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Collective dynamics of periodic nonlinear oscillators under
simultaneous parametric and external excitations
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Abstract The collective dynamics of a periodic structure of coupled Duffing-Van Der Pol
oscillators is investigated under simultaneous external and parametric excitations. An an-
alytico computational model based on a perturbation technique, combined with standing
wave decomposition and the asymptotic numerical method is developed for a finite number
of coupled oscillators. The frequency responses and the basins of attraction are analyzed for
the case of small arrays, demonstrating the importance of the multi-mode solutions and the
robustness of their attractors. This model can be exploited to design periodic structure-based
smart systems with high performance, by taking advantage of the multi-modes induced by
the collective dynamics.

Keywords Collective dynamics, Nonlinear oscillators, Periodic structures, Asymptotic
Numerical Method and Basins of attraction.

1 Introduction

Periodic structures consist of an arrangement of coupled identical substructures, geomet-
rically repeated, defined by a unit cell at periodic intervals. They can exist naturally with
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F 25000, Besançon, France
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length scales as atomic lattices of pure crystals, as in many fields of engineering like tur-
bines, long span bridges, multi-layered composites, stiffened plates, shells and so on.

Several researches on wave propagation in periodic structures were based on linear
structural models. For instance, Brillouin [1] pointed his classic work on wave motion in
simple periodic systems. Mead [2] presented a general theory of wave-propagation which
is not restricted to flexural motion. In addition, Langley et al. [3] studied the response of a
two-dimensional linear periodic structure subject to point harmonic forcing using a mass-
spring model and presented theoretical and experimental studies to the response of a beam
grillage [4]. Jensen [5], investigated the phononic band gaps and vibrations in one- and
two-dimensional mass-spring structures. Moreover, Collet et al. [6] developed new multi-
functional structures integrating electro-mechanical systems in order to optimize their vibro-
acoustic behavior over a large frequency band and introduced a Floquet-Bloch decomposi-
tion for the computation of dispersion of two-dimensional periodic, damped mechanical
systems [7].

Many physical systems in several scientific domains such as materials, acoustics, optics,
mechanics, MEMS and vibrations can be modeled as periodic chain. Complex phenomenon
such as solitary wave [8–10], discrete breathers [11,12], wave localization emerged the trend
to study the wave propagation in nonlinear periodic media. Chakraborty et al. [13] inves-
tigated the effects of harmonic wave propagation in an infinite, weakly nonlinear periodic
chain. Romeo et al. [14] investigated analytically the modification of the boundary of lin-
ear propagation/attenuation zones due to the nonlinearities in chain of coupled oscillators,
they also used the nonlinear propagation region of chain of oscillators with cubic nonlinear-
ity exhibiting existence solutions to identify regions of existence of discrete breathers and to
guide their analysis [15]. These nonlinearities can be due to the interaction between periodic
structure and its neighbors. For instance, in the field of acoustics, Manktelow et al. [16,17]
focused on the interaction of wave propagation and analyzed the wave-wave interaction in a
cubically nonlinear mono-atomic chain, while Marathe et al. [18] studied wave attenuation
in nonlinear periodic structures. Lazarov et al. [19] focused on the influence of nonlineari-
ties on the filtering properties of one-dimensional chain around the linear natural frequency
of the attached nonlinear local oscillators. Boechler et al. [20] applied a straight-forward
perturbation analysis, to a discrete one-dimensional nonlinear periodic chain with dynamics
governed by a Hertzian contact model to obtain closed-form amplitude dependent disper-
sion relations and described the dynamic behavior of nonlinear periodic structures, along
with how such structures can be utilized to affect the propagation of mechanical waves [21].
In Optics, Heinrich et al. [22] investigated the collective nonlinear dynamics in arrays of
coupled optomechanical cells and Slusher et al [23] introduced a vision of light control-
ling light in periodic photonic structures. Moreover, in micro and nanotechnology, dynamic
behavior investigations of an array of N nonlinearly coupled microbeams have been per-
formed by Gutschmidt et al. [24] using a continuum model and by Lifshitz et al. [25] using
a discrete model.

Following this context, several authors analyzed the nonlinear dynamics of coupled
structures, in the presence of a single excitation. Nayfeh et al. [26,27] and Lifshitz et al.
[28] studied parametrically excited multi-degree-of-freedom systems with different nonlin-
earities while Perkins et al. [29] illustrated the beneficial effects that noise can produce on
the responses of an array of coupled nonlinear oscillators externally excited. However few
studies have been devoted to simultaneous resonances [30–32] and they are mostly limited
to single or few degree-of-freedom systems.

