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Abstract

This paper deals with the control of a two degrees of freedom (2-DOF) piezoelectric
actuator for precise positioning and which exhibits strong hysteresis nonlinearity
and strong cross-couplings. To tackle the nonlinearity and the cross-couplings, we
propose two decoupled models in which they are considered as (fictive) external
disturbances which require proper characterization. Then, a backstepping technique
is proposed to construct a robust controller that merges sliding-mode and adaptive
schemes. FExtensive experimental tests are finally carried out to prove the efficiency
of the modeling and control technique proposed.

Key words: Piezoelectric actuator, 2 degrees of freedom, hysteresis nonlinearity,
cross-couplings, backstepping technique, merged sliding mode and adaptive
schemes, robust controller.

1 INTRODUCTION

The significant advance of fabrication and manipulation of micro/nano ob-
jects in recent years, from technological and theoretical point of view, has
increased the application range in many fields (biology, medicine, automotive,
aeronautics and aerospace, data-storage, etc). One of the main challenge when
working at micro/nano scale is the ability to execute tasks with a relatively
high operating speed and a very high positioning precision. Piezoelectric based
actuators are the most useful tools for such applications, mainly due to the
high resolution, the wide operating bandwidth and the significant stiffness
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they can offer. The most known application of piezoelectric actuators is the
surface scanning at atomic scale with scanning tunneling microscope |[1| and
atomic force microscope |[2]. In these two applications, a piezoelectric tube
scanner |3| is used in order to make possible the exploration of the scanned
sample with a nanometric resolution. Alternatively, this task can also be en-
sured by compliant structures [4,5| driven by piezoelectric stack actuators [6].
Another well-known category of piezoelectric actuators includes microgrippers
|7,8] which are generally made of two cantilevered piezoelectric actuators, al-
lowing them to be used for manipulation or handling of micro-objects. They
are very used for the execution of pick-and-place tasks in the field of mi-
cromanipulation and microassembly [9|. From the aforementioned categories
and applications of piezoelectric actuators, it is worth to mention that some
of them are designed to provide deflections (displacements) along one direc-
tion/axis, i.e. one degree of freedom (1-DOF or monovariable) piezoelectric
actuators. Examples include unimorph piezoelectric cantilevers and piezoelec-
tric stacks. Other actuators are designed to handle surface or spatial tasks by
providing displacements along different directions: multi-DOF (multivariable)
piezoelectric actuators. Examples include duo-bimorph and duo-multimorph
piezoelectric cantilevers, piezoelectric tubes scanners.

Despite the advantages, variety and the wide range of applications cited above,
piezoelectric based actuators typify adverse nonlinear effects (hysteresis and
creep) making the control design often a complex task [10,11|. In addition,
strong couplings appear between the different axes in multi-DOF piezoelectric
actuators, resulting in an additional cause of positioning inaccuracy. The prob-
lem here is that these nonlinearities, i.e. the hysteresis and the creep, which
are present in the expected actuator displacements (or direct transfers), also
appear in these couplings [10,12-14|. It is worth also highlighting that sys-
tems, in practice, feature amplitude-limited inputs |15, 16]. This aspect must
be considered in the control design for stability purposes. For these reasons,
it is necessary to develop appropriate control designs that not only take into
account inherent nonlinearities and couplings between the piezoelectric actu-
ators axis but also the bounded control inputs.

Dealing with piezoelectric systems featuring hysteresis and creep nonlinearities
has been addressed using feedback and feedforward control strategies, or, the
combination of both. Feedforward control relies on precise models and their
inverses or approximate inverses as compensator of the hysteresis or of the
creep. In feedback, the litterature is abundant and techniques from classical
schemes to more advanced like robust/adaptive schemes which regard or dis-
regard the hysteresis or creep models have been used. The main advantages of
feedback techniques are indeed the robustness and the disturbances rejection
they can offer.

In feedback control schemes, techniques mainly included PID [17-19], lin-



ear robust control methods [20-25] and other control techniques such as,
Lyapunov-based Sliding Mode Control (SMC), iterative, adaptive and repet-
itive control schemes [26-35|. However, when there is a lack of conventient
sensors to perform the feedback, for instance for certain miniaturized posi-
tioning systems for which there are no embeddable sensors with the required
performances, feedforward control scheme is often used instead of feedback.

In feedforward control, the most used models of hysteresis and the related
compensators are based on the superposition of elementary hysteresis called
hysterons. They are the Preisach [36-39| and the Prandtl-Ishlinskii approaches
|40-45]. The open-loop compensator, i.e. the hysteresis inverse model, is af-
terwards computed using the identified model. The two approaches can be
very accurate subject to the use of a high number of hysterons. Another fam-
ily of hysteresis models is based on differential equations. The sole utilized in
modeling and compensation is the Bouc-Wen model [46,47| which has an ad-
vantage of simplicity and ease of identification. The synthesis of the open-loop
compensator in Bouc-Wen approach has been carried out in |14, 48].

