other input of the global model is the time-lapse
during the fuel cell was operated (Tageing) (figure 7).

Fig. 7. Scheme of the model with the ageing

For reproducing the ageing, the parameters of the model
evolve thanks to a time dependency function. It was chosen,
on a first step to use an exponential function.

After each experimental characterization, the values of the
models’ parameters are regressed based on the experimental
results. The evolution of theses parameters is then approxi-
mated by a non-linear curve in order to obtain the parameters
of the exponential functions, an exemple can be seen on figure
8.

Fig. 8. Example of an exponential fitting of the model’s parameters (here
Rm)

The model is promising as well on a short amount of time
than on the totality of the experiment on which the simulations
are based as the mean error during the total experiment is
around 5% (figure 9).

Fig. 9. Comparison of the simulation with ageing and the real data under
the same solicitation during around 1000 hours

However, a certain number of parameters (Cdca, Cdcc, τOc,
bc) doesn’t seem to evolve with a clear tendency. Conse-
quently, even if the global model with ageing is satisfying,

it is not coherent to define a time dependency function for the
parameters.

The necessity of having less parameters or constraining
them into an interval is important also in order to have a good
ageing model. Indeed, the results presented on this ageing
part are satisfying but they are not reliable as all the results
of the 8 characterization realized are included: the future is
already known. A good ageing model rely on a certain quantity
of data, even for a physics-based as the one presented here,
but the necessity to shorten this amount of data as much as
possible is clear. For that a clear tendency in the evolution of
the parameters need to be obtain as soon as possible in the
experiment.

V. PARAMETRIC SENSITIVITY ANALYSIS

The global model and its static and dynamic parts present
a large number of parameters. Too high maybe for the regres-
sions realized : a local minimal might be found during the
updating procedure. A parametric sensitivity analysis is then
realized in order to find which parameters are dominant or
not, in order to fix or limit the values. It was chosen to realize
the evaluation of the influence of each parameters thank to the
ANOVA (analysis of variance) method [10].

A. Static model’s parameters sensitivity analysis

First the analyze is realized on the static part. This model
(eq. 2) has the following parameters involved :

• Rm the resistance;
• En the Nernst potential;
• ba, bc the Tafel parameters;
• j0a, j0c the exchange current density;
• jLc the limit current density at the cathode only.
The parameters values are set based on previous regressions

results and take three values, two extreme realistic values and
the middle one (table V-A).

Parameter Minimum Value Maximum Value Unit

Rm 0.08 0.2 Ω.cm2

En 0.9 1 V
ba 20 100 V −1

bc 20 100 V −1

j0a 0.001 1 A/cm2

j0c 0.001 1 A/cm2

jLc 1.001 1.5 A/cm2

TABLE I
STATIC PARAMETERS EXTREME VALUES FOR THE EXPERIMENTAL PLAN

The experimental plan is then realized by simulating the
static model with all the combination of parameters possible
and evaluating the error of the results with measurements.
For this purpose the polarization curve have been taken as
a reference and the model was simulated in order to furnish
a polarization curve. The error taken for the study is here
the Mean Absolute percent error (MAPE) calculated on each
point for then calculated the mean. This is realized on the
eight polarization curves available that is realized every week.



The influence of each parameter is then calculated for each
characterization and is represented on figure 10. The different
colors represent the influence for each parameters on the
characterizations, from the left for the first to the right for
the eighth.

Fig. 10. Static model’s parameters influence

Finally, the eight sensitivity analysis show coherent results.
Indeed the range of influence of each parameter stay in the
same interval. However, the total influence of the parameters
on one characterization is around 18%, a very low value for
a sensitivity analysis. That can certainly be explained by the
short range of value followed and there might be an inter
parametric influence, a point non relevant for our study.

The most predominant parameter is En, a crucial point as
the regressions realized have never given a satisfying value,
and for the results presented earlier, this parameter is set
fixed. Indeed, a wrong value of this parameter implies directly
an important error when the current solicitation is null. It is
otherwise a parameter that can be calculated so fixing its value
before realizing the regression is consistent. The parameters
ba and bc are the next most influent parameters and closely
Rm. The evolution of bc doesn’t let appear any trend with the
ageing time, and seem random: a local minimum might be
hit. The low influence of j0c and jLc, could allow fixing their
value and then having the logical evolution of jLc with the
time then be on bc.

B. Dynamic model’s parameters sensitivity analysis

The dynamic model (figure 4) is then studied. The param-
eters in this model are :

• The Warburg impedance WOc which is decomposed in
two impedances, ROc and τOc.

• The double layer capacities Cdca and Cdcc.
• Two transfer resistances Rta and Rtc.
• The ionic conductance of the membrane is modeled by

an equivalent resistance Rm.
• The inductive behavior due to the connectors L.
Thanks to previous regression results, the range of variation

for each parameter is set (table V-B) and all the simulations
are realized with three level for the parameters.

