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ABSTRACT 

This paper deals with the feedforward control of the vibrations of a 2-DOF piezoelectric micropositioner in 

order to damp the vibrations in the direct axes and in the cross-couplings. The actuator exhibit badly damped 

vibrations in its direct transfers as well as in the cross-couplings transfers. We therefore propose a bivariable 

control which does not require sensors to reduce the vibrations in the different axes. The proposed scheme 

reduces all modes of vibrations for both outputs through extending the monovariable zero placement input 

shaping technique into bivariable. Experimental tests have been carried out and demonstrate the efficiency of 

the proposed method. 

 

1 – INTRODUCTION 

Piezoelectric cantilever structured actuators are well appreciated for the development of high precision and 

high dynamics positioning systems (micropositioners) thanks to their high bandwidth, high resolution and 

ease of powering (electrical). However these piezoelectric micropositioners exhibit badly damped vibrations 

due to the cantilever structures. These behaviors strongly affect the final performances, or even the stability, 

of the tasks to be executed.  The increasing need on dexterous actuated systems led to the development of 

piezoelectric micropositioners with multiple degrees of freedom [1-4]. In [5], a 2-DOF piezoelectric 

micropositioner principle was patented. It is capable to perform microrobotic tasks such as micromanipulation 

with submicrometric resolution and along two axes [6, 7], see Figure 1. Nonetheless this micropositioner 

exhibits badly damped vibrations not only in the direct transfers but also in the cross-couplings transfers. 

This paper deals with the feedforward control of the vibrations for the 2-DOF piezoelectric micropositioner in 

order to damp the vibrations in the direct axes and to reduce the cross-couplings. The novelty in this paper 

relative to the existing vibrations feedforward control, i.e. control without sensors, in piezoelectric systems 

[8-10] is the account for the strong cross-couplings vibrations. For that, we propose to extend the zero 

placement input shaping technique [11] to account for the direct transfers as well as the cross-couplings and 

to have more robustness relative to model uncertainties. Experimental tests on the 2-DOF piezoelectric 

micropositioner have been carried out and demonstrate the efficiency of the proposed method. 

Input shaping is a well-known feedforward technique to reduce vibrations in flexible structures. Input shapers 

typically alter the original input command by a longer shaped command that is convolved with a set of 

impulses. Input shaping has been given a great deal of attention for single input systems with a multiple 

modes of vibrations in time and frequency domains [12...17]. For systems with multiple modes, shaped 

commands are typically constructed by cascading single-mode impulse sequences. Singer [15] illustrated that, 

although this approach was effective, shorter-length sequences typically would minimize distortion in the 

original command while eliminating all unwanted vibrations. Hyde [18] extended Singer’s results by using 

non-linear, numerical search algorithms to construct time-optimal impulse sequences for multiple-mode 

systems. As an alternate approach, Smith indicated that Posicast inputs for multiple-mode systems could be 

constructed by placing zeros over all unwanted system poles in the z-plane. Although this technique was 
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never developed, Smith suggested that the discrete transfer function resulting from the specified zeros could 

then be used to construct a Posicast command to eliminate multiple-mode vibrations. As suggested by Smith, 

Tuttle and Seering [17] proposed practical zero-placement technique to design optimal input shapers for 

systems with arbitrary number of modes in the z-plane. In this technique, guidelines for effective shaper 

design become apparent which allow shaper performance to be better tailored to specific system requirements 

and provides a conceptually simple and highly effective strategy for suppressing vibrations in flexible 

mechanical systems. For systems with multiple inputs and multiple modes of vibrations, Pao [11] developed 

input shaping design technique which leads to a fewer number of impulses and hence shorter shaping delay 

and faster maneuvering.  

 

For the remainder of this paper, we briefly review the existing input shaping method for multiple input 

systems (but single output) in section 2. Then, the proposed extended approach for multiple input multiple 

output systems is outlined in section 3. Finally, in section 4, the theoretical results is adapted and applied to a 

2-DoF piezoelectric actuator which demonstrated its efficiency to reduce the vibrations both in the direct 

transfers and in the cross-couplings. 

 
Figure 1: The two degrees of freedom (2-DOF) piezoelectric micropositioner. 

 

 

2 – PRELIMINARIES ON MULTIPLE INPUT SHAPING AND SINGLE OUTPUT 

This section explains an approach for designing input shapers for flexible structures with multiple inputs. 