The creep nonlinearity has been modeled as a series of spring-damper systems
resulting in a linear dynamic model [49|. This linear dynamic model can be
directly inverted when it satisfies the bi-causality and bi-stability properties in
order to compensate for the creep |50,51|. The inverse multiplicative structure
has also been used in [13,43| allowing the use of the identified dynamic model
itself as compensation, i.e. without extra-calculation of the inverse model.
In |52,53], the logarithmic model has been used to model and to compen-
sate for the creep. Nevertheless, open-loop controlled systems are not robust
and can not handle the models uncertainties as well as external disturbances.
Therefore, feedforward techniques can not be employed in certain applications
where the models utilized may vary during the functioning, where the identi-
fied models are not precise enough or where external disturbances are present.
This is why feedforward schemes are increased with feedback schemes in these
applications to increase the robustness and to reach some specified perfor-
mances that could not be attained with feedback or feedforward individually
[10,12,54-59].

The contribution of this paper is the modeling and the proposition of an al-
ternative control strategy for a 2-DOF piezoelectric cantilevered actuator to
perform complex trajectories and waypoint trackings evolving in the planar
space (y and z axes). The 2-DOF piezoactuator is mainly utilized in precise
positioning such as micromanipulation and microassembly. The tasks consist
principally to manipulate, to pick-transport-and-place or to assemble artifi-
cial (non-biological) objects of sizes ranging between tens of microns to a
few of millimeters. These tasks require very high resolution of positioning,
an accuracy better than the micron, a manipulation force generally rang-
ing between 100uN and 40mN and a bandwidth in excess of a ten of Hertz



19]. Based on PZT (lead-zirconate-titanate) piezoelectric material, the 2-DOF
piezoactuator was a good candidate for these tasks since it can perform up to
30mN of force, nanometric resolution, and a bandwidth of hundreds of Hertz.
additionally to that, the two degrees of freedom of the actuator permits to
perform dexterous micromanipulation. As adverse side however, the 2-DOF
piezoactuator exhibits a strong nonlinear phenomenon (hysteresis) and strong
cross-couplings between the two axes. In fact, it is observed that the cross-
couplings dramatically distort the motion of the actuator. These phenomena
strongly compromise the accuracy, and even the stability of the final tasks to
be performed. We propose in this paper a modeling and control technique that
permits to account for the hysteresis and for these strong-couplings to make
the 2-DOF piezoactuator reach the performances required in precise position-
ing like micromanipulation or microassembly tasks. More precisely, we propose
to rassemble the hysteresis and the cross-couplings in a single parameter con-
sidered as external disturbances and that will be taken into account during
the controller design. For that, the Backstepping technique is used to merge
sliding-mode and adaptive control schemes to overcome the adverse effects of
the disturbances associated to the actuator’s biaxial displacement. The prin-
cipal advantage of the proposed modeling technique and control strategy is
that there is no requirement to have a specific knowledge on the nonlineari-
ties. Only norms that bound them are required during the proposed controller
synthesis. Similarly, there is no requirement of a precise knowledge on the
cross-couplings, contrary to the models in feedforward and in feedforward-
feedback combined techniques. All this renders the proposed modeling among
the most simple techniques but robust in the control law. Different and exten-
sive experiments are carried out to demonstrate the efficiency of the method,
in particular at different frequencies. Discussions with regards to the proposed
controller gains calculation, to the experimental results and to the comparison
of the method with classical controller design are presented.

The remainder of the paper is organized as follows. The modeling of the piezo-
electric cantilevered actuator (piezoactuator) is presented in section-2. We
particularly show in this section the derivation of the model with lumped pa-
rameter that rassembles the hysteresis nonlinearity and the cross-couplings.
In section-3 the description of the experimental setup is provided. Section-
4 presents the robust-adaptive control to counteract the disturbances ac-
complishing the control objective. Experimental results and discussions are
presented in section-5. Lastly, the conclusions and perspectives are given in
section-6.



2 Modeling of a 2-DOF piezoactuator

A piezoelectric cantilevered actuator (piezoactuator) is a cantilever with rect-
angular section and which has one or several layers. The layers can be piezo-
electric (active layer or piezolayer) or non-piezoelectric (passive layer). Whilst
the lead-zirconate-titanate (PZT) ceramics is often used as piezolayers, chromium,
copper and silicone are used as passive ones. The bending of the piezoactua-
tor, which is the output displacement, is obtained as a result of the difference
between the longitudinal strains of the different layers (passive and piezo-
layers) due to the application of an electric voltage. Fig. 1-a presents the
case of a 1-DOF actuator with two layers: one passive layer and one active
layer. In this, the application of a voltage U to the piezolayer yields its con-
traction /expansion. Due to the interface constraint between the two layers,
a bending ¢ is finally obtained. As described in the introduction, the dy-
namic modeling including the hysteresis nonlinearity has been widely studied.
Schematically, as represented in Fig. 1-b, such dynamic model is composed
of a static nonlinearity H(U(s)) (or simply H(U)) that tracks the hysteresis
in piezoelectricity and a linear dynamics D(s) (s being the Laplace variable)
of the whole plant. This scheme is called Hammerstein approximation and
is widely admitted in the litterature. In the figure, d, is the static output
displacement without consideration of the plant dynamics. In the next sub-
sections, we will model the hysteresis H(U) and the dynamics D(s). Then we
will extend the model in order to introduce the cross-couplings in 2-DOF actu-
ators. The model is afterwards used to derive a model where the nonlinearities
and the cross-couplings are rassembled in a bounded disturbance parameter.
This latter model will finally be used in section-3 for the controller synthesis.