Parameter Minimum Value Maximum Value Unit

Ccdca 0.03 0.06 F/cm2

Cdcc 0.02 0.05 F/cm2

ROc 0.05 0.2 Ω.cm2

τOc 0.1 0.6 s
L 0.8E-06 2E-06 H
Rm 0.08 0.2 Ω.cm2

Rta 0.01 0.6 Ω.cm2

Rtc 0.01 0.4 Ω.cm2

TABLE II
DYNAMIC PARAMETERS EXTREME VALUES FOR THE EXPERIMENTAL PLAN

The data allowing to evaluate the error of the simulations is
the EIS at the nominal current of the experiment (70A). The
eighth characterization are here also all taken into account
in order to confirm the accuracy of the conclusions. For the
EIS, the input is the frequency and the Nyquist plot drown
as the output represent the real and imaginary part of the
impedance. That is why there are two errors calculated for
evaluating the dispersion: the error on the real part and the
error on the imaginary part. On figure 11 are represented the
mean influence on the eight EIS on the real and imaginary part.
Figure 12 represents the influence of each parameter on the
model on the real and on the imaginary part as they are added.
Indeed, this figure is really interesting with the added figures
as it was noticed that some parameters have low influence on
the real part but this is compensated by the influence on the
imaginary part which is bigger.

Fig. 11. Dynamic model’s parameters influence (comparison of the mean
influence on the imaginary and real part)

Finally, the most influent parameters are the resistances Rta,
Rtc and Rm. A coherent point as for the static parameters the
global resistance Rm has a big influence too.



Fig. 12. Dynamic model’s parameters influence (total of the influence on
the imaginary and real part)

C. Global model’s parameters sensitivity analysis

The global model present some dependency between the two
parts of the model. Indeed, some parameters in the dynamic
model are expressed thanks to static parameters. This is why
evaluating the sensitivity of the global model to the parameters
seems to be an unavoidable step. The parameters that are
directly defined in the global model are :

• Rm the resistance;
• En the Nernst potential;
• ba, bc the Tafel parameters;
• j0a, j0c the exchange current density;
• jLc the limit current density at the cathode only.
• The double layer capacities Cdca and Cdcc.
• The inductive behavior due to the connectors L.
• j0Oc and bOc that are sub-parameters of ROc.
• kOc, sub-parameter of τOc.

The dynamic parameters missing here are : Rta, Rtc, ROc

and τOc. The two last are decomposed in a current dependent
function. It was not possible to decompose them for the
parameter sensitivity analysis of the dynamic model, as the
current is not represented on this last study. The parameters
Rta and Rtc are finally functions of the static parameters ba,
bc, j0a, j0c and jLc in order to have an evolving value with
the current.

The experiment plan for the simulations follows the same
values than the ones developed on the two last studies for the
same parameters (table V-C), three levels are taken for the
parameters.

Parameter Minimum Value Maximum Value Unit
En 0.9 1 V
ba 20 100 V −1

bc 20 100 V −1

j0a 0.001 1 A/cm2

j0c 0.001 1 A/cm2

jLc 1.001 1.5 A/cm2

Rm 0.08 0.2 Ω.cm2

Ccdca 0.03 0.06 F/cm2

Cdcc 0.02 0.05 F/cm2

L 0.8E-06 2E-06 H
j0Oc 0.01 0.5 A/cm2

bOc 10 30 V −1

kOc 0.01 0.5 A.s/cm2

TABLE III
GLOBAL MODEL PARAMETERS EXTREME VALUES FOR THE

EXPERIMENTAL PLAN

The evaluation of the error was done, one more time, thanks
to real data. As the aim of the global model is to reproduce
the behavior of the fuel cell, this has to be the basis of the
sensitivity analysis. For that experimental data (current and
voltage) of around sixty second were taken around a variable
solicitation as for example on figure 6. The model under the
experimental solicitation was then simulated for calculating
the mean error between the simulation and the experimental
data.

Fig. 13. Global model’s parameters influence

The static parameters has more influence this could be
explained by the solicitation which is current which is slightly
dynamic. The dynamic and static parts has cathode and anode
parameters in common in the global model : ba, bc, j0a, j0c
and jLc. The fourth first has an important influence, and so
evolving them with the time influence both parts, so the global
model evolving with the ageing. The last one, jLc, has clearly
not a big influence neither on the static part neither on the
global model. However, this parameter has a clear evolution
with the time, an exponential fitting is coherent (figure 14)
unlike the tafel parameter at the cathode bc. A hypothesis
would be that fixing the value of the limit current density
at the cathode jLc would allow the two other cathode static
parameters bc and j0c to evolve less randomly.



Fig. 14. Evolution of the estimated value of jLc and bc with the time and
the exponential fitting

The importance of the influence of En and Rm is clear.
As the value of En is fixed, it is not an important point
for the ageing modeling. However, for the accuracy of the
instantaneous model the calculation of the value must be
rigorous. The evolution of Rm with the time is currently
coherent with an exponential fitting (less than 8e−4 Error
(RMSE)), and it is important and satisfying as there is no
big improvement to achieve.

