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Abstract: When a system suffers from a too short lifetime, applying prognostics is a good
solution to help taking actions extending its life duration. This solution is applied to Proton
Exchange Membrane Fuel Cell (PEMFC) stacks in this paper. An important requirement for
prognostics of a PEMFC stack is a well-defined framework as well as a great understanding of
the degradation mechanisms and failures occurring within the stack. These requirements are
addressed here and allow building an efficient model integrating the different levels (stack - cells
- components) as well as the multiple causes leading to degradation. Such a model enables then
health assessment and remaining useful life predictions. This work proposes a model built based
on a selection of critical degradations and to validate it for both state of health estimations
and prognostics. The results show that the stack’s state of health during aging can be followed
accurately with coefficients of correlation greater than 0.9. Also, the behavior of the system
can be assessed with a coefficient of correlation greater than 0.9 showing the great predictive
capabilities of the model.
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1. INTRODUCTION

Thanks to the growing maturity of the technology, Proton
Exchange Membrane Fuel Cells (PEMFC) become closer
to a large scale deployment. They provide an efficient way
to convert chemical energy into electricity. However, an
extension of their lifetime is required to industrials needs.
A possible solution to that problem is the Prognostics and
Health Management (PHM). Composed of different layers
of activities, PHM aims at taking decisions at the right
time to preserve the integrity of the system until it fulfills
its mission. PHM of PEMFC is still a new topic of research
and a lot of challenges can be highlighted, particularly
regarding prognostics (Jouin et al. (2013)).
Prognostics can be considered as the key process of PHM
as it enables predicting the future behavior of a system
as well as its remaining useful life (RUL) (Gouriveau and
Zerhouni (2012)). Prognostics applications of PEMFC are
still rare in literature. Two types of approaches can be
identified: 1) data-driven approaches based on artificial
intelligence tools such as Echo-State Networks (Morando
et al. (2013)) or adaptive neuro fuzzy inference systems
(Silva et al. (2014)), 2) hybrid approaches based on fil-
tering methods such as Unscented Kalman Filter (UKF)
(Zhang and Pisu (2012)) or particle filters (Jouin et al.
(2014, 2015a)). By paying more attention to the hybrid
approaches which need aging models, it can be seen that
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the major difficulty is to find a prognostics model that can
include the aging and the current solicitation. In (Zhang
and Pisu (2012)), the model is based on physics but is
restricted to a single component of the fuel cell stack.
Whereas in (Jouin et al. (2014, 2015a)), empirical models
of the stack aging at constant current are developed, how-
ever, they do not include explicitly the current solicitation
making their applications with variable current profiles
impossible.
This paper aims at integrating the main aging mechanisms
selected as critical and their impacts in a prognostics
model. The main contributions of that work are the pro-
posal of a working framework leading to the setting and the
validation of a new semi-empirical prognostics model that
includes both time and current dependencies. To achieve
these goals, the paper is organized as follow. First, the
background of PEMFC is introduced. This allows intro-
ducing the framework and the hypotheses limiting the
study. Section 3 presents the setting of the new aging
model. Its validation on different mission profiles for health
assessment and prognostics is the purpose of Section 4
before concluding.

2. TOWARD PROGNOSTICS OF PEMFC

2.1 An overview of PEMFC

PEMFC is a fuel cell types, differing from the other by
the reactants used, the materials of the inner components,
its operating conditions and the applications targeted.
Descriptions of the different types are presented in (Sharaf



and Orhan (2014)).
PEMFC uses air (oxygen) and hydrogen to produce elec-
tricity, water and heat. It can be encountered alone or
combined with other devices such as batteries or ultra-
capacitors in a wide variety of applications (Wee (2007))
such as transportation (car, bus, boats, etc.), stationary
applications (combined heat and power generation (CHP))
or powering of portable devices.
For more details on the system, please refer to Jouin
et al. (2015a). In this study, the focus is the stack and
its subcomponents, auxiliaries are left aside. However, a
great number of factors may impact its functioning and a
clear framework for PHM studies has to be proposed.