In this paper, we investigate a generic discrete model for the collective dynamics of
periodic structures of coupled Duffing-Van Der Pol (VDP) oscillators, under simultaneous
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primary and parametric resonances, which is suitable for several physical applications. The
main goal is to understand how nonlinearities influence the presence of simultaneous ex-
ternal and parametric excitations and how they may be used to enhance and control modal
interaction and bifurcation topology transfer between coupled oscillators. The analytico-
computational model is based on the method of multiple scales coupled with standing wave
modal decomposition, transforming the nonlinear differential system into a set of coupled
complex algebraic equations which are numerically solved using the asymptotic numerical
method (ANM) [33] enabling the construction of resonance curves for a large number of
degree-of-freedom. The cases of small resonator arrays have been analyzed in the frequency
domain and it is shown that the multi-mode solutions are stable over a wide frequency-
range for a particular set of design parameters. The complexity and the multivaludness of
the response were illustrated by a detailed study of its basins of attraction which prove the-
oretically the robustness of the multi-mode branches.

2 Model

2.1 Equation of motion

The proposed model involves a finite degree of linearly and nonlinearly coupled Duffing-
VDP Oscillators, under primary and parametric excitations, as shown in Figure 1.
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Fig. 1 A periodic nonlinear system of N+2 coupled Duffing-VDP oscillators, under simultaneous primary
and parametric excitations.

The corresponding set of coupled equations of motion EOM can be written in the fol-
lowing form:

M ¨̃un−Kd(ũn+1−2ũn + ũn−1)+C ˙̃un +Kũn

+Ψ [(ũn− ũn+1)
3 +(ũn− ũn−1)

3]+∆ ũ2
n

˙̃un +Ξ ũ3
n

+Λ [(ũn− ũn+1)
2( ˙̃un− ˙̃un+1)+(ũn− ũn−1)

2( ˙̃un− ˙̃un−1)]

+H cos[2ω0(1+ εΩD)t]ũn = Gcos[ω0(1+ εΩD)̃t] (1)
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where ũn describes the deviation of the nth resonator from its equilibrium n= 0, · · · ,(N+
1), with fixed boundary conditions ũ0 = ũN+1 = 0. ΩD and ω0 are respectively the detuning
parameter and the natural frequency of the oscillators. M is its effective mass, K = Mω2

0 is
its effective spring constant, Ξ and Ψ are respectively the nonlinear stiffness and the cou-
pling Duffing parameters, C = Mω0

Q is the linear damping (Q is the quality factor), Kd = Γ K
is the coupling spring constant, ∆ and Λ are respectively the VDP damping and the non-
linear dissipative coupling. H and G are the parametric and external excitation amplitudes
respectively and ε is a small non-dimensional parameter.

2.2 Normalization

For convenience and equation simplicity, we introduce the nondimensional variables:

un =
ũn

ũD
, t = t̃ω0 (2)

where ũD = G
Cω0

is the dynamic displacement of the associated linear system while ne-
glecting the linear coupling.

Substituting Equation (2) into the EOM, we obtain after dividing by Mω0
C

ün−Γ (un+1−2un +un−1)+
1
Q

u̇n +un

+ψ[(un−un+1)
3 +(un−un−1)

3]+δu2
nu̇n +ξ u3

n

+λ [(un−un+1)
2(u̇n− u̇n+1)+(un−un−1)

2(u̇n− u̇n−1)]

+
H
K

cos[2(1+ εΩD)t]un =
C

Mω0
gcos[(1+ εΩD)t] (3)

The parameters appearing in Equation (3) are:

∆G2

MC2ω3
0
= δ ,

ΨG2

MC2ω4
0
= ψ,

ΞG2

MC2ω4
0
= ξ ,

ΛG2

MC2ω3
0
= λ . (4)

We proceed in the following section to solve these coupled equations using secular per-
turbation theory. The linear damping coefficient is the physical parameter that allows us to
use this approach. We therefore assume it to be small, by expressing it as 1

Q = εη treating
ε as a small expansion parameter. This limit is well verified for targeted applications where
Q ≥ 50 [28,34]. We also require that the Duffing and Van-Der-Pol nonlinearities to be a
factor of ε smaller than the linear force, or equivalently by taking the leading order in un to
be of the order of ε

1
2 , and expressing Γ = 1

2 εγ . In addition, we choose to take the parametric
excitation amplitude to scale as the damping, i.e. we set H

K = εh. To ensure that the external
excitation g has the ability to cause such weak oscillations by having it enter the system at
the same order as the physical effects, we write the amplitude of the drive as c

Mω0
= ε

3
2 g.

On the other hand, un is proportional to GQ for a regular linear resonance, with un to be of
order ε

1
2 and Q, of order ε−1 thus G has to be of order ε

3
2 .
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2.3 Derivation of the amplitude equation

We expand un(t) as a sum of standing-wave modes with slowly varying amplitudes [28]:

un(t) = ε
1
2

N

∑
m=1

(Am(T )sin(nqm)eiωmt + c.c.)

