
Covering both Stack and States while Testing
Push-down Systems

P.-C. Héam
FEMTO-ST

Université de Franche Comté - CNRS - INRIA
16 route de Gray - 25030 Besançon, France

H. M’Hemdi
FEMTO-ST

Université de Franche Comté - CNRS - INRIA
16 route de Gray - 25030 Besançon, France

and
LIP2 Laboratory and INSAT,

University of Carthage, Tunisia

Abstract—In this paper we address the problem of generating
abstract test cases from a system modelled by a push-down
automaton. Existing classical coverage criteria are based on
states, transitions or loops in the automaton. This paper is
based on a known theoretical result claiming that the accessible
stack configurations in a push-down automaton form a regular
language. We propose a new coverage criteria based both on
states and on the configurations of the stack. Experimental results
on a model of the Shunting Yard Algorithm are also presented.

Keywords-Model based Testing, Push-down automaton, Cover-
age criterion

I. INTRODUCTION

The development of safe, secure and bug-free programs is
one of the most difficult problems of computer science. Testing
is an important activity during the development process to
ensure system quality. There exist two classes of testing: (1).
structural or ”white-box” testing that is based on the analysis
of the source code of the implementation, (2). functional or
”black-box” testing that consists on comparing the system
under test to a specification. Systems are commonly modelled
by means of transition systems such as finite automata, etc.
Model-based testing (MBT) [1] is a technique to validate soft-
ware systems by generating finite size test cases automatically
from models. The context of this paper is to generate test
cases from a push-down automata that are automata equipped
with a stack, and can be used for modelling recursive systems,
parser and compiler or programm with a stack. Testing is
often incomplete by nature. It cannot cover all possible system
behaviors. Coverage criteria qualify the relation between test
cases and model. There are different kinds of structural cov-
erage criteria as code statements, decisions, conditions and
decisions, etc. In model based testing, coverage criteria are
based on the model and concern states, transitions, loops, etc.

We propose in this paper a new coverage criterion for
systems modelled by push-down automata. The criterion is
based both on the states of the system and of the possible
stack configurations, allowing to cover both control and data
parameters. The approach has been implemented and experi-
mented on a model of the Shunting Yard Algorithm.

The paper is organized as follows: Section I-A is dedicated
to present the related work. Useful formal definitions are

presented in Section I-B. The main contributions are addressed
in Section II where it is shown how to generate the abstract test
cases. Finally, experimental results are presented in Section III.

A. Related Work

Testing from Finite State Machines. A finite state
machine [2] [3] has a finite set of states and a labeled
transition relation between the states. It is frequently used
in model based testing. It is used to extract the test cases.
There exist many tools for generatin test from a finite
state machine, for example SpecExplorer [4] and TGV [5].
Coverage criteria will be used to guide generation of new test
cases for examples coverage states and transitions.

Test Generation from Push-down/Grammar Systems. Push-
down (like) systems are frequently used in model based
testing. Test generation from a grammar is frequently used
for generating structured inputs for example in [6] for testing
parser or refactoring engines [7]. A generic tool exploiting
coverage criteria for generating test data from grammars has
been proposed in [8]. In [9][10][11] several approaches for
random testing from grammar specifications are proposed. A
method of biased random grammar-based testing for covering
all non-terminals symbols of a grammar is proposed in [12].
Random testing on push-down automata are investigated
in [13] and [14]

Reachability in Push-down Automata. The reachability
problem is the problem of deciding whether an automaton
can reach a particular location from an initial location. This
problem is decidable [15], [16]. Finkel et al. [15] propose
a polynomial method for checking locations reachability in
push-down automata.

B. Formal Background

If X is a finite set, X∗ denotes respectively the set of finite
words over X . The empty word (on every alphabet) is denoted
ε. In this paper Σ denotes a finite alphabet.