Input shapers for multi-input systems with multi-modes of vibrations can be designed to be identical to each 

other by solving shaper constraint equations for only one sequence of impulses and apply it to all inputs. For 

large complex flexible structures, there are usually many flexible modes that need to be modeled, which may 

lead to relatively long time lags in the shaping sequence applies to all inputs! That is, it has been assumed in 

this approach that each input by itself must cancel out any vibrations that it causes by the end of its input 

command. Thus including more information about the flexible system model into the problem formulation 

and solving for the impulse sequences simultaneously generally lead to shorter sequences [11]. Let us assume 

a flexible structure with m+1 input, single output, and n structural frequencies ɷ1… ɷn 

 

𝑋 .(𝑡) = 𝑨𝑋(𝑡) + 𝑩𝑢(𝑡)         (1) 

𝑦(𝑡) = 𝐶𝑋(𝑡)    
 

Where    𝐴 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔[𝐴𝑖] = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔 [
0 1

−𝑤𝑖
2 −2𝜁𝑤𝑖

]   

For the rigid body 𝜁0 = 𝑤0 = 0  



 

And    𝐵 = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝐵𝑖] = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [
0 0… 0
𝑏0

𝑖 𝑏1
𝑖 … 𝑏𝑚

𝑖 ]   𝑖 = 0, 1, 2, … , 𝑛 

  

The control vector is  𝑢 = [𝑢0 𝑢1 … 𝑢𝑚 ]
𝑇, and the state vector is  𝑋 = [𝑥1 𝑥2   𝑥3

1𝑥4
1 … 𝑥3

𝑛𝑥4
𝑛 ]

𝑇
 where 

𝑥1 𝑎𝑛𝑑  𝑥2   are the rigid body position and velocity, and 𝑥3
𝑖𝑎𝑛𝑑 𝑥4

𝑖  are the modal positions and velocities. For 

rest-to-rest control of the flexible structure ofEq. (1), the objective is to determine the control functions 𝑢(𝑡) 

that satisfies actuator limits, so that the motion of the system is transferred from an initial rest state 𝑋(0) =

[𝑥10  0  0  0…  0  0]𝑇 to a final rest state 𝑋(𝑡𝑓) = [𝑥1𝑓  0  0  0…  0  0]
𝑇

with zero vibrations. The problem of 

coupling among inputs is addressed by including information from the B matrix of the system model in Eq. 

(1) into the derivation of the designed shapers. The transfer matrix from the unshaped inputs to the system 

states is (𝑠𝑰 − 𝑨)−1𝑩𝑸(𝑠)  where the multiple input shaper transfer functions are 𝑸𝒓(𝑠), 𝑟 = 0, 1, 2, … ,𝑚 

and 𝑸(𝑠) is a vector containing them. To filter out any vibrations due to the flexible mode, we choose 𝑸𝒓(𝑠) 

such that: 
 

𝑏0
𝑖𝑄0(𝑠) + 𝑏1

𝑖𝑄1(𝑠) + ⋯+ 𝑏𝑚
𝑖 𝑄𝑚(𝑠)|𝑠=−𝜁𝑖𝑤𝑖∓𝑗𝑤𝑑,𝑖

= 0    (2) 
 

Using the information in the 𝑩 matrix gives us the constraints in Eq. (2), and simpler input shapers can be 

developed than those having zeros at all the flexible system poles. The desired impulse sequences (shapers) 

can then be solved for by taking the inverse Laplace transforms of 𝑸𝒓(𝑠). If we assume the same T for all 

designed shapers then 𝑸𝒓(𝑠) can be written in the following form:  
 

𝑄𝒓(𝑠) = 𝑎0𝑟 + 𝑎1𝑟𝑒
−𝑠𝑇 + ⋯+ 𝑎𝑙𝑟𝑒

−𝑠𝑙𝑇      (3) 

 

Where  𝑙 = [
2𝑛

𝑚+1
] is the number of zeros that each of the shapers has. 

 

By substituting  𝑄𝒓(𝑠) in (2), the constraint equations can be re-written in the following matrix form: 

 

𝑷𝒂 = 𝑾         (4) 

Where  

 

𝑝 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑏0
1 𝑏0

1𝑒−𝑠1𝑇   … 𝑏0
1𝑒−𝑠1𝑙𝑇

𝑏0
1 𝑏0

1𝑒−𝑠1
∗𝑇  … 𝑏0

1𝑒−𝑠1
∗𝑙𝑇

… … …

    𝑏1
1 𝑏1

1𝑒−𝑠1𝑇   … 𝑏1
1𝑒−𝑠1𝑙𝑇      …

𝑏1
1 𝑏1

1𝑒−𝑠1
∗𝑇  … 𝑏1

1𝑒−𝑠1
∗𝑙𝑇      …

… … …

    𝑏𝑚
1 𝑏𝑚

1 𝑒−𝑠1𝑇   … 𝑏𝑚
1 𝑒−𝑠1𝑙𝑇

𝑏𝑚
1 𝑏𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏𝑚

1 𝑒−𝑠1
∗𝑙𝑇

… … …

𝑏0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛𝑇   … 𝑏0
𝑛𝑒−𝑠𝑛𝑙𝑇

𝑏0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛
∗ 𝑇  … 𝑏0

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇

1        1       … 1

    𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛𝑇   … 𝑏1
𝑛𝑒−𝑠𝑛𝑙𝑇      …

𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑇  … 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇      …

0        0       …       0             …

    𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛𝑇   … 𝑏𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑇  … 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇

 0       0         … 0

               …

0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛
∗ 𝑇  … 𝑏0

𝑛𝑒
−𝑠𝑛

∗ 𝑙𝑇

0        0       … 0

𝑏1
𝑛𝑒−𝑠𝑛𝑇   … 𝑏1

𝑛𝑒−𝑠𝑛𝑙𝑇      …

𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑇  … 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇      …

0        0       …       0             …

    𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛𝑇   … 𝑏𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑇  … 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇

 1       1         … 1
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   (5) 

𝒂 = [𝑎00 𝑎10 …  𝑎𝑙0    𝑎01 𝑎11 …  𝑎𝑙1    …     𝑎0𝑚 𝑎1𝑚 …  𝑎𝑙𝑚]𝑇    (6) 



 

𝑾 = [
𝟎2𝑛𝑥1

𝟏(𝑚+1)𝑥1
], there are 2𝑛 + (𝑚 + 1) equations and (𝑙 + 1)(𝑚 + 1) unknowns. For 𝑙 =

2𝑛

𝑚+1
 there will 

be an equal number of equations and unknowns and 𝒂can be solved using a generalized inverse: 

 

𝒂 = 𝑷ϯ𝑾.          (7) 

 

As can be seen in this section, the design procedure of input shapers for flexible systems with multiple 

actuators is straightforward, simple to implement, and easily adaptable to various types of robustness 

constraints. Further, the resulting shaper designs have fewer impulses per input, and lead to shorter shaper 

lengths, thus yielding faster output responses. 

 

3 – A NEW MULTIPLE INPUT MULTIPLE OUTPUT SHAPING 

The same approach used in section 2 can be applied and extended to multiple output systems if we segregate 

the multi-input multi-output system (figure 2-a) into different number of systems equal to the number of 

outputs. Each of the resulting systems has the same number of inputs as the original system and only one 

output, figure 2-b. Following the same design method as the one in section 2 yields one 𝑸(𝑠) solution of 

shapers for each output. However to be able to have one solution of shapers for all outputs, we have to 

include 𝑩𝑗 information for all outputs in the shaper design process. That is, the designed shapers should be 

able to cancel all modes of vibrations for all outputs. In this section we propose creating a new state vector 

𝑋 = [𝑋1𝑋2  … 𝑋𝐾]𝑇that includes all state vectors 𝑋𝑗 = [𝑥𝑗1 𝑥𝑗2   𝑥𝑗3
1 𝑥𝑗4

1 … 𝑥𝑗3
𝑛 𝑥𝑗4

𝑛 ]
𝑇
where 𝑋𝑗 represents the jth 

output state vector, figure 2-b. The new input matrix 𝐵 = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝐵𝑗] =

𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [
0 0… 0
𝑏𝑗0

𝑖 𝑏𝑗1
𝑖 … 𝑏𝑗𝑚

𝑖 ]], figure 2-c, where 𝑖 = 0, 1, 2,… , 𝑛 is the number of structural 

frequencies in each direction and  𝑗 = 1, 2, … , 𝐾 is the number of outputs. The resultant constraint matrix 𝑃 =

𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝑃𝑗] and 𝑃𝑗 is the same matrix shown in equation (5) for each of the outputs, taking into 

consideration that the unity constraint for impulse amplitudes of each of the shapers should not be repeated 

more than once. Additionally the number of shaper impulses will be increased by K factor 𝑙 = [
(2𝑛)𝐾

𝑚+1
] if we 

would like to maintain the equation between constraint equations and unknowns. 