+ε
3
2 u(1)n (t)+ · · · , n = 1, ...,N, (5)

where T = εt is a slow time variable, that authorizes the complex amplitude Am(T ) to
vary slowly in time. Since the boundary conditions are such that there are two additional
fixed masses labeled 0 and N + 1 (u0 = uN+1 = 0), the possible wave components qm are
given by

qm =
mπ

N +1
, m = 1, ...,N (6)

After replacing the equations listed in Appendix A into the EOM, we can get at the order
of ε

3
2 , N equations of the form:

ü(1)n +u(1)n = ∑
m
(mthsecular term)eiωmt +other terms

On the right hand side, we have N secular terms that act to drive the coupled oscillators
u(1)n at their resonance frequencies. We require them to be vanished so that u(1)n remain finite,
and thus we obtain the equations for the slowly varying amplitudes Am(T ). To extract the
equation for the mth amplitude Am(T ), we make use of the orthogonality of the modes,
by multiplying the mth secular term by sin(nqm) and summing over n. We also express all
normal frequencies relative to 1, so that:

ωm = 1+ εΩm (7)

We find that the equation of the mth amplitude Am(T ) is given by:

2iωm
dAm

dT
+2γωm sin2(

qm

2
)Am +

h
2

A∗me2i(ΩD−Ωm)T + iωmηAm

+
1
4 ∑

j,k,l
Rk{iωlδ [2R j,l−R∗j,l ]+3ξ R∗j,l}∆

(1)
jkl,m

+4sin(
qm

2
) ∑

j,k,l
Rk{3ψR∗j,l + iωlλ [2R j,l−R∗j,l ]}Π j,k,l∆

(2)
jkl,m

=
g

(N +1)
ei(ΩD−Ωm)T

N

∑
n=1

sin(nqm), (8)

with Rk = Akei(Ωk−Ωm)T and R j,l = A∗jAlei(−Ω j+Ωl)T , where we have introduced two ∆

functions, defined in Appendix B.
Ignoring initial transients, and assuming that the nonlinear terms in the equation are suf-

ficient to saturate the growth of the instability, we try a steady-state solution of the form

Am = amei[ΩD−Ωm]T (9)
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Substituting Equation (9) into Equation (8) of amplitude, we obtain the required equa-
tion for the fixed complex amplitudes am.

[iη−2(ΩD−Ωm)]ωmam +2γ sin2(
qm

2
)am +

h
2

a∗m

+
1
4 ∑

j,k,l
[iωlδ (2a∗jakal−a jaka∗l )+3ξ a jaka∗l ]∆

(1)
jkl;m

+4sin(
qm

2
) ∑

j,k,l
Π j,k,l

[
3ψa jaka∗l

+iωlλ (2a∗jakal−a jaka∗l )
]

∆
(2)
jkl;m

=
g

(N +1)

N

∑
n=1

sin(nqm) (10)

Equation (10) is a complex algebraic system, with large number of variables. Analytical
solutions for this type of equations are either too large or simply do not exist. As a first
step, we choose to simplify these equations by setting the reference frequencies ωm to be
1, by taking Ωm = 0. In this case, the only possibility is to solve it numerically, using a
conventional method. Mathematica can be used to solve the system for two coupled oscilla-
tors, including stability analysis. This method is based on prediction-correction algorithms,
such as the Newton-Raphson scheme which is the most popular way to solve a nonlinear
structural problem. In general such algorithms are successful for determining nonlinear so-
lution branches in a step-by-step manner, with a load control, a displacement control or
an arc length control but they have two disadvantages: The first one, is that they are time-
consuming comparing to a linear problem and the second one is the automatization of the
continuation process.

Therefore, a graphical interactive software named MANLAB [35] has been used for the
continuation of branches of solutions of Equations (10) by an alternative method, which
is called the Asymptotic Numerical Method (ANM) [33,36]. The ANM can be considered
as an extension of methods of type prediction-correction, where the tangent predictor is
replaced by a high-order predictor, where we solve an important number of linear systems
for each prediction. The main constraint of this method is to write the algebraic equations
of the form R(U) = 0, where U is a vector of n+ 1 unknowns and R a vector of n smooth
equations that must be analytical. The ANM is a perturbation technique which consists in
expanding the unknown vector U as a formal power series of a path parameter. It presents
several advantages: it provides continuous solutions, the continuation is very robust, and
the control of the step length is automatic and always optimal. MANLAB provides linear
stability analysis for equilibrium points of dynamical systems with an automatic Bifurcation
detection. This method and its application to our nonlinear differential system (8) is detailed
here after.