1-DOF piezoactuator

Static hysteresis
model

HUs) | ] PO [

55 Linear dynamics )

(a) (b)

Fig. 1. (a): deflection ¢ of a 1-DOF cantilevered piezoactuator due to an external
input U. (b): Hammerstein block-scheme of the 1-DOF piezoactuator.



2.1 Nonlinear Bouc-Wen model of the hysteresis in 1-DOF' piezoactuators

Numerous models are available to describe the hysteresis H(U) of piezoac-
tuators The Bouc-Wen model of hysteresis not only provides an interesting
simplicity in terms of computation and implementation, but also, can repre-
sent a wide hysteresis classes. In addition, the Bouc-Wen model is particularly
well suited for structural analysis (stability, performances) and controllers syn-
thesis [14,48].

First, the static nonlinearity d; = H(U) is described. The Bouc-Wen static
model of hysteresis adapted to piezoactuators is described by [48,60]:

5,() = dU (1) - h(t)

1

h(t) = dyAp, U (t) = By [U(8)| h(t) = ChuU(2) |(2)| W
where Ay, By, and Cy,, are coefficients determining the hysteresis shape and
amplitude and d, is a positive coeflicient that defines the magnitude deflection.
The signal h(t) represents the hysteresis internal state. The first equation is
the output equation whilst the second equation (nonlinear and differential) is
the state equation of the hysteresis.

On the other hand, the transient dynamic part of a piezoactuator can be
approximated by a second-order system, that is:

ad(t) + bo(t) + (t) = 0,(t) (2)

where a and b are coefficients obtained from an identification procedure. The
dynamics is easily derived: D(s) = 7y

The final nonlinear dynamic model is therefore:

ad +bd + 6 =d,U —h
h = dy Ay U = By |U| h = CyU |1

2.2 FExtension of the model for 2-DOF piezoactuators

The previous model is valuable for 1-DOF piezoactuators. The aim of this
paper being the modeling and control of a 2-DOF piezoactuator devoted to
precise positioning, we propose to extend the previous model. Consider Fig. 2



which represents the block-diagram of a 2-DOF piezoactuator with the input
T

T
vector U = (Uy Uz) and the output vector § = (5y 53) . The axes of

displacement (bending) of the piezoactuator are y and z. If we consider that
there are no cross-couplings between the two axes, the displacement model
along each axis is directly yielded from (3):

hi = dpi AbwiUs — B |Ui| hi — CuiUs | ]

where i € {y, z}.

However, as we will see in the experimental characterizations in the next
sections, there are cross-couplings between axes y and z that make the model
(4) not applicable. In addition, these cross-couplings are also nonlinear. Let us
denote C;(Uj, h;), with ¢ € {y, 2} and j € {y, 2} — i, the coupling found in the
axis ¢ and which is due to the voltage U;. Thus, the displacement model along
each axis is taken from (4) in which we add the cross-coupling expression:

hi = dpi ApwiUs — Buwi |Us| hi — ChuiUs | B

which is rewritable as:

where ©; = —h; + C;(Uj, h;) will be assumed as bounded and varying signal
in the sequel. It is worth to notice that the creep nonlinearity is additive
relative to the hysteresis |20, 43]. Thus, it can also be rassembled in ©,,
ie. ©; = —h; + Ci(Uj, hj) + Cori(Us) + Ceri(U;) where C,,;(U;) is the creep
in the direct transfer and C.;(U;) is the coupling creep. Since the creep in
piezoelectric actuators is bounded [61], we have ©; still bounded.

In a matrix form, (6) is equivalent to:

2-DOF piezoactuator

Uy Oy
U, J,

Fig. 2. A 2-DOF piezoactuator.



ab +bd 40 = d,U + © (7)

where a = diag (ay,a,), b = diag (b,,b,) and d, = diag (d,,,d,.). We have:
5= (6,,0.)", U= (U, U.)" and © = (0,,0.)".

Notice that in the matrix form, the state equation of the hysteresis and which
is a part of © is!:

h = dy Ay U(t) = By (|U(1)| 0 h(t)) = Cous (U(t) o [1(1)]) (8)

where h = (hy,hz)T7 Apy = diag (Apwy, Abwz), Bow = diag (Bywy, Buw,) and
Obw = dzag (way7 waz)-

As we can see from the model in (7), the cross-couplings and the nonlinearities
(hysteresis and eventual creep) can be rassembled in a bounded parameter ©.
The model (7) will be employed in the next section-4 to calculate a control law
where O is considered as bounded disturbance. As the bound of the parameter
O is taken into account during the control design, the yielded controller will be
robust face to the hysteresis and creep nonlinearities and to the cross-couplings
between the axes.