A finite automaton with ε moves (or simply a finite au-
tomaton) is a tuple (Q,Σ,∆, I, F ) where Q is a finite set of
states, Σ is a finite alphabet, I ⊆ Q is the initial state, F is



q0 q1 q2

ε

b
a

Q = {q0, q1, q2}
I = {q0}, F = {q2}
∆ = {(q0, ε, q1),
(q1, b, q0)(q1, a, q2)}

Fig. 1. Example of finite automaton.

the set of final states and ∆ ⊆ Q × (Σ ∪ {ε}) × Q is the
set of transitions. A successful path in a finite automaton is a
(possibly empty) finite sequence of elements of Q×Σ×Q of
the form (p1, a1, q1) . . . (pn, an, qn) such that p1 ∈ I , qn ∈ F
and for each i, qi = pi+1 and (pi, a, qi) ∈ ∆. The integer n is
the length of the path and a1 . . . an is its label. The language
accepted by a finite automaton is the set of words which are
the label of a successful path. Given two states p and q we
write p→∗ε,∆ q if there exists a path in the automaton from p
to q labeled by ε. An example of finite automaton is depicted
on Fig. 1. In this example, (q0, ε, q1)(q1, a, q2) is a successful
path: the word εa = a is accepted. The accepted language is
b∗a.

A normalized push-down automaton (NPDA for short) is a
tuple A = (Q,Σ,Γ,∆, I, F ) where Q is a finite set of states,
Σ and Γ are disjoint finite alphabets – Σ is the alphabet of
the actions and Γ is the stack alphabet – ⊥ ∈ Γ, qinit ∈ Q
is the initial state, F is the set of final states and ∆ is a
subset of Q × Σ × Q ∪ Q × (Γ × {+,−}) × Q is the set
of transition. A transition of the form (p, a, q) with a ∈ Σ is
called an action-transition; a transition of the form (p,X,+, q)
(resp. (p,X,−, q)) is called a push-transition (resp. a pop-
transition. A configuration is a pair (p, w) where p ∈ Q
and w ∈ Γ∗. An example of NPDA is depicted in Fig. 2.
In this example, Q = {q0, q1, q2, q3, p0, p3}, Σ = {a, b},
Γ = {X,Y }, I = {q0}, F = {q3}, the action-transitions
are (q0, b, p0), (q1, a, q2) and (p3, a, q3), the push-transition
are (p0, X,+, q0) and (q0, Y,+, q1), and the pop transitions
are (q2, Y,−, q3) and (q3, X,−, p3).

q0 q1

p0

q2 q3

p3

aY,+ Y,−
b X,+ X,− a

Fig. 2. Example of NPDA.

An initial configuration is a configuration of the form
(qinit, ε), with qinit ∈ I . Let (q, u) be a configuration and d
be a transition. We denote by (q, u) ·d the configuration (p, v)
such that either u = v and there exists an action transition
of the form (p, a, q), or v = uX and there exists a push
transition of the form (p,X,+, q), or vX = u and there exists
a pop transition of the form (p,X,−, q). Two configurations
C1 and C2 are consecutive if there exists a transition d such

that C2 = C1 · d. In the NPDA of Fig. 2, there is a unique
initial configuration: (q0, ε). One has for instance (q1, XY ) ·
(q1, a, q2) = (q2, XY ) and (q2, XY )·(q2, Y,−, q3) = (q3, X).

We inductively extend the notation · to non empty fi-
nite sequences of transitions: C2 = C1 · (d1d2 . . . dk) =
(C1ḋ1)(̇d2 . . . dk). The notation implicitely implies that all the
envolved configurations exists. A path in a NPDA from C1

to C2 is a finite sequence of transitions d1 . . . dk. such that
C1 · d1 . . . dk = C2. It is successful if C1 is initial and C2

is of the form (p, ε) with p ∈ F . In the NPDA of Fig. 2,
the path (q0, Y,+, q1)(q1, a, q2)(q2, Y,−, q3) is successful. A
configuration (p, w) is said accessible if there exists a path
from the initial configuration to (p, w). It is said co-accessible
if there exists a path from (p, w) to a configuration of the form
(q, ε), with q ∈ F . A transition which is both accessible and
co-accessible is said fair. It corresponds to the configurations
that are visited by successful paths.

The following result is proved in [15], [16] and is the
theoretical base of our work.

Theorem 1. Let A be a NPDA. For each state s, one can
compute in polynomial time a finite automaton As on Γ
accepting exactly the set of words v such that (s, v) is an
accessible configuration.