2.4 Cartesian transformation

To use the ANM, Equation (8) is transformed to its Cartesian form by defining the amplitude
as Am = (αm + iβm)eiΩDT . As a result, we obtain the following general equations, for which
the unknowns are real:
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α
′
m(T ) =−

η

2
αm +ΩDβm +

h
4

βm− γ sin[
qm

2
]2βm

−1
8 ∑

j,k,l

[
δ (α jαkαl +α jβkβl)

+3ξ (α jαkβl +β jβkβl)

]
∆
(1)
jkl,m

−2sin [
qm

2
] ∑

j,k,l
Π j,k,l

[
ψ(α jαkαl +α jβkβl)

+3λ (α jαkβl +β jβkβl)

]
∆
(2)
jkl,m

(11)

and

β
′
m(T ) =−

η

2
βm−ΩDαm +

h
4

αm + γ sin[
qm

2
]2αm

− g
2(N +1)

N

∑
n=1

sin(nqm)−
1
8 ∑

j,k,l

[
3ξ (α jαkαl +α jβkβl)

−δ (α jαkβl +β jβkβl)

]
∆
(1)
jkl,m

−2sin [
qm

2
] ∑

j,k,l
Π j,k,l

[
3ψ(α jαkαl +α jβkβl)

−λ (α jαkβl +β jβkβl)

]
∆
(2)
jkl,m

(12)

The steady-state motions occur when α ′m = β ′m = 0, which corresponds to the singular
points of Equations (11) and (12). With these two equations, the stability of fixed points is
easy to implement.

2.5 Quadratic recast

The key point of the ANM lies in the quadratic recast of Equations (11) and (12) by intro-
ducing the following set of auxiliary variables,

α2
i = ci size N

β 2
i = di size N

αiα j = ei, j for i 6= j size N(N−1)
2

βiβ j = fi, j for i 6= j size N(N−1)
2 .

(13)

These transformations lead to the following quadratic system

R(UUU) = L0 +L(UUU)+Q(UUU ,UUU) = 0 (14)



8 Diala Bitar ÷Najib Kacem÷Noureddine Bouhaddi÷Manuel Collet

where R is a vector of N2 +3N equations and
UUU = (ααα,βββ ,ccc,ddd,eee, fff ,ΩD)

T is the vector of N2+3N+1 unknowns, in which ααα,βββ ,ccc,ddd,eee and
fff are vectors, as

ααα = {α1,α2, · · · ,αi, · · · ,αN}
βββ = {β1,β2, · · · ,βi, · · · ,βN}
ccc = {c1,c2, · · · ,ci, · · · ,cN}
ddd = {d1,d2, · · · ,di, · · · ,dN}
eee = {e1,2,e1,3, · · · ,e1,N , · · · ,ei,i+1, · · · ,ei,N , · · · · · · ,eN−1,N}
fff = { f1,2, f1,3, · · · , f1,N , · · · , fi,i+1, · · · , fi,N , · · · · · · , fN−1,N}

(15)

L0 is a constant vector, L(···) and Q(···) are respectively the linear and quadratic operators
with respect to UUU .

2.6 Stability analysis

Different algorithms are implemented in ManLab [35] in order to analyze the linear stability
of dynamical systems. Two stability computation methods are proposed depending on the
type of the solution under study and on the selected algorithm: frequency domain or Time-
domain. The latter has been used to analyze the stability of fixed points in order to identify
the stable multi-mode solution branches. Therefore, To analyze the linear stability of the
dynamical systems, the time-domain algorithm is used. This algorithm relies on the com-
putation of the Jacobian matrix J, of Equations (11) and (12). The linear stability analysis
consists in computing the eigenvalues of the Jacobian matrix at each point of analysis. If any
of the eigenvalues has a positive real part, then the current point is unstable. When follow-
ing a branch that is, at first stable, a bifurcation can be detected when one of the eigenvalues
crosses the imaginary axis. This analyze uses three additional functions J0, JL and JQ as

J = J0+ JL+ JQ (16)

where J0 is a constant matrix, JL is a linear operator and JQ a quadratic operator on the
variables given in UUUssstttaaabbb = {ααα,βββ ,ΩD} which is the variables vector of size N2 +1. From a
practical point of view, one can easily recast the equations of motion of nonlinear periodic
structures with respect to the proposed model and hence one can use the procedure detailed
above as a robust solving tool.

