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ABSTRACT

This paper deals with the feedforward control of vibrations in a 2-axis piezoelectric actuator devoted to precise
positioning. The actuator is very prized for high precision spatial positioning applications, but its positioning
capability as well as the stability of the final tasks are compromised by badly-damped vibrations, especially during
high-speed positioning operation. In addition to these vibrations, the presence of strong cross-couplings between
different actuator axis poses challenge in the feedforward control scheme. This paper proposes a bivariable
feedforward standardH∞ approach to suppress the vibrations in the direct transfers and to reduce the amplitudes
of the cross-couplings. The proposed approach is simple to handle and easy to implement, comparatively to the
commonly used techniques for oscillations suppression. Experimental tests demonstrate the efficiency of the
proposed approach.

Keywords: Multi-axis piezoelectric actuators, Vibrations, Cross-couplings, Multivariable feedforward control,
Standard H∞ approach.

1. INTRODUCTION

Multi-axis piezoelectric actuators are very known in spatial positioning tasks, especially in micro/nano scale
applications 1,2. However, the positioning precision of these actuators and the stability of the final tasks are
compromised by badly-damped vibrations and by the cross-couplings between the actuators axes 3. Feedback
control appears to be the best way to handle these problems but the use of closed loop control techniques
in micro/nano scale is limited by the difficulty to integrate feedback displacement sensors. On the one hand,
embeddable sensors (capacitive, inductive, etc) do not have the required performances (low noise, high resolution
and accuracy, low environmental sensitivity, bandwidth, etc). On the other hand, sensors with the necessary
performances such as optical sensors are very spacious, which makes their installation difficult, especially for
multi-axis actuators where a high number of sensors is required 4,5. Feedforward control techniques have been
seen as a good solution to that problem 1,4–6.

In the literature, inverse-dynamics 6,7 and input-shaping techniques 4,5, 8, 9 rank among the most used tech-
niques for feedforward control of vibrations. However, the identification of multi-axis piezoelectric actuators may
lead to nonminimum-phase and non-bicausal models, for which the inverse-dynamics control are less adapted 6.
In this paper, we propose a feedforward H∞ approach to control a 2-axis piezoelectric actuator.

The feedforward control of piezoelectric actuators based on H∞ approach has been used in (G. Schitter et
al., 2003) 10 for a 1-DoF application. In this paper, we extend this technique to a 2-axis (2 DoF) actuator,
by considering simultaneously the direct transfers and the cross-couplings. This leads to a 2-DoF compensator,
able to suppress the vibrations in the direct transfers and able to reduce the amplitudes of the cross-couplings.
The proposed approach allows to calculate a feedforward vibrations compensator without any need to invert
the model, which is an easier and less time-consuming way than with inverse-dynamics based techniques. The
experimentations carried out demonstrate the efficiency of the proposed approach.
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The remainder of the paper is organized as follows. Section 2 describes the experimental setup and the
actuator used. Section 3 concerns the multivariable characterization and modeling of the vibrations for the 2-DoF
actuator. In section 4 we use the model obtained in section 3 to calculate the 2-DoF vibrations compensator. The
implementation of the obtained compensator along with the simulation and experimental compensation results
are presented in section 5. Finally, section 6 concludes the paper and gives some perspectives.