3 Experimental setup and characterization
3.1  Ezperimental setup

The experimental setup is based on a piezoelectric cantilevered actuator able
to bend along the y axis and along the z axis, see Fig. 3-a. This piezoactuator
has a rectangular section and its total dimensions are: 27mm X 1mm x0.91mm.
The active length (length out off the clamping) is 25mm which permits to
obtain a relatively large displacement with only 10V of voltage inputs. Two
inductive sensors from IBS-company are utilized to measure the bendings of
the actuator. The sensors are tuned to have a resolution of about 100nm and
a bandwidth of 1.5kHz which are sufficient enough for the experiments carried
out in this paper. Each sensor as well as the actuator are supported by a
proper x-y-z manual and precise stage that permits to adjust their relative
position. We employ a computer and dSPACE board acquisition system to
manage the different signals and to implement the controllers through the

1 (X oY) denotes the Hadamard product of vectors X = [X]
ZG(X 9] Y) = [Xijyvij]@j

ig and Y =Yl 5,



Matlab-Simulink software. The sampling period is set equal to 0.2ms which is
sufficiently low to account for the dynamics of the actuator. Since the input
voltages do not exceed 10V, no amplifier is required. Fig. 3-b depicts the
diagram of the setup.

sensor along

y-axis
sensor along
z-axis
2-DOF
piezoactuator
manual
positioning
stage
(a)
U, > 2-DOF
piezoactuator
computer > Uz > 1 Ty

(Matlab-Simulink) : :
Y Y

G A G —
<:|5 <:| for y and z axes
z

(b)

Fig. 3. (a): the 2-DOF piezoactuator. (b): diagram of the experimental setup.

3.2  Characterization

First, the behavior of the piezoactuator is characterized. The aim is to eval-
uate the cross-couplings between the axes and the hysteresis nonlinearities in
them. For that, a sine input voltage U,(t) = 10sin (27 ft) is applied to the y
axis first, with U, left equal to zero. The frequency is chosen to be f = 1Hz,
which is convenient to start the hysteresis characterization. Then, the result-
ing displacement 0, is reported and the direct transfer in the (U,,J,)-map
can be plotted (see Fig. 4-a with solid-circle plot). In the meantime, the out-
put ¢, is also reported and the cross-coupling in the (U,,d,)-map is plotted
(see Fig. 4-c¢). The same experiment is also carried out but instead of using
U, = 0V, we use non-null and constant values. For instance, in the same fig-
ure, we plot the curves obtained with U, = 2V and U, = 4V. Now, we set
U, = 0V and we apply a sine input voltage U,(t) = 10sin (27 ft) with the
same frequency f = 1Hz. The resulting displacement J, versus the voltage,
i.e. (U,,0,)-map, is plotted in Fig. 4-d (with solid-circle plot) whilst the cross-
coupling in the (U,,d,)-map is plotted in Fig. 4-b. Similarly to the previous



experiment, different non-null and constant values of U, have also been ut-
lized and the resulting curves are plotted in the same figure. As from these
results, the direct transfers (Fig. 4-a and d) are characterized by hysteresis
nonlinearities with amplitudes that reach Z—}; = 21%. We also observe that the
cross-couplings have an amplitude exceeding —30um <> 21um = 51um (see
(U,,d,)-map when U, = 0V). As the maximal displacement reachable in the
y-axis when it is actuated (see (Uy, d,)-map) is about 50um, we calculate the
relative amplitude of the coupling in the y-axis: g’éﬁ = 102%. This means
that the cross-coupling is stronger than the direct transfer itself. Regarding
the z-axis, the relative amplitude of the coupling is of ggﬁz = 62%. Finally, we
remark that these cross-couplings are also hysteretic. These characterizations
show the strong couplings and the strong nonlinearities that typify the 2-DOF

piezoactuator.

It is important to notice that the frequency of the signal used to characterize
the hysteresis, which is 1Hz in this case, should be chosen sufficiently low in
order to avoid the phase-lag caused by the dynamics of the actuator, and not
too low in order to avoid the effect of the creep nonlinearity which typifies
piezoelectric actuators [43|. Different and extensive characterizations of the
piezoactuator used here shown that a good compromise of this characterization
frequency is between 0.1Hz and slightly higher than a Hertz. It is also worth
to notice that the two sensors employed to measure the displacements along
y and z axes should be properly and orthogonally mounted, otherwise the
cross-couplings observed will include measurement errors.
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Fig. 4. Hysteresis and cross-couplings characterization.

In order to illustrate the effect of the cross-couplings and of the hysteresis in
the precision of the actuator, we have carried out a complex spatial trajec-
tory tracking, by utilizing a linear compensator (a feedforward control with
linear gains). The results, when the desired trajectory (reference) is a circle

10



with 20pm radius and 1Hz frequency, are pictured in Fig. 5-a. The evaluation
of the errors in the two axes y and z is described in Fig. 5-b and c respec-
tively. These figures demonstrate that, due to the strong cross-couplings and
to the hysteresis nonlinearity, the absolute tracking error (defined as distance
between the reference and the output) in the y-axis can reach 12um whilst
that of the z-axis can reach 10.5um. These errors correspond to relative er-
rors of 60% = ;giﬁ and 52.5% = 13(‘)5’";;” respectively. The spatial curve show
that such errors are non-negligible and that the piezoactuator cannot cor-
rectly follow the desired trajectory. By increasing the frequency f, the errors
increase substantially. It is therefore important to control the piezoactuator
with convenient consideration of the cross-couplings and of the hysteresis.