3 Results and discussions

In order to target various periodic structure-based systems, the numerical simulations have
been performed with two sets of design parameters listed in Table 1. The first one contains
the Duffing coupling term and the nonlinear damping for each oscillator while the second
one involves the VDP coupling and the nonlinear cubic stiffness. Indeed, the two configu-
rations can illustrate respectively an array of coupled levitated magnets [37] and a periodic
structure of coupled micro or nano-beams[28]. Moreover, the external excitation G has been
chosen sufficiently high in order to generate nonlinear frequency responses for which the
displacement at resonance is beyond the critical Duffing amplitude [38], while the value of
the parametric excitation H has been adjusted in order to increase the interactions between
both resonances (primary and parametric) and enrich the resulting collective dynamics.
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Table 1 Design parameters for the corresponding periodic structure depicted in Figure 1

Parameters Design 1 Design 2
c(Kg.s−1) 0.001 0.01

M(Kg) 0.01 0.01
K(N.m−1) 40 40

∆(Kg.m−2.s−1) 50 0
Ψ(N.m−3) 5000 0
Ξ(N.m−3) 0 800

Λ(Kg.m−2.s−1) 0 6
Γ 0.001 0.001

3.1 Case of two coupled nonlinear resonators

As a first step, we started by solving the coupled Equations (10) with N = 2 for the first
design, in order to provide some qualitative and quantitative explanations dealing with the
collective nonlinear dynamics of small arrays of periodic structures which can be extended
for large periodic lattices. For two coupled oscillators, we have:

q1 =
π

3
and q2 =

2π

3
.

The coupled algebraic equations have been solved numerically using Mathematica, for sev-
eral values of ΩD inside the frequency range where the whole dynamic response is repre-
sented and the stability of the different branches have been performed based on the eigen
values of the Jacobian matrix of the differential system (8) computed numerically for each
point.

3.1.1 Primary resonance

In this section, we are interested in the collective nonlinear dynamics of the coupled oscilla-
tors under primary resonance (G = 0.08). By solving numerically the resulting system, the
overall collective response of the array can be plotted with respect to the detuning parameter
ΩD. With two resonators, there are regions in frequency where three stable solutions can ex-
ist. The single mode (SM) of the first intensity corresponds to the forced frequency response
of a single Duffing oscillator, and for the second one to a null trivial solution. Remarkably,
the double mode (DM) contains two added stable branches as we can see in Figures 2 (a)
and (b). By zooming over a precise frequency range, we can easily remark that we have a
modal interaction and bifurcation topology transfer between these two coupled oscillators.
Although, these branches are stable, it is hard to reach them experimentally, because their
basins of attraction are very narrow. Consequently we extend the investigations to the case
of simultaneous primary and parametric excitations, seeking for additional properties.

3.1.2 Simultaneous primary and parametric resonances

In order to illustrate the complexity of the collective dynamics for the considered periodic
structure, the case of simultaneous resonances is numerically investigated for G = 0.1 and
H = 7. Figure 3 displays the intensity responses, as a function of the detuning parameter
ΩD and remarkably, for the first intensity response, an elliptical branch was added due to
the parametric excitation.
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Fig. 2 (a) Response intensity of two resonators as a function of the detuning parameter ΩD, under primary resonance
(G = 0.08), for the first design parameters. (b) Zooming in and highlighting the responses areas. Black curves indicate stable
solutions. The Single and Double-Mode solution branches are labeled SM and DM respectively.

In addition, with a small change in the excitation amplitudes (G = 0.08 and H = 11),
we can obtain up to four solutions for a given frequency for the first intensity response, as
shown in Figure 4. The frequency response plotted in Figure 5, represents the time and space
average of the square of the oscillator displacement.

I =
1
N

N

∑
n=1

< u2
n >, (17)

where the angular brackets denote time average, using the fact that for N = 2, I = 3
2 (|a1|2 +

|a2|2). The multivaluedness of the response curve due to the nonlinearity has a significance
from the physical point of view because it leads to jump phenomena which are localized at
the bifurcation points. In addition, the DM has an important amplitude and its stable over a
wide frequency range, which implies significant modal interactions due to nonlinearities.
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primary and parametric resonances (G = 0.08, H = 11), for the first design parameters. SMRB1 and SMRB2 are Single
Mode Resonant Branches due respectively to primary and parametric resonances, SMNRB and DMNRB are respectively
Single and Double Mode Non Resonant Branches.

3.2 Basins of attraction

The basins of attraction can be used for qualitative as well as quantitative analysis of the col-
lective dynamics robustness. In a nonlinear nanomechanical resonator, Kozinsky et al. [39]
experimentally probe the basins of attraction of two fixed points. Moreover, Sliwa et al. [40]
investigated the basins of attraction of two coupled Kerr oscillators. Furthermore, Ruzziconi
et al. [41] studied frequency response curves, behavior charts and attractor-basins phase
portraits of a considered NEMS constituted by an electrically actuated carbon nanotube.

In this section, the basins of attraction are used to investigate qualitatively as well as
quantitatively the trajectories of the system response, the robustness of the attractors and
their practical implications, for the case of two coupled Duffing-VDP oscillators under si-
multaneous primary and parametric resonances. The analyzes are performed in a classical
way where the robustness is only related to the global size of the attractor. Although the
basins of attraction are usually plotted in the phase plane (un, u̇n), we choose to represent
them in different diagrams for convenience regarding the adopted solving procedure leading
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Fig. 5 (a) Averaged response intensity defined in Equation 17. (b) Zooming and highlighting over a region
which contains up to four stable solutions. Branch labels correspond to those in Figure 4.

to the differential Equations (11) and (12). The initial conditions αi(0) and βi(0) have been
bounded by −|ai| and |ai| which can be identified on the response intensity curves.

