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Abstract

Assessing the performance of scheduling heuristics through simulation requires to generate synthetic
instances of tasks and machines with well-identified properties. Carefully controlling these properties is
mandatory to avoid any bias. We consider the scheduling problem consisting of allocating independent
sequential tasks on unrelated processors while minimizing the maximum execution time. In this
problem, the instance is a cost matrix that specifies the execution cost of any task on any machine.
This paper proposes a measure for quantifying the heterogeneity properties of a cost matrix. An
analysis of two classical methods used in the literature reveals a bias in previous studies. A new
method is proposed to generate instances with given heterogeneity properties and it is shown that
they have a significant impact on several heuristics.

1 Introduction

Leveraging the parallelism of multi-core distributed platforms involves to efficiently schedule applications
on several machines [19]. Current studies on performance evaluation can be divided into several categories:
formal analysis, experiments, simulations, etc. In the case of simulations, a scheduling strategy is tested
in a virtual environment with a given workload. Synthetic instances of workload allow a more general
evaluation than specific traces. They are particularly useful for sensitivity analysis [21], which consists in
assessing the impact of the instance properties on the algorithms. The lack of control on the instance
properties, however, makes it difficult to confront the results of independent studies. For instance, although
many papers have compared several scheduling heuristics [9,10, 13, 20], predicting their performance is
still an issue. These problems can be tackled by carefully controlling the instance properties.

We consider the scheduling problem noted R||Cpax in «|f|y notation [17]. It consists in scheduling n
independent sequential tasks on m unrelated machines to minimize the latest task completion time. All
tasks are available simultaneously and preemption is not possible. The instance is a cost matriz where
each element e; ; € N is the execution cost of task ¢ on machine j.

This paper provides the following contributions!: a statistical description of the use of the range-based
and CVB methods in the literature (Section 3); a study of how to quantify the heterogeneity properties of
a cost matrix (Section 4); a formal analysis of the range-based and CVB methods and the identification of
a bias that impacts several studies (Section 4); a new method with control over heterogeneity properties
(Section 5); and, an assessment? of the impact of these properties on several heuristics (Section 6).

2 Related Work

The concept of heterogeneity was first introduced in the context of cost matrix by Armstrong [8]. He
described the heterogeneity quadrant in which cost matrices are divided into four categories depending on

IThese results are also available in the companion research report [11].
2Computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.



their heterogeneity properties regarding tasks and processors: low/low, low/high, high/low, and high/high.
However, no method for generating such matrices was proposed.

The range-based and CVB methods were proposed to fill this gap in [5] and then in [6,7]. However,
task and machine heterogeneities were not formally defined and analyzed. The methods were assumed to
generate matrices with the expected properties and only validated through some examples.

The limits of these methods were later acknowledged in [4], which proposed to consider the average
coefficient of variation®, skewness and kurtosis of the costs for each task and for each machine. The proposed
scheme (based on decision trees) uses these additional information to predict heuristic performance.
Despite a wide experimentation plan, the study lacks discussion and interpretation on the relative
importance of the considered measures. Additionally, no formal analysis was provided. The exhibited
decision trees suggest that the average coefficient of variation plays a significant role, which supports the
current work.

The MPH (Machine Performance Homogeneity) is introduced in [3] for capturing the heterogeneity
between the machines, while its counterpart for the tasks, the TDH (Task Difficulty Homogeneity),
appears in [2]. We discuss them more extensively in Section 4. In addition, the TMA (Task-Machine
Affinity) is also defined in [3]: it quantifies the specialisation of the system (i.e., whether some machines
are particularly efficient for some specific tasks). Although the three measures are applied to a real
benchmark, no method is proposed for generating matrices with given MPH, TDH and TMA.

Friese et al [14] present a method for adding tasks in a given cost matrix while preserving some
statistical properties on each column (mean, coefficient of variation, skewness and kurtosis). It ignores
the properties on each row however.