2.2 Framework for PHM of PEMFC

To clearly fix the limits of the study, it is important
to have a precise knowledge of the factors that affects
the stack. The literature shows one paper describing and
classifying them in an interesting way for PHM, (Kundu
et al. (2006)). However, the architecture of the stack envi-
ronment proposed in this work lacks of precise vocabulary
definition and should be further completed to be used in
PHM applications. Consequently, a general framework for
PHM application is proposed in Figure 1 (upper part for
the general case).
In all PEMFC applications, the critical outputs of the
stack are the power delivered and the lifetime. These
outputs can be impacted positively or negatively according
to different causes namely: quality, maintenance, operation
and monitoring. The link between the causes and the
effects is made by maintenance and degradation pathways.
Quality gathers the physical properties of the stack com-
ponents, the manufacturing defaults as well as the char-
acteristics of the assembly. Maintenance includes both
corrective and predictive maintenances, PHM being an
extension of the second one. Then, the operation can be
divided into three categories:

• the mission profile, which is limited to the current
demand;
• the operating conditions that can be controlled as

the stack temperature or reactant pressures, among
others;
• the environmental factors that cannot be controlled

such as air pollution, vibrations or environment tem-
perature.

Finally, two parts are distinguished in the monitoring
category:

(1) “disturbing measure” means creating disturbances
in the behavior such as polarization curve measure-
ments or electrochemical impedance spectrometry
(EIS) which create power recovery phenomena,;

(2) “no effect measure” means that seems to have no
impact on the stack behavior such as voltage, current
measurements or other external measures (tempera-
ture,pressure ,etc. )along the power supply.

For further explanations on the recovery phenomena, the
reader may refer to Jouin et al. (2015a).

Once, the framework defined, the hypotheses of the present
study have to be included to keep only the factors of
interest for the next steps.
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Fig. 1. General framework for PHM of PEMFC

2.3 Hypotheses of the study

Although the quality of the stack can influence the per-
formance, here it is considered as perfect so all the corre-
sponding category is left apart. As nowadays when a failure
occurs, in most cases, the whole stack is replaced, main-
tenance is limited to predictive maintenance. Moreover,
the experiments conducted are realized in a controlled
environment: the influence of environment can be ignored.
Also it is supposed that whatever the current variations,
the operating conditions are automatically regulated and
set to their optimal values. Other important hypotheses
that do not appear on the scheme must be introduced.
The stack cannot suffer from fuel starvation. This limits
the impact of operating conditions on the aging, as out
of range temperatures or humidities. Then, start-up and
shut-down of the system and extreme working tempera-
tures are not considered. Moreover, only phenomena with
time constants in hours are taken into account.
Finally, some limitations due to the measure capabilities
have to be introduced. The measurements available and of
interest for that study are stacks and individual cell volt-
ages, reference and real currents, incoming and outgoing
gases/water temperatures and pressures. Finally, punctual
measurements of polarization curves are performed.

3. MODELING OF PEMFC AGING

The aging of the stack represents a huge part of PEMFC
literature. However, aging models at the stack level are
almost nonexistent or, as the one proposed in Laffly et al.
(2009) or Franco (2012) not given with enough precision
to be used. As a consequence, a new model has to be
developed.
Main steps to built this model are described hereafter.
They are based on a consequent literature review, but for
the sake of clarity only the conclusions drawn from this
literature review are presented here.

3.1 Methodology

The main idea is to start from the system degradation
and, thanks to different selection processes, go to the aging
model. First, all the degradations occurring within the



stack are reviewed. They are divided into four categories
starting from the higher level, i.e. the stack, to go lower
toward its components:

• degradation of the stack;
• degradation of the cells according to their location in

the stack;
• degradation of the individual components and their

materials (membrane, electrodes, etc.);
• degradation of the interfaces between the compo-

nents.

Then, the components are classified according to their
contribution to the loss of power of the stack and to the
reduction of its lifetime. Three classes are defined:

• Class A: membrane and electrodes;
• Class B: GDL and bipolar plates;
• Class C: sealing gaskets;

It allows selecting the membrane and the electrodes as the
most critical components. For both, different degradations
occur with more or less intensity and more or less critical
impacts. So a selection of the leading mechanisms is done
for each one thanks to a failure mechanism and criticality
analysis. The selected degradations will be introduced
when needed for the model construction. The last step
of the analysis is to find a starting point for the model.
Contrary to the aging models, static models of PEMFC
are widely spread in the literature. Among them the
widespread polarization curve is the selected starting point
for the modeling.