As a first step, the case ΩD = 0.255 is considered. It corresponds to a multistable re-
sponse with four attractors for the first intensity and two for the second one. Figures 6 (a)
and (b) display the basins of attraction plotted respectively in the planes (α1(0),α2(0)) for
β1(0) = β2(0) = 0 and (β1(0),β2(0)) with α1(0) = α2(0) = 0. Remarkably, these curves
show that the basins of attraction are symmetric with respect to α2(0) = 0 and β2(0) = 0
and thus, one can investigate their distribution in the Nyquist plane (α1(0),β1(0)), while
setting random positive values of α2(0) and β2(0).

When the first response jumps between SMRB1, SMRB2 and SMNRB, the second one
is stabilized on the SM and a similar correspondence exists between the double modes as
shown in Figure 7. This results in an interesting transfer of basins of attraction topologies
between both responses with respect to the type of branches described in Figure 4. Thus,
one can restrict the analysis to the attractor robustness of the double mode of |a1|2.

Then, the basins of attraction of the first response are plotted in the Nyquist plane while
varying the detuning parameter ΩD to track the evolution of the attractor topology when
the oscillators are going from a bistable to a multistable state, as shown in Figure 8. For
instance, |a1|2 displays two stable resonant solutions for ΩD = 0.07. At the considered de-
tuning parameter, the basins of attraction of SMRB1 are larger than those of SMRB2 due to
the difference in the frequency distances separating the corresponding solutions and the bi-
furcations points B1 and B2. For ΩD = 0.16, another stable solution is added, It is located on
the non-resonant branch of the single mode and its basins of attraction take a small domain
in the Nyquist plane as shown in Figure 8 (b).

The basins of attraction of the double mode take place in Figures 8 (c) and (d) and their
size increases and becomes significantly large for ΩD = 0.19 with respect to the attractor
size of the non-resonant branch which is almost null for ΩD = 0.25. Although these lower
branches are very close as shown in Figure 4 for |a1|2, they do not have the same nature and
this is proved regarding the frequency response of |a2|2, which justifies the large differences
in their attractor topologies.
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Fig. 6 Distribution of the basins of attraction for the two responses |a1|2 (at the top) and |a2|2 (in the bottom)
for ΩD = 0.255 in the planes (α1(0),α2(0)) and (β1(0),β2(0)).

Figure 9 displays the distribution of the basins of attraction of |a1|2 in the Nyquist plane
for Ω = 0.255 and three different parametric excitation amplitudes. When H is decreased
from 11 to 6.7, the number of stable solutions decreases for the considered detuning pa-
rameter at which it is not possible to intercept SMRB2. Indeed, a large part of the basins
of attraction of SMRB2 for H = 11 is taken by the double mode for H = 8.5. Moreover, if
we decrease the parametric excitation amplitude down to H = 6.7, the oscillator becomes
bistable and can switch solution between the double mode and the non-resonant branch of
the single mode. Nevertheless, the double mode is more robust, since its basins of attraction
represent more than 50% of the whole domain of initial conditions. In practice, the attrac-
tor topology can be tuned with respect to the parametric excitation in order to enlarge the
basins of attraction of the double mode and obtain an interesting collective dynamics very
well adapted for nonlinear energy localization.

Finally, to prove the robustness of the double mode, a quantitative study has been made,
based on a random sampling. It consists in solving sequentially the differential Equations
(11) and (12) by allowing the initial conditions to be random at each iteration. Of 100 000
sampled initial conditions, the double mode occurs 47%. Interestingly, the basins of at-
traction of the double mode are large, which demonstrates the attractor robustness. Conse-
quently, once functionalized in term of nonlinearity, the proposed periodic structure can be
exploited for jumps-based sensing techniques [42].
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(a) α2(0) = 0.06, β2(0) = 0.09

(b) α2(0) = 0.006, β2(0) = 0.09

(c) α2(0) = 0.02, β2(0) = 0.03

Fig. 7 Distribution of the basins of attraction for the two responses |a1|2 (on the left) and |a2|2 (on the right)
in the Nyquist plane (α1,β1), for a fixed detuning parameter Ω = 0.255.