[ solid ] actual
[dashed ] reference

2]
o

error y[um]
error zum]

(c)

-15
0.5 1 1.5 2 0 0.5 1 1.5 2
time[sec] time[sec]

Fig. 5. Open-loop response of the 2-DOF piezoactuator with a circular desired tra-
jectory.

Finally, the dynamics of the piezoelectric actuator is experimentally charac-
terized. The characterization is carried out by using harmonic or frequency
analysis. The procedure of the experiments is similar to that of the hysteresis
characterization above, but instead of using a sine signal with one frequency,
we employ swept sine signal starting from 1Hz (6.28rad/s). Fig. 6-a depicts
the frequency response measured at the y-axis. It includes the magnitudes of:
i) the direct transfer that links U, and 4, (real system), ii) the 2"¢ order model
that approximates this dynamics and that will be further used for the con-
troller design, iii) and the cross-coupling that links U, and §,. The parameters
of the identified 2"? order model are: a, = 4.136 x 10~® and b, = 5.198 x 1075.
On the other hand, Fig. 6-b depicts the frequency response measured at the
z-axis. It includes the magnitudes of: i) the direct transfer that links U, and
§. (real system), ii) the 2"¢ order model that approximates this dynamics and
that will be further used for the controller design, iii) and the cross-coupling
that links U, and §,. The parameters of the identified 2"? order model for this

11



axis are: a, = 5.362 x 107® and b, = 4.863 x 107%. These results show that
the resonant frequency of the system is of 783Hz (4920rad/s) and of 687Hz
(4320rad/s) for the y-axis and for the z-axis respectively, which are very inter-
esting for the targetted tasks. However we observe that the cross-couplings are
strong for the two axes: 1.6dB and —1.09dB respectively. As presented in Fig.
5, they greatly compromise the precision of piezoactuator to follow desired
trajectory. Furthermore, we can also observe a high Q-factor with a height of
31.9dB and 33.5dB for the y-axis and for the z-axis respectively. These peaks
result in badly damped oscillations in the responses of the actuator to brusque
inputs (like rectangular) which are unwanted in micromanipulation and in mi-
croassembly tasks. The aim of the next section is to propose a control stragety
that accounts for the strong cross-couplings and for the nonlinearities in order
to reach the performances usually required in the targetted tasks.
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Fig. 6. Open-loop response of the 2-DOF piezoactuator with a circular desired tra-
jectory.

4 Backstepping control of the 2-DOF piezoactuator

In this section, we address the control design for the 2-DOF piezoactuator
using the backstepping framework including adaptive and robust actions. The
resulting controller is robust enough to deal with model uncertainties, either
structured or non-structured, or disturbance provided the knowledge of their
bounds. To fulfill the control objective, a sliding surface z, encompassing track-
ing errors, is defined within the backstepping recursive process so that the
states trajectories reach and remain in the origin. On the other hand, the
adaptive part, also included in the backstepping design, is used to cope with
unknown slow-time varying disturbances [62].
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Reconsider the disturbed model of the 2-DOF piezoactuator described in (7):

ad + b6+ = d,U 4+ © (9)

Since we are in concern with a trajectory tracking problem, the latter differ-
ential model can be rewritten as a state-space model with the error variable

€= (6.6)"
& =& (10)
£ = L(d,U +6 — b5 —§) — ¢

where & = 6 — 0% and & = 0 — &7 are the position and the velocity errors
respectively.

Step 1: Let us propose the following quadratic Lyapunov function to deduce
a control that stabilizes the first integrator subsystem (10-a):

V(&) = 5676 (1)

whose time-derivative is given by

Vi(€) = & & (12)

which can be rendered negative (V1 (&) < 0) if we propose & as virtual con-
troller defined by the following law:

§2 = —M& (13)

where \; = diag(A1y, A1.) with Ay, > 0 and Ay, > 0. With this, & is not only
stable but also asymptotically convergent to the origin.

Step 2: Let us propose the error variable z = (z,,2,)7 using the virtual
controller as a reference, i.e. £ = —\&;:
r=6-§ =86+ G (14)

which produces the modified state

13



§=2—M& (15)
Computing the time-derivative of (14) yields:
1 . N
i = a(de+®—bc$—5)+)\1z—)\f§1—6d (16)

Let us split the overall vector disturbance into two terms: a high- and a low-
rate disturbance © = 0, + ©;, whose expression is written as:

0n, + 0
0=0,+0,= """ (17)
On. + 01,
where ©;, and ©; verifies the following inequalities:
Oulls < e
[Onll2 < e 18)
1O <&

where €, and ¢; are positive scalars. In order to provide the final control
Lyapunov function (CLF), let us define the low-rate disturbance estimation
error ©; and its derivative as well:

éz =0, — él (19)
and

~

O, = -6, (20)

The following final CLF is therefore proposed:

1 1 1~ ~
Vo(&1,2) = 55{51 + §ZTZ + 56?’77191 (21)

where v = diag(v,,7.) is a positive definite matrix. The time-derivative of the
CLF Vs (&4, 2) is yielded:

Va(€1,2) = 606 + €72+ 272 4 674716, (22)

14



Replacing 2 of (22) by (16), introducing the following adaptation law

0 =—vz (23)
and the following proposed controller
1 . A .
U= d—[a(—)\lz + A — & = Aoz + 61 + O, +sign(z) +b5 +06]  (24)
P
where sign(z) = (sign(z,), sign(z.))”, where the gain matrix Ay = diag (A2, A2.)
only requires to be positive definite to verify negativity of the time-derivative

of the CLF and where o = diag (o, ;) is a positive definite matrix;

we obtain:

WVo(€1,2) = =67 M& — 2" oz + 27(©), — asign(z)) (25)

(25) can be simplified as follows:

Va(€1,2) < =pmin{ MG = pran{A2} 12113 + |27 O] = af2[s (26)

where ppin{-} stands for the minimun eigenvalue. The latter condition is still
satisfied with:

Vo(€1,2) < =pmin{ MG = pmin {2} 2115 + (en = @)llzli - (27)
where we have used the following properties:

P1. [[zTyll2 < ||z]l2/ly]l2
P2. ||z|s < [|z]lx

P3. ||z|; = X7, |z
P4. |z;| = 2Tsign(x)

for any vectors x and y with length equal to n.

Therefore, to insure negativity of the time-derivative of the CLF as in (27),
we choose:

a=¢c,+n (28)

which leads to:
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In order to implement the controller, (14) is introduced in the control law of
(24). Then, we take \y = Ay = X\ = diag()\,, \,) which permits to have a
simpler expression only dependent on the states of the system. We obtain:

U= Lla(=(\ +1)& — 206 +6%)

. (30)
F (& + A& dT + asign(& + M) + b6 + 6]

Fig. 7 shows the implementation diagram of the the whole system where the
control law defined by (30) is inside the block "robust adaptive controller".
Since the controller requires the derivative of & = (8,,8.)", we utilize an
observer to furnish this. The observer, based on the same model than presented
in section-2 and developed in our previous work [63], permits to provide an
estimate of ¢ and an estimate of § in presence of hysteresis nonlinearities. We
also tested a direct (numerical) derivative of the measurement & to provide 4.
This method is simple in implementation but, in counterpart, introduces an
important noise that finally decreases the performances of the whole closed-
loop. Notice that the derivative 6 and the second derivative 6% of the desired
displacement 6 are directly yielded by numerical derivative of this latter.
The resulting 6 and 67 are not prone to noise since §? itself is not from any
measurement, but generated from Matlab-Simulink.

In the controller (30), the term asign(& + A&;) is the core of the sliding mode
action and the term [j v(& + Aj)dr is the core of the adaptive action. It
is possible to neglect the two last terms, i.e. bo + 0, since the controller can
compensate for such dynamics with appropriate gains, as will be shown in the
experimental section.
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Fig. 7. Overall experimental control setup

To summarize, the controller described above takes into account an overall
disturbance (hysteresis + couplings + creep) which is afterwards considered
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and handled as an unknown-but-bounded uncertainty. This uncertainty is split
into two kinds: fast and slow time varying. The controller is designed via the
backstepping approach and the uncertainty has been accounted for during
its synthesis in order to guarantee stability. For the fast disturbance we have
introduced a sliding-mode term, whereas the slow one is addressed via the
adaptive term. Then, the controller performance (robustness) will be guaran-
teed for the fast-disturbance case provided that its norm remains below the
value used within the stability analysis. In the slow-disturbance case the suc-
cessful estimation will counteract its actual value. The stability robustness of
the overall closed-loop system is therefore ensured thanks to the given norms
and to estimation performance.

5 Experimental Results

This section is devoted to the experimental tests of the proposed backstepping-
based robust adaptive control to the 2-DOF piezoactuator presented in section-
3. Whilst tracking of predefined trajectories is the objective, two sets of ex-
periments, both with complex trajectories, were carried out to evaluate the
control strategy. In the first set, four waypoints are considered as the reference
for different frequency values to obtain a rectangular path. In the second set,
circular trajectories are considered to evaluate the tracking performances of
the controllers.

5.1 Rectangular waypoints tracking

A periodic square trajectory with sizes 10um x10um and at different frequen-
cies is applied in order to evaluate the performance of the proposed control
approach. The controller gains used are listed in table 1. he choice of these
controller gains will be discussed in section-5.4.

The results with 1Hz of frequency are depicted in Fig 8. In these, the time-
domain evolutions (reference tracking and errors) along y and z axes of the
piezoactuator are shown in Fig 8-a whilst the spatial trajectory tracking is
shown in Fig 8-b. These figures show that the tracking errors, i.e. bias between
the output d, (resp. d.) and the reference d; (resp. 07) are negligible, despite
the noise mainly due to the sensors used. Indeed, the relative errors in closed-
loop are lower than 2% for both axes, whilst in open loop (see section-3) we
had 60% and 52.5% for y and z axes respectively. The evaluation of the noise
shows a peak-to-peak of +0.3um and of +0.9um for the y-axis and for the
z-axis respectively. It is still possible to reduce this noise by setting a lower
bandwidth for the sensors used but this will compromise its capability to
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Table 1
Controller gains for the rectangular trajectory.