The automaton As is computed using the Algorithm 1. Note
that all the automata As’s are equal up to the final state: it
suffices to run the algorithm only once to get all of them.

Algorithm 1
Inputs: a NPDA A = (Q,Σ,Γ,∆, I, F ) and s ∈ Q
Output: As

1: ∆0 := ∅
2: ∆1 := {(p,X, q) | (p,X,+, q) ∈ ∆}
3: ∆1 := ∆1 ∪ {(p, ε, q) | (p, a, q) ∈ ∆}
4: while ∆0 6= ∆1 do
5: ∆0 := ∆1

6: for (p,X, q) ∈ ∆1 do
7: for (r,X,−, t) ∈ ∆ do
8: if q →∗ε,∆1

r then
9: ∆1 := ∆1 ∪ {(p, ε, t)}

10: end if
11: end for
12: end for
13: end while
14: return (Q,Σ,∆1, qinit, {s})

Applying Algorithm 1 to the NPDA of Fig. 2, after the third
line, one has the automaton depicted in Fig. 3

One has (q0, Y, q1) ∈ ∆1, (q1, Y,−, q3) ∈ ∆ and q1 →∗ε,∆1

q2, therefore, at Line 9, the transition (q0, ε, q3) is added to
∆1. At the next loop, the transition (p0, ε, p3) is added to ∆1.
The automaton Aq3 is depicted in Fig 4: the stack in q3 is in
X∗. A similar computation will show that the stack in q1 is
in X∗Y .



q0 q1

p0

q2 q3

p3

εY

ε X ε

Fig. 3. Runing Algorithm 1, Line 3.

q0 q1

p0

q2 q3

p3

ε

ε

Y

ε X ε
ε
ε

ε

Fig. 4. Runing Algorithm 1

II. TESTING USING PUSH-DOWN AUTOMATA

The objective is to generate successful paths for a given
NPDA according to a coverage criterion based on its fair con-
figurations. For this purpose, it will be necessary to generate
successful paths visiting a given configuration (Section II-A).
The coverage criterion will be defined in Section II-B as well
as the testing algorithm.

A. Building Successful Paths

The goal of this section is to show how to generate a
successful path visiting a given fair configuration of a NPDA.
This is done in two steps. The first one consists in describing
how to generate a path from an initial state to a given
accessible configuration of a NPDA. Next we explain how
to to generate a path from a co-accessible configuration to a
final state.

Given a NPDA A = (Q,Σ,Γ,∆, I, F ) and an accessible
configuration (s, w), by Theorem 1, w is accepted by As. First
we build a partial function E from Q×Q into {⊥}∪∆∗ such
that p→∗ε,As

q iff E(p, q) 6= ⊥. Moreover, and for every p, q,
if E(p, q) 6= ⊥, then (p, ε) · E(p, q) = (q, ε).

Using Algorithm 2 on the example of Fig.2, we obtain
four ε-transitions (see Fig 4). In this example, E(q1, q2) =
(q1, a, q2), E(q0, p0) = (p0, b, q0), E(q3, p3) = (q3, a, p3).

E(q0, q3) = (q0, Y,+, q1)E(q1, q2)(q2, Y,−, q3)

= (q0, Y,+, q1)(q1, a, q2)(q2, Y,−, q3)

and

E(p0, p3) = (p0, X,+, q0)E(q0, q3)(q3, X,−, p3)

= (p0, X,+, q0)(q0, Y,+, q1)(q1, a, q2)

(q2, Y,−, q3)(q3, X,−, p3).

Moreover, E(q0, p3) = E(q0, p0)E(p0, p3) and E(p0, q3) =
E(p0, p3)E(p3, q3).

Algorithm 2
Inputs: a NPDA A = (Q,Σ,Γ,∆, I, F ).
Output: A partial function E from Q×Q into {⊥} ∪∆∗.