A method for generating matrices with varying affinity (similar to the TMA) is proposed in [1].
Khemka et al [18] propose a method for changing the TMA of an existing matrix while keeping the
same MPH and TDS. TMA is mentioned to be related to the correlation. Investigating the correlation
properties is left for future work. There is also another field of studies dedicated to the generation of
matrices with given correlation and covariance matrices [15].

3 Matrix Generations Methods
3.1 Range-based and CVB methods

The most used methods for generating cost matrices are the range-based and the CVB (Coefficient of
Variation Based) methods [5-7].

The range-based method generates n vectors of m values that follow a uniform distribution in the
range [1, Ryqcn]. Each line is then multiplied by a random value that follows a uniform distribution in
the range [1, Riqsk]-

The CVB method is based on the same principle except it uses parameters that are distinct from
the underlying distribution parameters. In particular, it requires two coefficients of variation (Vg for
the tasks and Vj,qcn for the machines) and one mean (s for the tasks). The random values follow a
gamma distribution whose parameters are computed such that the provided CV (Coefficient of Variation)
and mean are respected.

Proposition 1. When used with parameters Vigsk, Vinach and piiask, the CVB method generates costs
with expected value piqsk and coefficient of variation \/Vt2 V2 nt+ Vt2 + V2

ask " mac ask mach”®

Proof. Each cost is the product of a random variable that follows a gamma law with mean g4, and
CV Viusx and a random variable that follows a gamma law with mean 1 and CV V,,,4c,. Therefore, the
expected value of the costs is the product of the expected values of both distributions, namely pisqsk-
The standard deviation of the product of two random variables with means pq and po, and standard
deviations oy and o9 is \/0?03 + p?02 + o7p3. With a similar argument as for the expected value we
can derive the CV of the costs. O O

To obtain the CV of the costs with the range-based method, we can replace Vi,sr by the CV of the

first uniform law, & R, and Vinaen by the CV of the second uniform law, ¥ fp— This CV

remains close to a constant except for low values of Ryusx and Ry,qcn. For instance, it is around 0.86

3Ratio of the standard deviation to the mean.



when Riqsi = Rmach = 100 and the asymptotic value is % ~ 0.88 when both R;,sr and R,,qcn are large.

This is not well-suited to control the heterogeneity of the resulting cost matrix. Also, the asymmetry of
this method may lead to different heterogeneity properties for the tasks and for the machines.

3.2 Consistency Extension

Both the previous methods produce cost matrices that may not be representative of realistic settings.
For instance, the costs of a given task is not correlated to the costs of another task, which may often be
the case in practice. The consistency extension consists in reordering the costs in the generated matrix
to have an instance that is closer to the uniform case. Specifically, the rows of a submatrix of an rows
and bm columns are sorted. Thus, a machine that is faster for a given task than another machine will
likely be also faster for another task. Inconsistent matrices have a = b = 0 while consistent matrices have
a = b =1 (other matrices are either called semiconsistent or partially consistent).

3.3 Usage in the Literature

We covered the English articles that cite at least one of the references in which the methods were initially
presented [5-7] and that were freely available. For each reference, we extracted all the distinct sets
of parameters. However, the size was ignored because we only consider asymptotic properties (see
Section 4.2).

Some data were not specifically provided. The parameters that could be directly inferred from the
article or from similar works are mostly related to missing parameters for the consistency extension (the
ones from the cited article were taken). Otherwise, they are treated as missing values. Some articles lack
enough information, which prevented any parameter extraction.

On the 160 analysed articles, 78 provide exploitable information on the cost matrix instances. The
rest consists of 40 articles with no description, but which refer to instances described in other articles and
42 articles with unclear descriptions or approaches that do not fit the current study. The extracted data
are available in [11, Appendix B] and summarized below. While most articles fail to precisely describe
the used method, only the range and CV parameters are crucial for reproducing similar instances. In the
end, 342 sets of parameters were extracted in 78 articles for a total of 210 unique settings: 37 for the
range-based method and 173 for the CVB one.