Frequency (axis-y) Ay Ty Qry
f=1 200 05 |0
f=10 300 05 |3
f=30 400 0.5 9
Frequency (axis-z) s s Qy
f=1 160 0.5 0
f=10 500 078 |0
£ =30 400 08 |2

measure the dynamics of the whole system. It is also possible to use sensors
with better performances (optical sensors LC2420 from Keyence). However,
implementing two of them to simultaneously measure the two displacements
was impossible because of their bulky sizes.

Regarding the cross-couplings, we observe that the effect seen on 9, (resp. d,)
due to U, (resp. U,) is weak and quickly rejected. In the error curves, the
maximal cross-coupling is quantified as 3% = Ol'g’% along 0, (resp. 6% = %5%
along ¢,) and is afterwards rapidly decreased to zero. As we see, the cross-
couplings which were introduced in the disturbance © were greatly accounted
for by the control law since they were 102% and 62% without the proposed
control technique (see section-3). Finally, it is quantified that the settling time
of the closed-loop is lower than 25ms which is very convenient for the expected

positioning applications.

In order to evaluate the bandwidth of the closed-loop controlled 2-DOF piezoac-
tuator when using square spatial trajectory, we increase the frequency. Fig 9
depict the result for 10Hz and Fig 10 for 30Hz. These results show that the
coupling effects remain unchanged, i.e. negligible and quickly rejected, than
with 1Hz. In addition to this, the settling time is still less than 25ms for
both axes and the errors of tracking remain weak. Beyond 30Hz however, the
tracking errors start to slowly increase.

5.2 Chrcular trajectory tracking

In this part, we utilize circular spatial trajectory as reference, with a radius of
20pm. The corresponding time-domain references are: 55 = 20sin (27 f) and
6% = 20 cos (27 f). Again, different values of frequency f have been used. The
controller gains employed during the experiment here are listed in table 2. The
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Fig. 8. Closed-loop performances with a square trajectory reference with frequency
of 1Hz.

choice of these controller gains will also be discussed in section-5.4.

Table 2
Controller gains for the circular trajectory.

Frequency (axis-y) Ay Ty Qry
f=1 300 12 |0
f=10 610 12 |6
f=30 610 14 18
Frequency (axis-z) Az o oy
f=1 160 08 |0
f=10 650 14 |03
f=30 1000 1.2 2

First, a circular reference trajectory with frequency of 1Hz was applied. The
time-domain results including the reference tracking and the error are pictured

in Fig 11-a. We see that the relative error is less than 2.5% = (;055:11 for the

y axis and less than 10% = %”—ﬁ for the z axis, in which the noise can be

2
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Fig. 9. Closed-loop performances with a square trajectory reference with frequency
of 10Hz.

observed as a great part of the error cause. Again, the error was substantially
reduced with the proposed control law. In Fig 11-b are pictured the spatial
curves which show that the piezoactuator well tracks the circular reference
trajectory.

To analyze the capacity of the closed-loop to track higher frequencies for the
circular trajectory, we also carried out experiments with 10Hz and 30Hz. The
results are depicted in Fig 12 and Fig 13. They show that the tracking error
remain almost similar than with low frequency. From 30Hz, this error starts
to slowly decrease due to the phase-lag. To analyze the bandwidth and the
dynamics of the closed-loop, we present in the next-subsection its frequency
responses.

5.3 frequency responses

In this part, we report the frequency responses of the controlled system. The
control gains used for the closed-loop are those corresponding to f = 30Hz in
table 2, i.e. A\, = 610, v, = 1.4, a, = 18, A, = 1000, 7, = 1.2 and o, = 2. In
fact, the control gains tuned at high frequency are also efficient when working
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Fig. 10. Closed-loop performances with a square trajectory reference with frequency
of 30Hz.

at lower frequencies. Fig 14-a depicts the frequency responses observed at the
y-axis: the direct transfer g—g and the cross-coupling %. On the other hand,
Fig 14-b depicts the frequeilcy responses observed at the z-axis: the direct
transfer % and the cross-coupling %' We can observe that the cross-couplings

have been reduced thanks to the control law: —40dB and —50dB for the y-
axis and for the z-axis respectively. The frequency responses also demonstrate
that the 3dB-bandwidths are of 77Hz (484rad/s) and of 93Hz (589rad/s) for
the two axes. These results demonstrate the efficiency of the control law to
reject the cross-coupling, to increase the bandwidth and to reduce the initial
resonance peaks which were very important (see Fig. 6).