1: for p, q ∈ Q do
2: E(p, q) = ⊥
3: end for
4: for (p, a, q) ∈ ∆ do
5: E(p, q) = (p, a, q)
6: end for
7: ∆0 := ∅
8: ∆1 := {(p,X, q) | (p,X,+, q) ∈ ∆}
9: ∆1 := ∆1 ∪ {(p, ε, q) | (p, a, q) ∈ ∆}

10: while ∆0 6= ∆1 do
11: ∆0 := ∆1

12: for (p,X, q) ∈ ∆1 do
13: for (r,X,−, t) ∈ ∆ do
14: if (q, ε, r) ∈ ∆1 then
15: ∆1 := ∆1 ∪ {(p, ε, t)}
16: if E(p, t) = ⊥ then
17: E(p, t) = (p,X,+, q)E(q, r)(r,X,−, t)

18: end if
19: end if
20: end for
21: end for
22: for (p, ε, q) ∈ ∆1 do
23: for (q, ε, r) ∈ ∆1 do
24: if (p, ε, r) /∈ ∆1 then
25: ∆1 := ∆1 ∪ {(p, ε, r)}
26: if E(p, r) = ⊥ then
27: E(p, r) = E(p, q)E(p, r)

28: end if
29: end if
30: end for
31: end for
32: end while
33: return E

The following result can be easily checked.

Proposition 2. Let w ∈ L(Ap) and
(p1, a1, p2) . . . (pk, ak, pk+1) be a successful path accepting
w (in particular pk+1 = p). For each (pi, ai, pi+1) let
di = (pi, ai,+, pi+1) if ai ∈ Γ and di = E(pi, pi+1) if
ai = ε. One has (p1, ε) · (d1 . . . dk) = (p, w).

Proposition 2 allows the construction of a path in A
from an initial configuration to a given accessible con-
figuration (p, w). Consider for instance in Aq3 the suc-
cessful path (q0, ε, p0)(p0, X, q0)(q0, ε, q3). One has d1 =
E((q0, p0)) = (q0, b, p0), d2 = (p0, X,+, q0), d3 =
E(q0, q3) = (q0, Y,+, q1)(q1, a, q2)(q2, Y,−, q3).

Now, from the automaton A = (Q,Σ,Γ,∆, I, F ), one can
define for each transition d ∈ ∆, the tuple dR as follows:
if d = (p, a, q), then dR = (q, a, p); if d = (p,X,+, q),
then dR = (q,X,−, p) and if d = (p,X,−, q), then dR =



(q,X,+, p). Set AR = (Q,Σ,Γ,∆R, F, I), with ∆R = {dR |
d ∈ ∆}. Notice that initial and final states are switched. The
reverse of the NPDA of Fig. 2 is depicted in Fig. 5.

q0 q1

p0

q2 q3

p3

aY,−
Y,+

bX,− X,+a

Fig. 5. Example of reversed NPDA

One can easily check the following result.

Proposition 3. A configuration (p, w) is co-accessible in A
iff it is accessible in AR. Moreover (q, ε) ∈ (p, w) · d1 . . . dk
(in A), with di ∈ ∆, iff (p, w) ∈ (q, ε) · dRk . . . dR1 (in AR).

Therefore, combining Propositions 2 and 3, one can com-
pute in polynomial time a successful path in A visiting a given
accessible and co-accessible configuration.

B. Coverage Criterion and Abstract Test Cases Generation

Our goal is to cover both the states of the push-down
automaton (modeling the possible configurations of the sys-
tem under test) and the stack configurations (modeling the
possible stack configurations). Our approach is based on state
coverage but can easily be adapted to transition coverage.
Let A = (Q,Σ,Γ,∆, I, F ) be a push-down automaton.
We define the mapping π from the set of configurations of
A as follows: π((p, w)) is the subset of {p} × Q of the
form (p, q) where q is a state reachable in Ap reading w
and q is co-accessible in Ap. For instance, using Fig. 4,
π((q3, XY )) = ∅ since the two reachable states reading XY
are q1 and q2 that are not co-accessible in Aq3 . One also
has π((q3, X)) = {(q0, p0, p3, q3)}. A successful path of A
visits a pair (p, q) if it contains a configuration C such that
(p, q) ∈ π(C).