Figure 1 depicts the values used with both methods. Although there is no clear agreement on which
precise parameters are the most relevant, there are some common tendencies. Values for low heterogeneity
are usually 10 and 100 for the range-based method and .1, .25 and .3 for the CVB method. Values for
high heterogeneity are usually 100, 1e3, 3e3 and 1eb for the range-based method and .3, .35, 4, .5, .6, .7,
.9, 1 and 2 for the CVB method.

4 Heterogeneity Measures

Assessing the impact of heterogeneity on heuristic performance requires a method for quantifying the
heterogeneity of the generated cost matrices.

4.1 TDH and MPH

The closest related measures are the TDH (Task Difficulty Homogeneity) and the MPH (Machine
Performance Homogeneity) [2,3]. The TDH computation consists in computing the difficulty of each task
(noted T'D[i]), sorting all the T'D[¢] in ascending order and averaging all the ratios between successive
TDJi]. The measure lies in the interval (0, 1]: if it is one, then tasks are all similar; if it is close to zero,
then the task heterogeneity is large. The MPH computation is analogous, but for the machine.

These measures have two major shortcomings. First, they are not intuitive (they require to invert
costs, to order sums and to average ratios). Also, they do not rely on classical statistical measures,
which makes deriving formal results more difficult. Another notable problem is that the resulting values
depend on the size of the matrix. In particular, it is close to one when the matrix is large (even if it is
generated with the same parameters and has, intuitively, the same characteristics). For instance, if we
consider only one machine, the following matrices (cost vectors in this case) have the same TDH: [1, 2]
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Figure 1: Parameters used in the literature. Three points are not shown for the CVB method: (1.4,0.4),
(1.8,0.4) and (0.1,2).

and [0.125,0.25,0.5,1,2,4]. The second vector, however, seems more heterogeneous. As another example,
let the minimum TD be 1 and the maximum TD be 100. The TDH is always greater than 0.60 when
there are 10 tasks and it is always greater than 0.95 when there are 100 tasks [11, Proposition 1]. This
measure is thus relevant only for comparing small cost matrices with similar sizes.

4.2 Intuitive Measures of Heterogeneity

Assuming that the mean of each row represents a task weight, the task heterogeneity may be defined as
the CV (Coefficient of Variation) of the means of the rows (noted Vpiqsk). Analogously, the machine
heterogeneity may be measured as the CV of the means of the columns (noted V pimach)-

These measures of task and machine heterogeneity has been criticized for small instances [2]. It
is argued that the MPH is better than the CV as it is less sensible to outliers. However, we consider
asymptotic properties for large matrices in this work because we expect them to hold for small instances.
Moreover, in the case of outliers, the CV can be replaced by the quartile coefficient of dispersion, which
is a similar standard statistical measure but is more difficult to formally analyse. Finally, the decision
trees in [4] suggest that varying this measure has an impact on the heuristics performance and is thus
significant.

4.3 Coherence with the Uniform Model

The previous measures do not only rely on intuition, they are also consistent with the expectation when
we consider the uniform model. In this model, the cost of executing a task ¢ on a machine j is given by
the product of the task weight, w;, and the inverse of the machine speed, b;. The concept of task and
machine heterogeneity is easy to grasp in the uniform model: it is given by the statistical dispersion
of the weights and the speeds, respectively. We assume that the CV of the weights, noted CV,4s, is a
relevant measure of the task heterogeneity. Analogously, the CV of the speeds, noted CV,,4cn, represents
the machine heterogeneity.

It is possible to convert an instance of the uniform model in the unrelated model because this last
model is more general. The cost matrix is generated by combining both vectors {w; }1<i<n and {b; }1<j<m
such that e; ; = w;b;. As we know the heterogeneity properties of a uniform instance, we expect our
proposed measures for the unrelated model to be consistent when applied on the converted instance,
which is indeed the case [11, Proposition 2].