5.4  Discussions

As we can see from table 1 and table 2, different values of the controller
parameters A = diag (A, \.), 7 = diag (vy,7.) and a = diag (o, a,) are
employed for the different frequencies. The values listed in tables table 1 and
table 2 correspond to the chronological tests evolution from low to higher
frequency values. However, the gain values calculated at high frequency (f =
30H~z in this case) can be used for every frequency lower than this, either
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Fig. 11. Closed-loop performances with a circular trajectory reference with frequency
of 1Hz.

for rectangular or circular trajectories. If we increase the values of all these
parameters, we increase the bandwidth of the closed-loop. A too large value
of X introduces however a low frequency oscillation since this parameter is,
among others, used for &, which is the derivative of &. Therefore it acts as
derivative gain. On the other hand, a too large value of « introduces a high
frequency oscillation due to chattering of the sliding mode part. Although,
such oscillation will only appear if the gain v of the adaptive part is very
low. Indeed, the adaptive part here is introduced to reduce the chattering
of the overall control input. In the experiments carried out, the controller
gains were put manually. However, a feature will consist in scheduling them
automatically according to the frequency of the input reference 6. For that,
a way consists in carrying out first a precise performances characterization for
different values of controllers gains and at different frequencies. This permits
to find the optimal values of the gains for some specified performances. Then,
a model of the optimal gains versus the frequencies can be derived. This model
can be finally used as a sequencer of the controller.

In this paper, we particularly dealt with second order model of piezoelec-

tric cantilevered actuators. The reason of this is double. First, the control
technique requires a second order model only. One of the advantages is that
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a simple model is employed to calculate a robust controller. Second, various
characterization of the piezoelectric employed in this paper demonstrated that
a second order model is largely sufficient to track its dynamics necessary for
the targetted applications [10,57,61|. Nevertheless, if a higher order model
is required, it is still possible to employ the technique as long as the model
structure in (10) can be yielded. In such a case, £ is a vector.

Backstepping technique provides the "right" gains-states combination to guar-
antee stable states trajectories while rejecting unknown-but-bounded distur-
bances. "Large" control signals are relative, since our experimental setup fea-
tures an actuator saturation ranging from —10V to 10V. Therefore, in this
case the control signals, provided to the actuator from the dSPACE acquisi-
tion board, are bounded and thus the challenge becomes in fulfilling the control
objective (trajectory tracking) having bounded control signals. Experimental
results proved that the proposed controller was indeed capable to solve the
control problem.

The performances observed from the experiments carried out show that the

fact of using adaptive and sliding-mode controllers results in a beneficial com-
plementarity reducing bursting errors and chattering. Indeed, it is well known
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Fig. 13. Closed-loop performances with a circular trajectory reference with frequency
of 30Hz.

that bursting errors arise from additive uncertainties (noise, parametric un-
certainties) to the adaptive signal and might lead to instability of the closed-
loop. In addition, in experimental applications, the chattering associated with
the discontinuous control has detrimental effects in the control performance
since it may damage the actuator and excite parasitic non-modeled dynamics.
These disadvantages have been bypassed in the control law here thanks to the
combination of the adaptive and sliding-mode techniques.

Finally, the proposed controller technique has permitted to reduce the cross-
couplings to —45dB and —25dB for the y and for the z-axis respectively (see
Fig 14), whilst they were about 0dB without control (see Fig. 6). Additionally
to this, the initial Q-factors with heights of 31.9dB and 33.5dB for the two
axes (see Fig. 6) have been completely reduced. The different experiments with
complex trajectories demonstrated that a good tracking precision has been
obtained with the closed-loop and the bandwidth were respectively of 77Hz
(484rad/s) and of 93Hz (589rad/s) for the two axes. Comparison with classical
control design calculated and applied to this same actuator (developed in [57])
demonstrates that the proposed control technique in this paper permits to have
better performances simultaneously in term of bandwidth, of cross-couplings
rejection and of tracking of complex trajectory. Though well convenient for
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the tasks targetted in this paper (micromanipulation and microassembly), the
bandwidth can be enlarged by finding the controller gains by trial or by an
analytical way.

6 Conclusions

The present paper addressed the motion control problem of a piezoelectric
actuator while tracking waypoints and smooth (continuous) time-varying tra-
jectories. The actuator has two degrees of freedom (2-DOF) and typifies strong
cross-couplings as well as strong hysteresis nonlinearity in its two axes. By ex-
tending the classical Bouc-Wen modeling of hysteresis which is devoted to
1-DOF system and by rearranging it, we propose a linear dynamic SISO
model with a lumped parameter for each axis. The, parameter, considered
as disturbance - which is bounded and which accounts for the hysteresis, for
the cross-couplings and for eventual creep nonlinearty - is split into "slow"
(quasi-constant) and "fast" (time-varying) parts. Based on the disturbance
profile, a backstepping-control strategy merging adaptive (to estimate slow-
time varying disturbances) and sliding-mode control (to reject time-varying
disturbance) techniques is propposed. The proposed complementary control
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scheme provides the following benefits.

e We can estimate the slow-time varying uncertainty/disturbance which re-
groups hysteresis/cross-couplings (with low frequency inputs) and creep.

e The adaptive part reduces the chattering of the overall control input that
may appear due to the sliding-model action.

e The actual approach provides an interesting modularity to tackle constant
and/or time-varying disturbances (continous/discontinous).

e The final control law is simple for implementation purposes.

Since the controller gains were introduced manually in this paper, an inter-
esting feature consists in developing a model that relates these gains with the
frequency of the input reference for optimal performances. Then, this model
can be used as a sequencer for the controller in order to have an automatically
gain-scheduled control scheme.
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