Our goal is to generate a set of successful paths of A
covering all the possible pairs (p, q). To this purpose, we use
Algorithm 3, which is not optimized for generation a minimal
number of tests (but is performed in polynomial time). The
idea is to simply pick arbitrarily a non covered pair and to
generate a test case for it.

Testing whether (p, q) can be visited (Line 7) is done using
Theorem 1. The computation of a successful path (Line 10)
is performed using the approach developed in Section II-A.

III. CASE STUDY: THE SHUNTING YARD ALGORITHM

In this section, we present an example of NPDA in
Sec. III-A. We present the performance of our method on this
example.

Algorithm 3
Inputs: a NPDA A = (Q,Σ,Γ,∆, I, F ) Output: A set of
paths fulfilling the coverage criterion.

1: C = Q×Q
2: Choose an arbitrarily successful path π
3: S = {π}
4: Remove from C all the pairs visited by π.
5: while C 6= ∅ do
6: Choose arbitrarily (p, q) in C
7: if (p, q) cannot be visited then
8: C = C \ {(p, q)}
9: else

10: Let π be a successful path visiting (p, q)
11: Remove from C all the pairs visited by π.
12: S = S ∪ {π}
13: end if
14: end while
15: return S

A. Push-down Automata for Shunting Yard Algorithm

A shunting yard algorithm1 is proposed by Dijkstra for
converting mathematical expressions from the usual infix
notation to the reverse Polish notation. For example, the
expression 3 + 4 ∗ (2 − 1) become 3 4 2 1 − ∗ + in the
reverse Polish notation. A shunting yard algorithm is modelled
by a NPDA in [14]. The tested C-implementation of the
shunting yard algorithm is also given in [14] and comes from
wikipedia. Figure 6 illustrates this NPDA that takes into
account only the ” + ” and ” ∗ ” operators. The stack labels
are {Z,X+, X(, X∗}. The read transitions model what is read
from the input, while the write transitions model what is
written in the output. The label read x or write x mean the
input or the output of a digit in {0, 1, ..., 9}. The label EOI
denotes that there is nothing more to be read on the input.

B. Oracle and Concretization

After test generation, it remains to execute them on the
implementation. If a NPDA are abstractions of systems as in
our application, then, it may exist some test cases that do not
correspond to any concrete execution of the system under test.
The powerful advantage of our example is that all generated
test cases are concretizable. The input and the output of the
program can be computed from a given test case: the first step
consists in extracting the labels of input and output transitions
for each test cases. Then, for each read x, write x, the value
of x is replaced by a digit in {0, ..9}. This value is randomly
chosen.

Example 4.
Let π = (qinit,push(Z), q0)(q0, read x, qd)(qd,write x, q0)
(q0, read ∗, q∗)(q∗,pop(Z), q4)(q4,push(Z), q∗end)
(q∗end,push(X∗), q0)(q0, read x, qd)(qd,write x, q0)
(q0, read +, q+)(q+,pop(X∗), q+∗)(q+∗,write ∗, q+)

1http://en.wikipedia.org/wiki/Shunting-yard algorithm



qinit q0

qd q+

q++ q+∗

q+end

q1

q2

q∗q∗∗

q3

q4

q5

q∗end

q)

q)∗ q)+

q8 q6q7qf

q(

read (

push (X()

push(Z)

read x
write x

read +

pop(X+)

write + pop(X∗)

write ∗
pop(Z) push(Z)

pop(X()

push(X()

push(X+)

read ∗

pop(X∗)

write ∗ pop(X+)

pop(Z)

pop(X()

push(X+)

push(Z)

push(X()

push(X∗)

read )

pop(X()

pop(X∗)

write ∗

pop(X+)

write +

EOI

pop(X+)

write +pop(X∗)

write ∗

pop(Z)

Fig. 6. The normalized push-down automaton for the shunting-yard algorithm

(q+,pop(Z), q1)(q1,push(Z), q+end)(q+end,push(X+), q0)
(q0, read x, qd)(qd,write x, q0)(q0, EOI, q8)
(q8,pop(X+), q6)(q6,write +, q8)(q8,pop(Z), qf ) be a path,
the sequence of the input and output transitions is read x
write x read ∗ read x write x read + write ∗ read x
write x write +. We can obtain the following expression
read 6 write 6 read ∗ read 3 write 3 read + write ∗ read 5
write 5 write + by replacing the value of x randomly. Thus,
the input mathematical expression is 6 ∗ 3 + 5 and the output
is 6 3 ∗ 5 +.