3.3 Case of three coupled nonlinear resonators

Figure 10 displays the response intensity of three coupled oscillators as a function of the
detuning parameter ΩD, under simultaneous parametric and external excitations (H = 20
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(c) ΩD = 0.19 (d) ΩD = 0.25

Fig. 8 Evolution of the basins of attraction for the first intensity response with α2(0) = 0.01, β2(0) = 0.02
with respect to the detuning parameter in the Nyquist plane.

and G = 0.4), for the second set of design parameters given in Table 1. The curves show
the squares of the amplitudes of the three different modes, where the only SM corresponds
the trivial null solution of Equation (10), for N = 3 and m = 2. Remarkably, all solutions of
|a2

1| and |a2
3| are multimodal. The Double and Triple mode solution branches, result from the

coupling between the first and third oscillators, and the three coupled oscillators respectively.
They are denoted by: Di j and T kl for i ∈ {1,3}, j ∈ {1,2,3,4} and k, l ∈ {1,2,3}. Thus,
in this case the periodic structure is completely driven by the collective dynamics due to
the modal interactions between the nonlinear oscillators. This is demonstrated in Figure
11, where we plotted the average response intensity, defined in Equation (17), which is
I = 4

3 (|a
2
1|+ |a2

2|+ |a2
3|) for N = 3.

In addition, it is noticeable that each bifurcation point due to a multi-modal solution on
|a2|2 has a correspondence on the two other intensity responses (for instance, B1 B2 and B3),
which proves that the bifurcation topology transfer is general for any number of oscillators.
Moreover, there are multimode solution branches that are completely disconnected from all
other branches. Among them, two Triple Mode solutions localized in the detuning interval
[-0.107, 0.007].
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Fig. 9 Evolution of the basins of attraction for the first intensity response with α2(0) = 0.05, = β2(0) = 0.02
and Ω = 0.255 with respect to the parametric excitation amplitude in the Nyquist plane.

These curves were plotted to underline the large number of solution branches even for
a small number of coupled oscillators. Indeed, the intensity responses of |a2

1| and |a2
3| are

highly multistable with up to seven stable non-trivial solutions for a given frequency (four
double mode and three triple mode solutions). For the configuration, when ΩD = 0.46, the
distributions of the basins of attraction for the three intensity responses are plotted in Figures
11 (a) and (b) in the Nyquist plane (α1(0),β1(0)), for random initial conditions α2(0) =
0.06, β2(0) = 0.48, α3(0) = 0.38 and β3(0) = 0.39. We remark that |a1|2 and |a3|2 have
the same basin distribution and a transfer of basins of attraction topology exists between the
three oscillators with respect to the solution branch nature. Furthermore, the probability of
reaching the triple mode solution branches is about 32% and their robustness can be adjusted
with respect to the design parameters.

It is notable in basins of attraction Figures that most fractal parts are negligible with
respect to the compact parts of the attractors which implies good agreements with the dy-
namical integrity of the system [43]. Nevertheless, for large arrays of oscillators, the fractal
parts will increase due to the important number of multi-modal solution branches, and there-
fore, the dynamical integrity [44–46] must be analyzed by choosing the right definition of
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Fig. 10 (a) Response intensity of three coupled oscillators as a function of the detuning parameter ΩD, under
simultaneous primary and parametric resonances (G = 0.4, H = 20), for the second design parameters. The
Double and Triple Mode solution branches are denoted by: Di j and T kl for i ∈ {1,3}, j ∈ {1,2,3,4} and
k, l ∈ {1,2,3} and respectively. The only Single Mode denoted by SM corresponds to the trivial null solution
of Equation (10), for N = 3 and m = 2. (b) Zooming and highlighting over a region that contains multimode
solution branches that are completely disconnected from all other branches.

safe basin, choosing an appropriate integrity measures to qualify its magnitude and investi-
gating the basins evolution for varying system parameter.



18 Diala Bitar ÷Najib Kacem÷Noureddine Bouhaddi÷Manuel Collet

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ω
D

R
es

po
ns

e

TMTMTMTM

DDDDMMMM

TMTMTMTM

DDDDMMMM

DDDDMMMM

DMDMDMDM

(a)

−0.25 −0.2 −0.15 −0.1 −0.05 0

2

4

6

8

10

12

14

16
x 10

−3

Ω
D

R
es

po
ns

e

TM

DMR
es

po
ns

e

Ωୈ

(b)

Fig. 11 (a) Averaged Response intensity defined in Equation (17). (b) zooming and highlighting over a region
that contains up to five stable solutions. DM and TM denote the branches due to Double and Triple Modes
respectively.

(a) Basins of attraction of |a1|2 and
|a3|2.
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(b) Basins of attraction of |a2|2.

Fig. 12 Distribution of the basins of attraction for the three responses |a1|2, |a2|2 and |a3|2 for ΩD = 0.46 in
the Nyquist plane (α1(0),β1(0)), with the random initial conditions α2(0)= 0.06, β2(0)= 0.48, α3(0)= 0.38
and β3(0) = 0.39.