3.2 Modeling

Basic modeling As announced before, the starting point
for the behavior modeling is the polarization curve equa-
tion. The model is built at the cell level but can easily be
adapted to the stack level as it will be seen in the validation
section. The main idea is to start from the traditional loss
modeling, to select the parameters that age during a long-
term functioning and to replace them by a time-dependent
expression.
The polarization equation basically models the losses that
impacts the reversible cell voltage Erev, also called the
Nernst voltage, which is the voltage that would be ob-
tained if all the energy was converted into electricity
without any loss. The losses can be divided into four cate-
gories: (1) activation losses (Eact), (2) concentration losses
(Econc), (3) ohmic losses (Eohm) and (4) and crossover
losses (Ecross). The combination of these losses impacts
the voltage, however each one has a different prevalence
zone according to the current density. The impact of the
concentration and crossover losses will be gathered in a
same term. To show the individual contributions of the
electrodes the equation is written:

E = Erev − Econc+cross,a − Econc+cross,c

− Eohm − Eact,a − Eact,c (1)

where index a stands for anode and c for cathode.
As the pure hydrogen diffuses better than the oxygen in
the nitrogen and water, the concentration losses at the
anode can be neglected. The equation becomes:

E = Erev − Eact,a − Eact,c − Eohm − Econc+cross,c (2)

By replacing the losses by their expressions (please refer to
Sharaf and Orhan (2014) for more details), the polariza-
tion equation is now written as a function of i, the current
density:

E(i) = Erev −
RT

2αaF
.ln(

iloss + i

i0,a
)− RT

4αcF
.ln(

iloss + i

i0,c
)

− i.(Rion +Rele +Rcr) +Bc.ln(1− i

imax,c
) (3)

where: R is the gas constant, T is the stack temperature,
αa and αc are the charge transfer coefficients at the
electrodes, F is the Faraday’s constant, iloss represents
the internal currents within the stack, i0,a and i0,c are the
exchange current densities at each electrode, Rion, Rele

and Rcr are respectively, the ionic, electronic and contact
resistances, Bc is an empirical parameter allowing taking
into account the effect of water and gas accumulations
leading to non-uniform current densities on the electrode
and imax,c is the limiting current at the cathode.
However, it can be seen that the time does not appear
in the equation, preventing from using it to describe the
aging.

Introduction of the aging To select the parameters that
are aging with time, the first step is to classify all the
variables appearing in equation (3) into three categories:

• constants: R, F ;
• controlled: T , P , Erev, i0,a, i0,c;
• aging: αa, αc, iloss, Rion, Rele, Rcr, Bc and imax,c.

The parameters classified in the constant and controlled
categories do not need to be justified but some of the other
may need more explanations.
αa and αc, the charge transfer coefficients depend on,
at least, the material of the electrode, its microstructure
and the reaction mechanism (oxidation or reduction). The
structure of the electrodes and its activity change with the
aging. So it is logical to assume that the charge transfer
coefficients vary. However, its value is very often set to
make the polarization equation fit to the data, so it seems
impossible with the current knowledge to guess how it
varies with time.
Then regarding iloss, it is assimilated to the hydrogen
crossover current. Indeed, when the membrane ages, some
micro-holes appear letting hydrogen passing to the cath-
ode side. The hydrogen reacts directly with the oxygen
creating an exothermic combustion reaction that can lead
to a fast destruction of the membrane. Some attempts of
crossover modeling can be found in the literature (Baik
et al. (2013)). Nevertheless, the modeling that seems the
most suitable here is the exponential modeling:

iloss(t) = iloss,0.exp(bloss.t) (4)

Indeed, this trend is shown in the great majority of the ex-
periments reported in the literature (Liu and Case (2006);
Jao et al. (2012); Wu et al. (2014)) and other models have
not been fully validated until now.
Next parameters are the resistances appearing in the
ohmic loss term. In the initial formulation, three resis-
tances are distinguished: ionic, electronic and contact resis-
tances. As electronic and contact resistance can be difficult
to study separately, they are gathered in a same variable
R = Rele + Rcr. From the measurements reported in
different studies, its aging can be defined by:



R(t) = R0 + bR.t (5)

Regarding the ionic resistance linked to the membrane,
recent results published in Collette et al. (2013) show
that the conductivity as well as the water uptake and the
ion exchange capacity for pieces of membrane in different
Nafion decrease exponentially as function of time (in days):

Rion(t) = Rion,0.exp(bion.t) (6)

Although this expression assumes that only time influences
the conductivity and not contamination or water reparti-
tion changes, this hypothesis will be kept afterwards.
Finally, the two variables of the activation losses have to be
considered. As stated before, Bc allows taking into account
the effect of water and gas accumulations leading to non-
uniform current densities on the electrode. Both degrada-
tion and operating events may affect these accumulations
and so make Bc value change. The degradation of the
GDL, mainly the loss of hydrophobicity, strongly impacts
the diffusion but also the content of water and its distribu-
tion and accumulation in the electrode compartment. This
should impact Bc by increasing this value during aging. So
the following modeling is proposed:

Bc(t) = Bc,0 + bB .t (7)

The same idea has to be employed to model imax,c. In-
deed, according to Morgan and Datta (2014), the limiting
current density of the cathode can be written: ic,L =
4F
RT

(
DO2

LGDL

)
PO2 , where DO2 is the diffusivity of oxygen

and LGDL the thickness of the GDL. In this expression,
the thickness of the GDL may be affected by the carbon
corrosion during the aging and the diffusivity may be
influenced by degradation in the same way that of Bc. As
the thickness of the GDL may not vary from more than
some µm, the choice not to model its decrease during aging
is made. For the diffusivity, the same modeling as for Bc

is used:
DO2

(t) = DO2,0 + bD.t (8)

Both the equations (7) and (8) are hard to justify
physically. The linear expressions are inspired by the
results we had in Jouin et al. (2015a).
One last thing to do is to replace the current density value
by a function of the current imposed to the stack I:

i(t) =
I(t)

A(t)
(9)

where A(t) is the active area of the electrode that decreases
with the aging given by a combination of exponentials
(Zhang and Pisu (2012); Liu and Case (2006)):

A(t) = A0.exp(bA1.t) +A1.exp(bA2.t) (10)

with A0 equals to the theoretical geometric size of the
active area and A1 must be contained in [−1, 1] and reflects
the error that can exist on the actual size of the active area.
The model described by equation (3) is built for a single
cell. It is multiplied by the number of cells (n) to obtain
the stack voltage. However, some works tend to show that
all cells do not degrade in the same way within the stack
(Bose et al. (2013); Radev et al. (2013)). The cells next to
the edges of the stack degrade faster and this impacts the
global voltage. Consequently, the classical expression of
power Pstack = n.I.Vcell has to be modified to include this
heterogeneity. For that purpose, a corrective term written
p is introduced as no existing study allows to quantify the
degradation differences within a stack. By replacing the
parameters by their expressions, equations (4) to (10),
the final expression of the power is:

P (I, t) = n.I(t).[Erev

−
RT

2αaF
.ln(

iloss,0.exp(bloss.t) +
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)

i0,a
)

−
RT

4αcF
.ln(

iloss,0.exp(bloss.t) +
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)

i0,c
)

−
I(t)

A0.exp(bA1.t) +A1.exp(bA2.t)
.(Rion,0.exp(bion.t) +R0 + bR.t)

+ (Bc,0 + bB .t).ln(1−
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)

4F
RT

(
DO2,0+bD.t

LGDL

)
PO2

)]− p (11)

4. EXPERIMENTS AND VALIDATION

The model must now be validated. This validation comes
in two steps:

(1) the first validation step proves that the model can
be identified and matches to the dataset available
(Section 4.1.1);

(2) then the ability of the model to predict the future
behavior of a stack is demonstrated thanks to a
particle filter-based prognostics (Section 4.2).

4.1 Model validation for health assessment

For this first validation step, the behavioral model is
tested by fitting the model to data. Both power aging and
polarization curves made all along the aging are modeled.
To limit the length of the paper, the results are illustrated
only with a constant current mission profile. However, the
model has a generic nature and its validation with a micro-
CHP profile is proposed in Jouin et al. (2015b).

4.1.1. Constant current solicitation The dataset avail-
able for this case is referred as D1. It comes from a 5-
cell stacks with an active area A0 of 100cm2 aged during
1150 hours. More details on D1 are available in FCLAB
(2014). It was produced by the manufacturer UBzM. 8
polarization curves are available for D1. To keep only the
part that aged at constant current, the data are cut at 985
hours.
To start the model identification, the initial polarization
curve made before the aging is estimated so i varies and
some unknown parameters called Set 1 (αa, αc, A1, i0,a,
i0,c, iloss,0, Rion,0, R0, Bc,0, DO2,0) are initialized. The
identification is performed using a least square algorithm
thanks to the fitting toolbox of Matlab software. Then i
is fixed, the time varies and the power is estimated giving
the parameters of Set 2 (bloss, bA1, bA2, bion, bR, bB , bD,
p) with the same method.