4.4 Heterogeneity of the Range-Based and CVB Methods

We analyse the asymptotic heterogeneity properties of the CVB method with the proposed measures
depending on the parameters Vigsx and Viaen. An estimator T' converges to 8 when the expected value
of T tends to 6 as the number of samples (n and m in our case) tends to oco.

Proposition 2. The measure V sk of a cost matrix generated using the CVB method with the parameters
Viask and Viaen converges to Vigsi as n — oo and m — 00.

Proof. This proof assumes that the mean of a set of n samples (called the sample mean) of a random
variable with mean p and standard deviation o is a random variable with mean p and standard deviation
ﬁ. Moreover, the CV of a set of n samples (called the sample CV) of a random variable with CV V
converges to V as n — oo.

Let p; be the sample mean of the costs on line i. This row is the product of a random variable that
follows a distribution with mean pqs; and CV Vigsr and m values that follow a distribution with mean
one and CV Vi, qch. 14 is thus also the product of the first random variable and the sample mean of the
other m values, which follows a random variable with mean one and CV Vﬁ” Therefore, the mean

2 2
of p; is pyast and its CV is \/thwkw 4 Yiaen | V2., which tends to Vigs, as m — oo. Then, the

m m

sample CV of all y; tends to Viqsp as n — oo and m — oo. O L]

We can also show that V p,,qcn converges to aVbViaen as n and m — 00. Although more technical,
the proof is analogous and provided in [11, Proposition 6].

These formal results can be extended to the range-based method by replacing Vi,si by the CV of the
first random variable (\/Tﬁ%) and Viacn by the CV of the second one ( Q%) Indeed, the
proofs only use the mean and the CV of the random underlying distributions. e

In the case of complete consistency (i.e., when a = b = 1), Virask = Viask and Vimach = Vinach,
which supports the proposed heterogeneity measures. This special case is due to the fact that consistent
cost matrices are closer to uniform instances than inconsistent ones.

The main issue of the CVB method is related to the impact of the consistency parameters on the
heterogeneity properties. It biases comparisons of scheduling methods when cost matrices are used with
different consistency settings because these matrices will also have different heterogeneity properties. The
V12

6

range-based method presents an even stronger bias as both Vigsx and Vi,ecn tends to as Rigsk and

Rynach — oo (the heterogeneity properties are thus often similar).

4.5 Task and Machine Heterogeneity in Previous Studies

For each of the instances summarized in Section 3, we computed both heterogeneity measures using the
previous analysis and the input parameters: Riqsk, Rmachs Viasks Vmach, @ and b.

Figures 2 depicts the values for the measures proposed above. The range-based method has a clear
bias because many heterogeneity properties have never been obtained. Also, the consistency parameters
invalidate the claimed properties of the cost matrices relatively to the heterogeneity quadrant: some hihi
instances have the same machine heterogeneity as lolo instances.

This analysis is also consistent with the observation made in [3] about the fact that the range-based
and CVB methods do not cover the entire range of possible values for the MPH.

5 Controlling the Heterogeneity

We are interested in generating cost matrices that have specific heterogeneity properties according to
the measures introduced in Section 4. We propose a method that alters a cost matrix generated from
uniform instances for which we control the task and machine heterogeneities. This cost matrices have
specific properties in terms of consistency and correlation between each row and each column, and the
proposed method introduces some randomness in the matrix by shuffling the costs. It first generates
the task weights, {w; }1<i<n, with a gamma distribution with mean one and CV Vs, and then the
inverse of the machine speeds, {b;}1<j<m, with a gamma distribution with mean one and CV Vqch.
The corresponding matrix is computed such that e; ; = w;b; before starting the shuffling part. For each
cost e; j, another cost ey ;- is selected on a different row and column. The same amount is then removed
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Figure 2: Heterogeneity properties (V pask and V pmacrn) of cost matrices used in the literature. Two
points are not shown for the CVB method: (1.4,0) and (1.8,0).