The very low influence of the parameters strictly coming
from the dynamic model bring a discussion. The evolution of
theses parameters with the time might be unnecessary. Some
study must realized in order to analyze if the evolution of the
dynamic behavior with the time can only be contained in the
static parameters that intervene.

VI. CONCLUSION

This paper addresses a model-based approach for prognos-
tics of a PEMFC. With a validation of the behavioral model
and the ageing model. In order to have a time dependency,
critical point for prognostics, it was chosen to have time evolv-
ing parameters. Even though the ageing model is satisfying,
the evolution of some parameters have no clear trend with
the time. For that purpose, a parameter sensitivity analysis
is realized. Indeed a parameter with small influence can be
fixed and reduce the number of local minimum during the
regressions. In a future work, the comparison between the
results and the literature will allow to decide which parameters
to fix. It would also allow to verify if the influence of an
important parameter is not absorbed by an other. The model
will, hopefully present some parameters with a clear evolution,
and so a clear justification. With this steps realized, the model
will be stable enough to analyze the number of characterization
needed before having an accurate reproduction of the behavior
with no knowledge of the future.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) for the Fuel Cells and Hydrogen Joint
Technology Initiative under grant agreement number 325275
(SAPPHIRE project).

This work has been performed in cooperation with the
Labex ACTION program (contract ANR-11-LABX-01-01).

Calculations have been performed using the computing
resources from the Mesocentre of Franche-Comté.

REFERENCES

[1] R. Gouriveau and K. Medjaher, “Chapter 2 : Industrial prognostic -
an overview,” in Maintenance Modelling and Applications, ser. ISBN :
978-82-515-0316-7, C. B. J. Andrews and L. Jackson, Eds. Det Norske
Veritas (DNV), 2011, pp. 10–30.

[2] M.Jouin, R. Gouriveau, D.Hissel, M.-C. Péra, and N. Zerhouni, “Prog-
nostics and health management of pemfc - state of the art and remaining
challenges,” International Journal Of Hydrogen Energy, 2013.

[3] N. Yousfi-Steiner, P. Mocotéguy, D. Candussoc, D. Hissel, A. Hernan-
dez, and A. Aslanides, “A review on pem voltage degradation associated
with water management: Impacts, influent factors and characterization,”
Journal of Power Sources, vol. 183, pp. 260 – 274, 2008.

[4] N. Yousfi-Steiner, P. Mocotéguy, D. Candusso, and D. Hissel, “A review
on polymer electrolyte membrane fuel cell catalyst degradation and
starvation issues: Causes, consequences and diagnostic for mitigation,”
Journal of Power Sources, vol. 194, pp. 130 – 145, 2009.

[5] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery di-
agnostics and prognostics implementing condition-based maintenance,”
Mechanical Systems and Signal Processing, vol. 20 (7), pp. 1483–1510,
2006.

[6] J. Sikorska, M.Hodkiewicz, and L.Mac, “Prognostic modelling options
for remaining useful life estimation by industry,” Mechanical Systems
and Signal Processing, vol. 25, pp. 1803 – 1836, 2011.

[7] E. Laffly, “Modélisationlisation d’une pile à combustible de type pemfc
intégrant les phénomènes de vieillissement,” Ph.D. dissertation, Univer-
sité de Franche-Comté, 2008.

[8] E. Lechartier, R. Gouriveau, M.-c. Péra, D. Hissel, and N. Zerhouni,
“Towards an ageing model of a pemfc for prognostics purpose.” in Inter-
national Discussion on Hydrogen Energy and Application, IDHEA’2014.
CNRS - Centre national de la recherche scientifique, may 2014, pp. 1–7.

[9] E. Lechartier, R. Gouriveau, M.-C. Péra, D. Hissel, and N. Zerhouni,
“Static and dynamic modeling of a pemfc for prognostics purpose,” in
Vehicle Power and Propulsion Conference (VPPC’14). IEEE, oct 2014,
pp. IS1–4 (5 pages).

[10] S. Morando, S. Jemei, R. Gouriveau, N. Zerhouni, and D. Hissel,
“Anova method applied to pemfc ageing forecasting using an echo state
network,” in 11th International Conference on Modeling and Simulation
of Electric Machines, Converters and Systems (ElectrIMACS 2014).
Universitat Politècnica de València, may 2014, pp. 652 – 657.


	Introduction
	Proton Exchange Membrane Fuel Cell
	Instantaneous behavior model
	Behavioral model description
	Global model
	Static part of the model
	Dynamic part of the model

	Validation of the behavioral model

	Modeling the ageing
	Parametric sensitivity analysis
	Static model's parameters sensitivity analysis
	Dynamic model's parameters sensitivity analysis
	Global model's parameters sensitivity analysis

	Conclusion
	References