 

 
2-a    2-b 



 
2-c 

 

Figure 2- simplifying system derivation 

 

4 – APPLICATIONS TO A 2-DOF PIEZOELECTRIC ACTUATOR 

To illustrate how to apply this technique on a multiple input multiple output systems, similar to the one shown 

in figure 1. Let us assume a system with 2 inputs (𝑚 = 1) and two outputs (𝐾 = 2), each with 2 modes of 

vibrations (𝑛 = 2). [(𝑤1, 𝜁1), (𝑤2, 𝜁2)] and [(𝑤3, 𝜁3), (𝑤2, 𝜁2)] are the structural frequencies and damping 

ratios for the first and second output respectively. System poles are𝑠1,2 = −𝜁1,2𝑤1,2 ∓ 𝑗𝑤𝑑 1,2 for the first 

output and 𝑠3,4 = −𝜁3,4𝑤3,4 ∓ 𝑗𝑤𝑑 3,4 for the second output. The designed shapers will have  𝑙 = 4, hence 

𝒂 = [𝑎00 𝑎10  𝑎20𝑎30   𝑎40𝑎01 𝑎11  𝑎21𝑎31   𝑎41]
𝑇. The system input matrix for one of the outputs is: 

 

𝑩𝒋 = [
𝟎 𝑏𝑗0

0

𝟎 𝑏𝑗1
0

𝟎 𝑏𝑗0
1

𝟎 𝑏𝑗1
1

𝟎 𝑏𝑗0
2

𝟎 𝑏𝑗1
2 ]

𝑻

And the system input matrix for both outputs will be: 

 

𝑩 = [
0 𝑏10

0

0 𝑏11
0

0 𝑏10
1

0 𝑏11
1

0 𝑏10
2

0 𝑏11
2

0 𝑏20
0

0 𝑏21
0

0 𝑏20
1

0 𝑏21
1

0 𝑏20
2

0 𝑏21
2 ]

𝑇

             (8) 

 

The information in this newly formed input matrix B would allow us to design a different shaper for each of 

the inputs, and the P matrix then can be constructed from B and system poles of the segregated systems. 

Having all of the poles contained in the P matrix would also ensure that the designed shapers will suppress all 

modes of vibrations for both outputs. The shaper amplitudes vector 𝒂 can be obtained from solving 𝒂 =
𝑷ϯ𝑾 where 𝑾 in this example is a vector of eight zeros (eight poles) and two ones (as we have two shapers).  

