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Abstract. The need for prediction of shear viscosity of fliicbarticle charged Micro Injection
Molding at mesoscale, by modelling a whole systartighe-polymer with inter-dependencies, permits
to establish a more realistic feedstock viscosiymilation. The applicability of non-equilibrium
molecular dynamics (NEMD) is investigated for thetedmination of shear viscosity of melts
composed of particles/polymers in microcavitiesMIIEis used to simulate planar Poiseuille flow of
metallic particle-polymer melt. Simulations are wad out using molecular dynamics simulation
package ESPResSo. The variation of viscosity fadenperature is in agreement with theoretical
results. Simulations are compared to experimente @quivalent viscosity formulation is tuned
according to NEMD simulation results, and impleneenin a MIM solver built up by the authors.
MIM simulations are compared to previously impleteensimulations using another equivalent
viscosity formulation based on experiments forcdee of mono-injection moulding.

Résumeé.Le papierpropose une approche de la viscosité & I'échelleaséopique de cisaillement,
pour des mélanges fortement chargés en poudreiségtien moulage par injection de poudres
métalliques. Cette modélisation pour la prédictins réaliste de la viscosité est basée sur I'étude
des interactions d'un systéme liants thermoplastigparticules en utilisant une méthode de
dynamique particulaire (DPD) en particulier la métte NEMD (non-equilibrium molecular
dynamics). Les développements numériques ont &liéé® en utilisant le logiciel ESPResSo. Des
simulations de remplissage de micro-cavités ontrésfisées en prenant en compte la viscosité a
I'échelle mésoscopique et un modéle équivalentéadéveloppé par les auteurs pour prendre en
compte la taille des particules ainsi que le tawx aharge en poudres. Les résultats numériques
obtenus sont prometteurs et encourageants pouetiayv

Keywords: Injection moulding, Shear viscosity, Non-equilibriunolecular dynamics, Dissipative
Particle Dynamics.

1 Introduction

The knowledge of shear viscosity in Metal InjectMoulding (MIM) is a key factor to carry out redlts
numerical simulations [6,7]. So far, the viscosifyfluids is determined by the mean of experimeaotet
associated to phenomenological laws that involvweersé parameters such as polymer grades, powder
contents, metallic particle size and temperaturth®fmelt. Statistical mechanics provides a welkdadshed
link between microscopic equilibrium states andriimynamics. If one considers systems out of
equilibrium, the link between microscopic dynamipabperties and non-equilibrium macroscopic sties
more difficult to establish [1,2]. For systems lyinear equilibrium, linear response theory provigegy to
derive linear macroscopic laws and the microscepigressions for the transport properties that ethier
constitutive relations in these laws. If the systemdisplaced far from equilibrium, no fully genketiaeory
exists to treat such systems. By restricting cansition to a class of non-equilibrium states, agsirom
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perturbations (linear or non-linear) of equilibritstate, methods can be developed to treat nonHeduih
states. Furthermore, non-equilibrium molecular dyica (NEMD) simulation methods can be devised to
provide approximations for transport propertiesttifse systems. In non-equilibrium molecular dynamic
simulations of steady states, the thermostat ggedt importance. The thermostat used here is #tkad of
Dissipative Particle Dynamics (DPD). Many outlirefsDPD discuss two aspects, first, soft particldgchv
should represent a cluster of atoms, second, a momeconserving stochastic thermostat added inrdode
model the internal degrees of freedom, which regualtdissipation. As it is stipulated in [3], it lisgitimate

to use the DPD thermostat also for simulations \Wihd particles. A standard Molecular Dynamics (MD)
system with an added DPD thermostat is run, thebsdyg able to afford a substantially larger tineps
compared to pure MD, and nevertheless correctlyorkpring hydrodynamic behaviour.

2 Feedstock viscosity formulation

Since the viscosity relationship established byst&im, many studies have attempted to establish
phenomenological equations to model the viscosity a@oncentrated medium. The first of them have
emerged in the mid 30century. A new model, named equivalent viscosigdel, is proposed to take into
account 4 parameters: solid volume fractignshear ratg/, temperaturd and particles size,, ds. and

dgg. This model is a power law viscous terms, an ailwecnergy term, a term that is related to solid
loading and a term that account to the powderigiz® average way. The viscosity value is expreased
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where 7 is the viscosityy, the apparent viscosity, the solid volume fractiong, the maximum solid
volume fraction,d,, particle size at 10%yqs. particle size at 50%yqy, particle size at 90%. Parametexs

and B are determined to fit best the experimental dBite. feedstock is modelled as a system composed of
FeNi metallic particles and polymeric binder.