4 Conclusion

The collective nonlinear dynamics of periodic nonlinear oscillators was modeled for specific
discrete systems of coupled Duffing-VDP oscillators under simultaneous primary and para-
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metric excitations. The model is hybrid combining analytical and computational methods
and precisely based on the secular perturbation theory with the standing wave decompo-
sition and the asymptotic numerical continuation technique. The cases of two and three
coupled oscillators were investigated in several configurations, where we demonstrate the
complexity of the resulting nonlinear frequency curves in terms of modal interactions and
bifurcation topology transfer. The complex response curves were shown to emphasize the
large number of nontrivial solution branches, even for a small number of coupled oscilla-
tors. This can serve as a hint of the important number of multimodal solutions, expected
for large number of oscillators. Besides, when the number of coupled oscillators increases,
the collective dynamics becomes more complex with a large number of bifurcation points
and multimodal interactions over a wide frequency range. Finally, the basins of attraction
have been analyzed, precisely in the multistability domain which confirms the robustness of
the multi-mode solutions. From a numerical analysis point of view, this problem consists a
veritable challenge that we will attempt to study in a future work.

In practice, the nonlinearity can be functionalized in such periodic structures in order to
generate particular collective dynamics suitable for several applications. Indeed, the model
can be used as a design tool in order to increase the number of bifurcations for jump-based
multiple mass sensing in micro and nanotechnology or obtaining a large number of stable
branches for energy scavenging or trapping applications. Moreover, the stability of these
branches can be tuned in the frequency domain for ultra wide bandwidth filters. Finally,
the study of collective nonlinear dynamics of coupled mechanical resonators may serve to
identify the Intrinsic Localized Modes (ILMs) [47] which can be used as waveguides in
vibro-acoustics.

Acknowledgements This project has been performed in cooperation with the Labex ACTION program (con-
tract ANR-11-LABX-01-01).

Appendix A

Substituting Equation (5) into the EOM term by term. Up to the order ε
3
2 , we obtain:

(un+1−2un +un−1) =

−4ε
1
2

N

∑
m=1

sin2(
qm

2
)sin(nqm)(Ameiωmt + c.c.)

+ ε
3
2 (u(1)n+1−2u(1)n +u(1)n−1),

u3
n =

ε
3
2

4 ∑
j,k,l
{T (− j,k,l)+T ( j,−k,l)+T ( j,k,−l)−T ( j,k,l)}×

{A jAkAlei(ω j+ωk+ωl)t +3A jAkA∗l ei(ω j+ωk−ωl)t + c.c.},

u2
nu̇n = 4ε

3
2 ∑

j,k,l
{T (− j,k,l)+T ( j,−k,l)+T ( j,k,−l)−T ( j,k,l)}

× (A jeiω jt + c.c.)(Akeiωkt + c.c.)(iωlAleiωl t + c.c.),
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[(un−un+1)
3 +(un−un−1)

3]

= 4ε
3
2 ∑

j,k,l
Π j,k,l{S(− j,k,l)+S( j,−k,l)+S( j,k,−l)+S( j,k,l)}

×{A jAkAlei(ω j+ωk+ωl)t +3A jAkA∗l ei(ω j+ωk−ωl)t + c.c.},

[(un−un+1)
2(u̇n− u̇n+1)+(un−un−1)

2(u̇n− u̇n−1)]

=
ε

3
2

4 ∑
j,k,l

Π j,k,l{S(− j,k,l)+S( j,−k,l)+S( j,k,−l)+S( j,k,l)}

× (A jeiω jt + c.c.)(Akeiωkt + c.c.)(iωlAleiωl t + c.c.),

with:

T ( j,k,l) = sin[n(sgn( j)q j + sgn(k)qk + sgn(l)ql)]

S( j,k,l) = sin[
sgn( j)q j + sgn(k)qk + sgn(l)ql

2
]T ( j,k,l)

Π j,k,l = sin(
q j

2
)sin(

qk

2
)sin(

ql

2
)

Appendix B

The two delta functions, defined in terms of Kronecker deltas are:

∆
(1)
jkl;m = δ− j+k+l,m−δ− j+k+l,m−δ− j+k+l,2(N+1)−m

+δ j−k+l,m−δ j−k+l,m−δ j−k+l,2(N+1)−m
+δ j+k−l,m−δ j+k−l,m−δ j+k−l,2(N+1)−m
−δ j+k+l,m +δ j+k+l,2(N+1)−m−δ j+k+l,2(N+1)+m

and

∆
(2)
jkl;m = δ− j+k+l,m +δ− j+k+l,m +δ− j+k+l,2(N+1)−m

+δ j−k+l,m +δ j−k+l,m−δ j−k+l,2(N+1)−m
+δ j+k−l,m +δ j+k−l,m−δ j+k−l,2(N+1)−m
+δ j+k+l,m−δ j+k+l,2(N+1)−m−δ j+k+l,2(N+1)+m
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