from these costs and is added to two other costs, e; j» and e; ; (one that is on the same row as the first
cost and on the same column as the second, and another one that is on the same row as the second cost
and on the same column as the first). This step preserves the mean of each row and the mean of each
column. The heterogeneity properties remain thus the same. The transfered amount is the largest value
(in absolute) such that no cost among the four considered costs becomes lower than the minimum one
among them (this prevents costs to be arbitrarily low). For instance, if e; ; is the minimum cost (i.e.,
e;; = min(e; j, ey j, € j, €y ;)), there are two cases: if e; j» < ey j, then e; j» becomes the new minimum
and the added value to e; ; and to ey ;- is e; j» — e; ;; otherwise, it is ey ; — e; ;. This method focuses on
preventing costs to be arbitrarily low because it is critical to guarantee positive costs.

Proposition 3. When used with parameters Vigsi and Viacn, the shuffling method generates costs with
expected value 1.

Proof. Costs in the matrix corresponding to the uniform matrix follow a distribution that is the product
of two distributions both with mean one. Therefore, the expected value of the costs in the matrix before
the shuffling step is also one. The shuffling step do not change the expected value of the costs because
the amount that is taken on any cost is given to another cost. O O

Proposition 4. The measure Vpasi of a cost matriz generated using the shuffling method with the
parameters Vigsk and Viaen converges to Vigsk as n — 00.

Proof. Analogously to the proof of Proposition 3, the shuffling step has no impact on the mean of each row
and each column. The measure V piyqsx is thus the same for the final cost matrix as for the intermediate
matrix that corresponds to a uniform instance.

The sample CV of the sample means of all rows in this intermediate matrix is equal to the sample CV
of the vector {w; }1<i<n. This last sample CV tends to Viusk as n — oc. O O

An analogous proof relying on the symmetry of the shuffling method shows that V ,,qcn converges to
Vinach as m — 00.

6 Impact on Scheduling Heuristics

This section assesses the impact of the heterogeneity properties defined in Section 4 on the performance
of some classic heuristics. Our intention is not to find the best heuristic but rather to show the impact



Table 1: Summary of the scheduling heuristics for the R||Ciyax problem.

Name Ref Complexity Remark

Min-min  [10] n2m Earliest finish time

Max-min  [10] n?m Earliest finish time of largest task
GA [10) - Genetic Algorithm

Suff [12] n?m Task that will suffer most first
HLPT [16] mnm +nlog(n) Heterogeneous version of LPT
BalSuff  [11] - Reconsider allocation on suffer-

age

of the cost matrix generation method on the performance results. We use classical heuristics from the
literature summarized in Table 1. These heuristics are described in [11, Appendix C].

BalSuff HLPT (min) Max-min
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Figure 3: Heuristic performance relatively to the best case with the shuffling method. Values below 0.001
are shown in white and values above 1 are shown in black.

Cost matrices are generated with the shuffling method using V pi1q5r and Vpiproc, each with 30 values
exponentially distributed in [0.001,10]. For each pair of parameters, 100 cost matrices are generated with
n = 100 tasks and m = 30 machines. For each scenario, we compute the makespan of each heuristics.
We only consider the relative difference from the reference makespan: |C' — Chyin|/Cmin where C is the
makespan of a given heuristic and Cyi, the best makespan we obtained (a genetic algorithm initialized
with all the solutions obtained by the other algorithms). The closer to zero, the better the performance.

The results presented on Figure 3 is a heat map of the relative performance for each algorithm. On
each figure, we use a logarithmic scale on both axises: the x-axis gives the heterogeneity value for the



tasks (V pitask) while the y-axis gives the heterogeneity value for the machines (V fimacn). The bottom-left
area represents almost homogeneous instances, while the top-right area is the most heterogeneous one.
The heterogeneity values covered by the range-based and CVB methods in the literature are represented
with dark rectangles on each sub-figure. Contour lines correspond to the levels in the legend.