3 Molecular system modelling

3.1 NEMD Algorithm for Shear

Green and Kubo [9] showed that the phenomenologimelficients describing many transport processes
and time-dependent phenomena in general could itienvas integrals over a certain type of functailed
a time-correlation function. The Green-Kubo fornsukre the formal expressions for hydrodynamic field
variables and some of the thermodynamic propeitiegsrms of the microscopic variables of ldxparticle
system. The identification of microscopic expressidor macroscopic variables is made by a procéss o
comparison of the balance and conservation equabbhydrodynamics with the microscopic equatiohs o
change for conserved densities. The importancdedet formulas is three-fold: they provide an obsiou
method for calculating transport coefficients ustwmputer simulation, a convenient starting pomt f
constructing analytic theories for non-equilibriggmocesses, and an essential information for desygnon-
equilibrium molecular dynamics algorithm. The Gréarbo formula for the shear viscosity is given by

_V
1= [} )R, (OB, ) 2
whereF,; is an off-diagonal § # f) is expressing the viscous pressure tersisrthe Planck constarn.

andT are the volume and temperature of the polyatorhim,f respectively. Angle brackets denote an
equilibrium ensemble average.
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wherev,, andv,, are thea and s components of the velocity of partider;, is thea component of
the distance between the partidlesdj, and F; ; is the 5 component of the force of their interaction.

The general principle of the Non-Equilibrium MolémuDynamics (NEMD) method [1] is to introduce a
possibly fictitious external field X into the systemotion equations which derives the corresponding
thermodynamic fluxJ. The first requirement for this applied field tat it should be consistent with the
periodic boundary conditions to ensure that theuktion box remains homogeneous. The second
requirement is that the transport coefficigndf interest can be calculated from the constittdation:

i 0O
r= 3, L"ILLTJ 4
Historically two approaches were proposed to siteulwids under shear: the boundary driven algaorith

and the Sllod algorithm. In the boundary driven et a modification of the boundary conditions el

to simulate systems far from equilibrium. For exénjhees-Edwards boundary conditions [8] can beluse
to model shear flow. The shortcoming of this apphoe the lack of an explicit external field asvirg
force in the equations of motion. Therefore, idii§icult to link the results with the Green-Kubelations or
the study transitional flows.

The Sllod algorithm [1], a standard method usinghbgeneous Lees-Edwards sliding brick boundary
conditions, still uses Lee-Edwards boundary cood#tj but also incorporates the flow field into the
equations of motion. It is the most efficient teicjue for calculating the shear viscosity. This noetthas
been chosen to study polymeric chains and metadiiticles under shear. This algorithm sets up adgte
state planar Couette flow with the two plates mgvim oppositex directions located ay =+« so that the
streaming velocity has a non-zero component inittieection.

Following Evans and Morriss [1] the equations ainslational motion for the center of mass in a
molecular fluid are given by:

=204 mu
m 5)
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Whereu=(ux,0,0) with u, =y is the velocity field corresponding to planar Cieidlow. r;, m, and p;
are respectively the position vector, mass and méume of particle. F; is the force applied to particie

These equations of motion are combined with thesiEswards “sliding brick” boundary conditions [8].
In the absence of the thermostat and the isobarstint, the terms in equation (4) involving gteain
field, y, cancel to yield Newton's equations of motion tielg r; and F;. This implies that the Sllod
algorithm truly generates boundary driven planané@® flow, leading to the conclusion that it isrect to
arbitrary order in the strain rate [1]. In order dabtain a good signal-to-noise ratio, with NEMDist
necessary to use strain ragesvhich are high enough to cause the shear visctslye strain rate dependent.
In order to compute the shear viscosity of a Newtorfluid using the Sllod algorithm, after the siation
reaches the steady state at a given strainprai@e computes and averages the pressure tensoediéfi
equation (2). The strain rate dependent shearsityas then obtained from Newton’s law of viscgsit

_ By *+Py
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where B, and R, are the averagedy and yx components of?. From kinetic and mode coupling
theories, to leading order the strain rate deperelen the shear viscosity is linear jh2. Hence, to apply

the Sllod algorithm to a Newtonian fluid, one penfie several simulations at differing strain rageand fits
the resulting strain dependent viscosities to theagon:
=1+ ’711’]/2 7)

The zero strain rate extrapolation gf 77,, corresponds to the Newtonian viscosity.
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3.2 Shear Viscosity Simulation Setup

The hydrodynamics boundary conditions result froteractions between the fluid particles and the
walls. Depending on the microscopic structure efwhall/fluid interface, these can be quite complaxhis
approach, boundaries are replaced by hard planfacss, and the unknown atomistic forces by arcaffe
coarse-grained friction force between the fluidtiples and the walls. This leads to a dissipatibrine
kinetic energy and therefore to a decelerationargl®f the fluid close to the boundaries. The fsg slip
length depends on the strength of the friction dorthe effect of boundary conditions is modellethgis
partial-slip boundary interactions added to Lenakdes boundary interaction to mimic the wall rejwa
effect.