4.1.2. Initial polarization curve estimate To initialize
the test procedure, distributions of possible values for the
parameters of all sets are built thanks to the literature and
adjusted thanks to the data. Indeed, to obtain a convincing
fitting, all the values should reflect the reality and respect
some constrains. As an example, αa and αc should be in
the interval [0, 1] and their sum equal or close to 1.
A first polarization curve is estimated at t=0 hours (Fig-
ure 2). This eliminates time-depending terms in equa-
tion (11) allows initializing the coefficients from Set 1.
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Fig. 2. Initial polarization curve of the 5-cell stack D1

4.1.3. Power behavior estimate Set 2 is identified by
fitting the equation 11 to the power data. By comparing
the model and the data, as shown on Figure 3, it can be
seen that the global aging trend is well-followed by the
model. To help evaluating the model, the coefficient of
determination R2 is calculated: R2 = 0.9616. It is higher
than 0.9 and validates the model for constant current
solicitation.
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Fig. 3. Power supplied by the 5-cell stack D1 measured
experimentally versus aging time at 0.7 A/cm2 and
comparison with the model

4.2 Prognostics of a PEMFC stack

4.2.1. Particle filters for prognostics For this applica-
tion, we choose a particle filter as a prognostics tool as
in our previous works Jouin et al. (2014, 2015a). Indeed,
particle filter is used to estimate a future nonlinear state
and to adjust the parameters of the model at the same
time. Moreover, such a tool has a great ability to deal
with uncertainty as it generates a probabilistic output to
represent the state of the system. To emphasize more on
the results and the consequent discussion, the functioning
of particle filters is not presented here and the reader is
invited to refer to our previous papers Jouin et al. (2014,
2015a). However, the prognostics principle is quickly ex-
plained.
First the dataset is split into a training set and a set to
predict. For illustration purpose, a training set of 500 hours
is chosen. Then a first identification of the model is made
by fitting the model to the training set. The obtained
coefficients might not be the true values obtained when
the whole dataset is used. However, they are good starting
points to initialize the particle filter. The next step is to
modify equation (11) to obtain a recursive form of the
model that expresses the state at a time k from the state
at time k − 1 and the current control at time k. As the
model coefficients have also to be evaluated, equations for
their update must also be defined. A classical strategy is
to use a random walk process:

parami(tk) = parami(tk) + ω (12)

where ω is a white Gaussian noise with a zero-mean and
a well chosen variance that is small enough to allows a
sufficiently fast convergence to the actual parameter while
being large enough to offer a great diversity of pathways.

4.2.2. Power prediction To illustrate the prognostics, a
power prediction with the previously proposed training
length of 500 hours is performed on D1. As the model
parameters are estimated by random walks, the predic-
tions are repeated 100 times to decrease the influence of
the random processes. This allows keeping the median
trajectory as the behavior prediction and using the distri-
bution of predictions as confidence intervals. The results
are illustrated on Figure 4.
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4.3 Discussion

The first point to discuss is the parameter identified val-
ues. As the initialization intervals were all built to give
plausible results, the coherence regarding the order of mag-
nitude of estimated parameters and real measurements is
considered as correct. A question harder to discuss is: can
these values be the real values ? For the great majority
of the parameters in Set 1 such as iloss,0, Rion,0, R0 or
DO2,0 with no measurements on the cells prior to the
aging, no answer can be given. Same for Set 2 with precise
measurements during the aging, the question is hard to
answer. However, we decide to consider that approximated
values are acceptable in the modeling as long as they can
catch the behavior of the stack during aging.
Then the prognostics results proposed here are quite con-
vincing for a first application of the aging model built in
this paper. Indeed, the behavior prediction follows quite
well the trend of the actual data. The correlation coef-
ficient is 0.9578 which is very satisfying. However, the
uncertainty of the prediction remains very high: around
15 W between the 25th and the 75th percentiles for the
last hours of the predictions. One way to reduce this
uncertainty is to reduce the part of random processes in
the prognostics. It means that better solutions must be
found to update the parameters than the random walk
process and it will be the next step of this work.



5. CONCLUSION

This paper proposes a new solution to perform health
assessment and prognostics of PEMFC stacks. First, a
suited framework is proposed to perform PHM. It de-
scribes precisely the factors influencing the major outputs
of the stacks, namely its power and its lifetime.
Then a new aging model is built starting from a classical
static modeling of the stack and adding time dependency
based on a deep degradation study. This model allows per-
forming both health assessment and prognostics. Indeed,
it fits to the dataset with a correlation coefficient greater
than 0.9. Also, a first prognostics application shows that
this model possesses predictive capabilities when used with
a particle filters.
Even if the prognostics shows some weaknesses regarding
the uncertainty coming with the predictions, the behavior
is estimated with a correlation coefficient greater than
0.95. A next step of this work will focus on reducing the
uncertainty to offer more precise predictions.
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