For each test case, an input and an output are computed
(in the automaton). The input is run on the implementation
and the ouput (of the programm) is compared to the output
on the NPDA. If they equals, the test is successful, else, the
implementation is not conform to the model.

A Java prototype has been implemented. Following the
described approach we obtained 47 test cases that are all
concretizable. It takes about 28.12 seconds on windows 7 64
bit, it covers 100% of the reachable transitions of the NPDA.

Secondly, we have generated 100 modifications (mutations)
of the code, introducing bugs in order to evaluate whether
their were detected by the test suit. These mutations have
been generated using a freely available tool developed by Arun
Babu and called Mutate2. Using the generated test suits, all

2A copy of this code is available at http://members.femto-st.fr/
pierre-cyrille-heam/mutatepy

the mutants have been detected.

IV. CONCLUSION

In this paper we proposed a new coverage criterion for
testing systems modelled by push-down automata. The abstract
test cases can be generated in polynomial time. Experimental
results are encouraging. In the future, we plan to test the
approach on larger systems or program, as parsing programs.

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297–312, 2012.

[2] T. S. Chow, “Testing software design modeled by finite-state machines,”
Transactions on Software Engineering, vol. SE-4, no. 3, pp. 178–187,
1978.

[3] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,” The Journal of Software Testing,
Verification and Reliability, vol. 13, pp. 25–53, 2003.

[4] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,
and M. Veanes, “Testing concurrent object-oriented systems with spec
explorer,” in FM, ser. LNCS, vol. 3582. Springer, 2005, pp. 542–547.

[5] C. Jard and T. Jron, “Tgv: theory, principles and algorithms, a tool for
the automatic synthesis of conformance test cases for non-deterministic
reactive systems,” Software Tools for Technology Transfer (STTT), vol. 6,
October 2004.

[6] P. Purdom, “A sentence generator for testing parsers,” BIT Numerical
Mathematics, vol. 12, no. 3, pp. 366–375, 1972.

[7] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing
of refactoring engines,” in ESEC/FSE 2007: Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering.
New York, NY, USA: ACM Press, September 2007.



[8] Z. Xu, L. Zheng, and H. Chen, “A toolkit for generating sentences from
context-free grammars.” in SEFM. IEEE Computer Society, 2010, pp.
118–122.

[9] B. McKenzie, “Generating strings at random from a context free
grammar,” 1997.

[10] T. Hickey and J. Cohen, “Uniform random generation of strings in a
context-free language,” SIAM Journal on Computing, vol. 12, no. 4, pp.
645–655, 1983.

[11] P. Héam and C. Nicaud, “Seed: An easy-to-use random generator of
recursive data structures for testing,” in IEEE Fourth International
Conference on Software Testing, Verification and Validation, ICST 2011,
Berlin, Germany, 21-25 March 2011. IEEE Computer Society, 2011,
pp. 60–69. [Online]. Available: http://dx.doi.org/10.1109/ICST.2011.31

[12] A. Dreyfus, P. Héam, and O. Kouchnarenko, “Random grammar-based
testing for covering all non-terminals,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp.
210–215.

[13] P.-C. Héam and C. Masson, “A random testing approach using pushdown
automata,” in Tests and Proofs, ser. LNCS. Springer, 2011, vol. 6706,
pp. 119–133.

[14] A. Dreyfus, P. Héam, O. Kouchnarenko, and C. Masson, “A random
testing approach using pushdown automata,” Softw. Test., Verif.
Reliab., vol. 24, no. 8, pp. 656–683, 2014. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1526

[15] A. Finkel, B. Willems, and P. Wolper, “A direct symbolic approach
to model checking pushdown systems (ext. abs.),” in Infinity97, ser.
ENTCS, vol. 9, 1997, pp. 27–37.

[16] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in CONCUR, ser.
LNCS, vol. 1243, 1997, pp. 135–150.