The system is composed Mfparticles andM polymers composed &fiB beads each. A squared-section
channel of size&,*L,*L, is modelled. Four thin layers perpendicular to yhexis, with distancé,/4, were
chosen for driving in thex and-x direction, respectively.

Interparticle spherically symmetric potentials @@ntinuous in order to set up a standard Molecular
Dynamics procedure using the Velocity-Verlet althori [4], and short-ranged, in order to keep the lmemm
of force calculations at minimum. A convenient aw®ofor this is a truncated and shifted Lennard-9dr6
potential. One will henceforth use the Lennard-3ouneits where LJ parameters are chosen according to
material characteristics. Beads of three differgrdcies (Polypropylene PP, paraffin wax PW andristea
acid SA) are considered, which interact throughdeshinteractions. From the polymer simulationssit i
known that it is computationally efficient to linke dimmers via harmonic Finite Extensible Nonlmea
Elastic springs. After experimental verification laboratory, Coulomb interactions are neglecteddaio
other interactions.

Figure 1(a) shows shear viscosity simulation resoifttained using ESPResSo [5] for a Poiseuille flow
a square section micro-channel for a melt den8®%t, at several temperaturkesl (noted T in Figure 1).
Figure 1(b) exposes results for two different féedss with different powder charge loading and bkind
proportions. As expected, a temperature raise @aplicrease of shear viscosity. High proportiopaavder
charge implies decrease of shear viscosity. Powtarge loading has a more obvious impact on shear
viscosity than DPD temperature.
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FIG. 1. (a) Shear viscosity of feedstock composed of 6@omailetallic particles and 40 vol% binder at
several DPDtemperatures, (b) Shear viscosity afdeeks at DPD temperature 1 for several feedstocks
composition.

4 Simulation of metal injection molding injection stage

Numerical simulations of the injection process wearied out for 2D mold cavities with the
implementation of the equivalent viscosity formidat In case A, a Finite Element Method is employ@d
solve Navier-Stokes equations and Streamline-UpiFietlov-Galerkin method for the solving of the
transport equation [6]. Figure 2 relates the adeawfcthe filling front for both constany(=10° Pa.§ and
equivalent viscosity formulation defined by equat{@). Global filling ratio progress is highlightédfigure
3. No-slip boundary conditions are imposed, velo@timposed on inlet and a zero pressure imposed o
outlet. In case B, the solving procedure involvesmbination of Finite Differences/Finite Elemenéettiods
for solving the coupled Navier-Stokes and transpqrtations [7]. Comparisons of simulations impletedn
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with both constant £=10° Pa.9 and variable viscosity formulation (equation (4j highlighted. Figure 4
stands for the advance of the filling front for lb@bnstant and variable viscosity formulation. Gliofilling
ratio progress is highlighted figure 5. No-slip bdary conditions are imposed, velocity is imposedntet
and traction condition is imposed on outlet. Fothbcases, one will note that less diffusion of titiang
front and more complete filling of the mould cavése achieved using the variable viscosity formatat

(@)

(b)
FIG. 2. Filling front advance at for significant time stdps constant (a) and equivalent viscosity (b)
formulation in the case A.
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FIG. 3. Filling ratio evolution for constant and equivaleigcosity formulations in case A.
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FIG. 4. Advance of the filling front at for significant tensteps for constant (a) and equivalent viscobity (
formulation in the case B.
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FIG. 5. Evolution of the filling ratio for constant and egalent viscosity formulations in case B.

5 Conclusion

NEMD is revealed a proper tool to describe a partitharged fluid under shear strain rates to olitaén
shear viscosity. Shear viscosity results are ir@gent with the theory concerning temperature trans.
Numerical simulations of the injection molding pess show very interesting results by the use of the
proposed equivalent viscosity formulation. A furtstep in the implementation of NEMD simulationéngs
ESPResSo will consist in simulating feedstocks wifferent powder compositions and binder/partreigo
in order to tune the equivalent viscosity formwati
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