2. EXPERIMENTAL SETUP

The experimental setup is represented in Fig. 1. It is composed of a piezoelectric tube, a computer with
Matlab/Simulink software, two displacement sensors and two voltage amplifiers. Both displacement sensors and
voltage amplifiers are connected to the computer through a dSPACE-1103 board. The piezoelectric tube scanner
used is the PT230.94, fabricated by Physik Instrumente company. This tube has 30 mm of length, 3.2 mm of
outer diameter and 2.2 mm of inner diameter (1 mm of thickness). PT230.94 is made of PZT material coated
by one inner electrode (in silver) and four external electrodes (in copper-nickel alloy), commonly named +x, -x,
+y and -y (Fig. 1b). Voltages Ux and −Ux (Uy and −Uy) can be applied on +x and -x (+y and -y) electrodes
in order to bend the tube along X-axis (along Y-axis). To allow a linear displacement measurement (which is
not possible with the tubular shape of the piezotube), a small cube with perpendicular and flat sides is placed
on the top of the tube. The operating voltage range of the PT230.94 is ±250V for a deflection of 35µm. Hence,
two voltage amplifiers are used to amplify the dSPACE board output voltages, for which the maximum range is
about ±10V . The tube deflections are measured by using LC-2420 displacement sensors (fabricated by Keyence
company), which have 10nm resolution and a bandwidth of 50kHz. Note that these displacement sensors are
used only for vibrations characterization : the proposed control approach is exclusively feedforward and these
sensors are not needed for tracking.
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Figure 1: Presentation of the experimental setup and description of the used actuator.

3. CHARACTERIZATION AND MODELING OF THE VIBRATIONS FOR THE
2-DOF SYSTEM

The system to be characterized (refer to Fig. 2) is a 2-DoF piezoelectric tube with inputs Ux and Uy voltages,
and outputs x and y deflections. To characterize its vibrations , we apply first a step voltage Ux of amplitude
200V and we let Uy be zero. The corresponding displacements x and y are pictured in Fig. 3a,c (blue solid line).
Fig. 3a shows the vibrations for the direct transfer Ux → x, while Fig. 3c shows the vibrations for the coupling
Ux → y. Afterwards, we repeat the same operation by using a step Uy of amplitude 200V with Ux set to zero.
The captured deflections x and y are represented in Fig. 3b,d (blue solid line). Fig. 3b represents the vibrations
for the coupling Uy → x, while Fig. 3d shows the vibrations for the direct transfer Uy → y. From Fig. 3, we notice
the presence of badly-damped vibrations in both direct and coupling transfers. The transfer function G(s) to be
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Figure 2: System modeling scheme. (a) : the 2-DoF system with two inputs Ux and Uy and two outputs x and
y ; (b) : simplified representation, with U = (Ux Uy)

T the input voltages vector and d = (x y)T the tube
deflections vector.

identified is composed of four functions Gxx(s), Gyx, Gxy and Gyy, which are functions for transfers Ux → x,
Ux → y, Uy → x and Uy → y, respectively. These functions are identified by applying the ARMAX method
to the individual experimental step responses of Fig. 3 (blue solid line). The obtained transfer functions are
represented by Eq. 1. Afterwards, the model G(s) is simulated by using Matlab/Simulink and compared to the
experimental results. The comparison is established in Fig. 3, where we notice a good agreement between them.
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Gxx(s) =
4.4718×1015(s+319.7)(s2+570.5s+4.968×107)

(s+3.625×104)(s+1.207×104)(s+313.9)(s2+536.5s+3.558×107)

× (s2+873.8s+1.102×108)
(s2+1352s+1.025×108)(s2+469.2s+1.081×108) ;

Gyx(s) =
−10.534(s−1.513×104)(s2+610.3s+3.342×105)

(s2+567s+2.882×105)(s2+1.208×104s+3.673×107)

× (s2+807.4s+2.329×107)(s2+57.97s+5.737×107)
(s2+1132s+1.82×107)(s2+516.2s+3.491×107) ;

Gxy(s) =
−3.8154(s+487.2)(s2+20.85s+2.836×107)
(s+6337)(s+351.2)(s2+394.1s+3.605×107)

× (s2+2207s+7.762×107)(s2−2.826×104s+2.733×109)
(s2+517.2s+6.043×107)(s2+628.3s+2.384×108) ;

Gyy(s) =
−9.0985×105(s−1.871×104)(s2−98.19s+9.619×107)

(s+3984)(s2+6789s+5.067×107)(s2+321.5s+6.015×107) .
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Figure 3: Representation and comparison of the characterized vibrations (blue solid line) and the identified
model (red dashed line). (a) and (d) : direct transfers ; (b) and (c) : cross-couplings.