𝑾 = [0    0    0    0 0    0    0    0   1    1]𝑇, and  
 

𝒑

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑏10

1 𝑏10
1 𝑒−𝑠1𝑇 𝑏10

1 𝑒−𝑠12𝑇 𝑏10
1 𝑒−𝑠13𝑇 𝑏10

1 𝑒−𝑠14𝑇 𝑏11
1 𝑏11

1 𝑒−𝑠1𝑇 𝑏11
1 𝑒−𝑠12𝑇 𝑏11

1 𝑒−𝑠13𝑇 𝑏11
1 𝑒−𝑠14𝑇

𝑏10
1 𝑏10

1 𝑒−𝑠1
∗𝑇 𝑏10

1 𝑒−𝑠1
∗2𝑇 𝑏10

1 𝑒−𝑠1
∗3𝑇 𝑏10

1 𝑒−𝑠1
∗4𝑇 𝑏11

1 𝑏11
1 𝑒−𝑠1

∗𝑇 𝑏11
1 𝑒−𝑠1

∗2𝑇 𝑏11
1 𝑒−𝑠1

∗3𝑇 𝑏11
1 𝑒−𝑠1

∗4𝑇

𝑏10
2 𝑏10

2 𝑒−𝑠2𝑇 𝑏10
2 𝑒−𝑠22𝑇 𝑏10

2 𝑒−𝑠23𝑇 𝑏10
2 𝑒−𝑠24𝑇 𝑏11

2 𝑏11
2 𝑒−𝑠2𝑇 𝑏11

2 𝑒−𝑠22𝑇 𝑏11
2 𝑒−𝑠23𝑇 𝑏11

2 𝑒−𝑠24𝑇

𝑏10
2 𝑏10

2 𝑒−𝑠2
∗𝑇 𝑏10

2 𝑒−𝑠2
∗2𝑇 𝑏10

2 𝑒−𝑠2
∗3𝑇 𝑏10

2 𝑒−𝑠2
∗4𝑇 𝑏11

2 𝑏11
2 𝑒−𝑠2

∗𝑇 𝑏11
2 𝑒−𝑠2

∗2𝑇 𝑏11
2 𝑒−𝑠2

∗3𝑇 𝑏11
2 𝑒−𝑠2

∗4𝑇

𝑏20
1 𝑏20

1 𝑒−𝑠3𝑇 𝑏20
1 𝑒−𝑠32𝑇 𝑏20

1 𝑒−𝑠33𝑇 𝑏20
1 𝑒−𝑠34𝑇 𝑏21

1 𝑏21
1 𝑒−𝑠3𝑇 𝑏21

1 𝑒−𝑠32𝑇 𝑏21
1 𝑒−𝑠33𝑇 𝑏21

1 𝑒−𝑠34𝑇

𝑏20
1 𝑏20

1 𝑒−𝑠3
∗𝑇 𝑏20

1 𝑒−𝑠3
∗2𝑇 𝑏20

1 𝑒−𝑠3
∗3𝑇 𝑏20

1 𝑒−𝑠3
∗4𝑇 𝑏21

1 𝑏21
1 𝑒−𝑠3

∗𝑇 𝑏21
1 𝑒−𝑠3

∗2𝑇 𝑏21
1 𝑒−𝑠3

∗3𝑇 𝑏21
1 𝑒−𝑠3

∗4𝑇

𝑏20
2 𝑏20

2 𝑒−𝑠4𝑇 𝑏20
2 𝑒−𝑠42𝑇 𝑏20

2 𝑒−𝑠43𝑇 𝑏20
2 𝑒−𝑠44𝑇 𝑏21

2 𝑏21
2 𝑒−𝑠4𝑇 𝑏21

2 𝑒−𝑠42𝑇 𝑏21
2 𝑒−𝑠43𝑇 𝑏21

2 𝑒−𝑠44𝑇

𝑏20
2 𝑏20

2 𝑒−𝑠4
∗𝑇 𝑏20

2 𝑒−𝑠4
∗2𝑇 𝑏20

2 𝑒−𝑠4
∗3𝑇 𝑏20

2 𝑒−𝑠4
∗4𝑇 𝑏21

2 𝑏21
2 𝑒−𝑠4

∗𝑇 𝑏21
2 𝑒−𝑠4

∗2𝑇 𝑏21
2 𝑒−𝑠4

∗3𝑇 𝑏21
2 𝑒−𝑠4

∗4𝑇

1             1 1             1              1 0          0           0                 0                    0
0             0 0             0              0 1 1           1 1                    1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 



  (9) 
 

By using system identification toolkit of MATLAB with the recorded step responses of the system in figure 1, 

a model of the system and its poles were derived. From the system model, input matrix 𝑩 as per equation (8) 

was identified and vector 𝒂 was calculated as per equations (7) and (9). The spacing between impulses was 

assumed to be the same for both shapers, and its value T was selected to have all impulse amplitudes for both 

shapers positive. Figure 3 shows the simulation results of both, direct and cross-coupling output responses 

when exciting one of the inputs only. Figure 4 shows the experimental results after applying the designed 

compensator on the actual piezoactuator. The simulation and experimental results show that the controller was 

greatly successful in suppressing vibrations for both the direct and the cross-coupling outputs. The 

suppression in the experimental results is not as good as in the simulation results due to some modeling error. 

To be more robust against modeling errors, the compensator performance towards having better vibrations 

suppression can be probably improved by increasing the number of impulses in each of the designed shapers, 

this will be on the expense of having more delay in the shaped inputs. 

 

 
Figure 3- Exciting one input and showing the cross coupling effect – simulation 

 

 
Figure 4- Exciting one input and showing the cross coupling effect – experimental 
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Figures5 and 6 show the simulation and experimental results for the compensated and non-compensated 

outputs when we fully excite both inputs. As the selected spacing time T is ¼ of the system fundamental 

frequency and shapers are constituted from four impulses, the near-zero vibrations happen exactly after a 

complete cycle of the non-compensated response in both, the simulation and experimental results.  

 

To examine the effectiveness of the designed controller the frequency responses of the compensated and un-

compensated, direct and cross-coupling systems were plotted in figure 7. These results evidence the reduction 

of the resonance peaks in the direct transfers and in the cross-couplings which therefore demonstrate the 

efficiency of the approach.  

 
Figure 5- Exciting both inputs and showing both outputs, compensated and non-compensated - simulation 

 

 

 
Figure 6- Exciting both inputs and showing both outputs, compensated and non-compensated – experimental 
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Figure 7- Compensated and un-compensated system frequency responses 

 

5 – CONCLUSION AND PERSPECTIVES 

This paper proposed the damping of vibrations in oscillating multi-DOF systems with an application to a 2-

DOF piezoelectric cantilevered actuator by using feedforward controllers. Such systems are characterized by 

badly damped vibrations in both the direct transfers and in the cross-couplings transfers. These vibrations are 

unwanted since they decrease the overall performances of the systems, strongly compromise their stability 

and render difficult the synthesis of closed-loop controllers. The paper proposed therefore to compensate for 

the vibrations by extending into multi-input-multi-output the multi-input-single-output zero placement input 

shaping technique. Experiments were carried out and confirmed the efficiency of the approach. 
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