Figure 4 plots the best heuristic depending on the heterogeneity properties. Contour lines show the
number of heuristics which performance is closer to the best heuristic than 0.001. For instance, there are
at least four heuristics whose relative performances are almost equivalent when task heterogeneity is high.
When several heuristics are equivalent for a given tile, the appearing heuristic is the one that is the best
the least often. The dark rectangles correspond to the properties covered by the range-based and CVB
methods in the literature.

The settings cover a large part of the
possible instances for the R||Cpax prob-
lem. Some areas on the figures may be
associated to specific scheduling problems:
the Q|p; = p|Chax problem (top-left area),
the P|p; = p|Cmax problem (bottom-left -
area) and the P||Cpax problem (bottom- 1008
right area). While the first two problems
can be solved in polynomial time, the last
problem is NP-complete.

The heat maps suggest that the area
where the heterogeneity values are be-
tween 0.1 and 1 is more challenging for
most heuristics (areas in purple on the
heat maps are 30% far from the reference).
This is confirmed by Figure 4 where the
best heuristic is often far from the second 0.01=—
best with these settings. Oppositely, many
heuristics are close to the best one when
the task heterogeneity is low or high, or
when the machine heterogeneity is high.
On one hand, execution costs are quite
similar when the coeflicient of variation is
below 0.1. A non-optimal allocation will thus have a lower impact? than with higher hetér%ogeneity. On the
other hand, most execution costs are close to zero when the coeflicient of variation is higher than 1 and
bad allocations may be easy to avoid because therﬁgﬁe fewldldaen cha.@?&'@@b(!@A'mlﬂﬂe

most of them are not. It is thus easier to generate a Teasonable schedule. When the machin eterogeneity
is low (with medium task heterogeneity), there is often a single best heuristic. This suggests that these
settings leads to difficult instances. As mentioned ahove, this is close to t,he_PUC’max problem. We may
conclude that dealing with heterogeneous tasks is mg(l—fgbiﬂ%élﬁlg?’a%&%fﬁ%%tl roéléj’n% tiachiites, which
is also supported by the asymmetry of the heat maps.

The range-based and CVB generation methods used in the literature could not provide these results
due to two factors: the heterogeneity properties of the generated instances have a limited coverage (shown
by the dark rectangles) and the erroneous claimed properties of these matrices prevent an unbiased
analysis.

This study focuses on the impact of two measures, V 115, and Vpiproc, on the performance of several
heuristics. There are however many other properties that could be measured. If we consider the skewness
and the kurtosis as in [4], we can think of 4 X 4 measures for the lines and as many for the columns. The
main limitation of this study is to ignore the effect of all these possible measures.

Another limitation is related to the effect of outliers. For large instances, the law of large number
applies and the measures proposed in Section 4 correspond to the characteristics of the cost matrices.
However, for small instances, we suggest to switch to robust measures such as the median, the interquartile
range and the quartile coefficient of dispersion instead of the mean, the standard deviation and the CV,
respectively.

Sl 1 |||||||! v lom ! A
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Conclusion

This study shows that the methods used in the literature for generating cost matrices are biased: the
claimed heterogeneity properties of these instances are invalidated by the measures we proposed to
quantify them. We also show that the range of instances that has been used are restricted. It is specifically
the case for the range-based method that covers only a minor fraction of all the possible settings in terms
of heterogeneity. By providing a new cost matrix generation method we show that heuristics for the
R||Cmax problem have interesting behavior outside this restriction.

In addition to all the possible measures mentioned in Section 6, we plan to analyse other properties,

in particular the correlation. It would also be interesting to see if the conclusions hold for some variations
of the R||Cinax problem such as considering arrival times or online scheduling.
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