4. CALCULATION OF THE H∞ COMPENSATOR

The compensator is calculated according to the scheme of Fig. 4a, where G is the initial system with input
U = (Ux Uy)

T and output d = (x y)T , K is the 2-DoF vibrations compensator to be calculated, and
dr = (xr yr)

T the desired (reference) deflection vector. Fig. 4b, represents the augmented system from which
the standard H∞ problem is defined. Weighting functions Wr, W1 are chosen based on the performances (static
error, bandwidth, etc) desired for the compensated system. The weighting W2 is used to limit the control voltage,
in order to avoid the saturation of the actuator.
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Figure 4: Compensation scheme and the structure of the augmented system, from which the H∞ problem is
defined. (a) : initial system G with the compensator K ; (b) : the compensated system augmented with weighting
functions Wr, W1 and W2.

The chosen weighting functions are represented in Eq. 2 :

Wr(s) =

(

1
1+ 0.01

3
s

0

0 1
1+ 0.01

3
s

)

;W1(s) =

(

s+120
s+1.2 0

0 s+120
s+1.2

)

;W2(s) =

(

0.125 0
0 0.125

)

. (2)

From the augmented system in Fig. 4b, the transfer between the exogenous input dr and exogenous outputs
z1 and z2 is expressed as :

(

z1
z2

)

=

(

W2K

W1Wr −W1T

)

dr, (3)

with T = GK the transfer function of the compensated system.

The standard H∞ problem consists therefore in finding the controller K such that :
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∥
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W2K

W1Wr −W1T

∥

∥

∥

∥

∞

< γ or

{

‖K‖∞ < ‖W−1
2 ‖∞γ

‖Wr − T‖∞ < ‖W−1
1 ‖∞γ

, (4)

where γ represents the performances evaluation parameter. We have solved this problem by using DGKF
algorithm 11 and a 2-DoF feedforward compensator K, with order 34 and γ = 0.929688, has been obtained. This
compensator was not implementable in real time with the dSPACE-1103 board. We have therefore reduced its
order by using the balanced-reduction technique, and a new compensator with order 20, able to run in real time
on the aforementioned card, has been obtained.

5. IMPLEMENTATION OF THE COMPENSATOR AND COMPENSATION
RESULTS

The aim of this section is to verify the ability of the calculated compensator to suppress the vibrations of
direct transfers and to reduce the cross-couplings amplitudes. Before the implementation of the compensator, the
simulations of frequency responses for the initial system G (piezoelectric tube), the controller K (with reduced
order) and the compensated system T , have been evaluated. These responses are represented in Fig. 5, where
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Figure 5: Frequency responses of the initial system G, the compensator K and the compensated system T . (a)
et (d) : direct transfers ; (b) and (c) : cross-couplings.

we notice a bandwidth of more than 80Hz for direct transfers and the rejection of couplings up to −70dB at low
frequencies.

Afterwards, the 2-DoF reduced compensator K has been implemented according to the scheme of Fig. 4a,
in Simulink/Matlab software. In order to test the suppression of the vibrations and the reduction of the cross-
couplings amplitudes, step inputs xr and yr of 20µm have been applied successively. The obtained transient
responses are reported in Fig. 6. The comparison of results in this latter figure, and results in Fig. 3 (before
compensation) shows that, thanks to the calculated compensator, the vibrations in direct transfers are suppressed
and the cross-couplings amplitudes are reduced by more than 50%.

6. CONCLUSION AND PERSPECTIVES

Multivariable feedforward control of vibrations based on standard H∞ approach has been presented in this
paper. The technique was applied to a 2-DoF piezoelectric tube scanner. Simulation and experimental results
have proven the efficacy of the proposed approach in terms of vibrations suppression, cross-couplings amplitudes
reduction and the ease of implementation of the calculated compensator. In future works, additional control tech-
niques will be integrated to the proposed approach, in order to increase the overall bandwidth of the compensated
system.
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Figure 6: Verification of the vibrations and cross-couplings amplitudes for the compensated system. (a) and
(d) : direct transfers ; (b) and (c) : cross-couplings.
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