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Abstract: Periodic structures exhibit very specific properties in terms of wave propagation. In this paper, some 

numerical tools for dispersion analysis of periodic structures are presented, with a focus on the ability of the 

methods to deal with the dissipative behavior of the components. An example of design of a two-state phononic 

crystal using a highly dissipative polymeric interface is finally shown.  
 

A periodic medium is a material or a structural system that exhibits spatial periodicity. The study of 

periodic structures has a long history in the field of vibrations and acoustics [1]. The methods current-

ly used are most of the time based on those derived from wave propagation in crystals [2], where al-

most no dissipation occurs. Reaching the upper scale for structural dynamics implies that damping 

effects have to be included in the analyses which are performed. The system consists in an infinite 

periodic bidirectional waveguide shown in Fig 1. It is a 1 mm thick plate with periodic cylindrical 

pillars. Due to the periodicity, the unit cell is used and the corresponding first Brillouin zone is de-

scribed in Fig. 2. 

  
Figure 1 Infinite plate Figure 2 Real and reciprocal lattices 

In order to design a two-state phononic crystal, a polymeric base is included in the pillar (Fig 3). The 

base plate is made of isotropic Aluminium 6063-T83 (𝜈𝑎𝑙𝑢 = 0.33; 𝐸𝑎𝑙𝑢 = 69𝑒9 [𝑃𝑎] and 𝜌𝑎𝑙𝑢 =
2700 [𝑘𝑔/𝑚3]). Pillars are made of combination between a highly dissipative polymer 

tBA/PEGDMA (𝜈𝑝𝑜𝑙𝑦 = 0.37; 𝐸𝑝𝑜𝑙𝑦 and 𝜌𝑝𝑜𝑙𝑦 = 1004 [𝑘𝑔/𝑚3]) [3] and Aluminum.  

 
 

 

A suitable model is required for the description of the frequency-dependent behavior of the polymer. 

Here a fractional derivative Zener model is used. Moreover this material exhibits a strong temperature 

dependency that will be used to obtain the two-state phononic crystal. The expression of the elastic 

complex modulus is  
 

𝐸𝑝𝑜𝑙𝑦
∗ (𝜔) =

𝐸0𝑝𝑜𝑙𝑦
+ 𝐸∞𝑝𝑜𝑙𝑦

(𝑖𝜔𝜏)𝛼

1 + (𝑖𝜔𝜏)𝛼
, (1) 

 

where 𝐸0𝑝𝑜𝑙𝑦
 and 𝐸∞𝑝𝑜𝑙𝑦

 are respectively the static elastic modulus and the high-frequency limit value 

of the dynamical modulus, 𝜏 is the relaxation time and 𝛼 is the order of fractional derivative. An esti-

mation of the four parameters 𝐸0𝑝𝑜𝑙𝑦
, 𝐸∞𝑝𝑜𝑙𝑦

, 𝛼 and 𝜏 is obtained by experimental measurements [3].  

Figure 3 Reference and two-state structure 
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The ”Shifted-Cell Operator” technique consists in a reformulation of the PDE problem by ”shifting” 

in terms of wave number the space derivatives appearing in the mechanical behavior operator inside 

the cell, while imposing continuity boundary conditions on the borders of the domain. The formula-

tion leads to the following eigenvalue problem [4] 

[(𝐾 − 𝜔2𝑀) + 𝜆𝑖(𝐿 − 𝐿𝑇) − 𝜆𝑖
2𝐻]𝜙𝑖

𝑟 = 0, (2) 

where 𝜆𝑖 = 𝑗𝑘𝑖 is the 𝑖-𝑡ℎ eigen value, 𝜙𝑖
𝑟 denotes the right eigenvector associated to 𝜆𝑖, 𝑀 and 𝐾 are 

respectively the standard symmetric definite mass and symmetric semi-definite stiffness matrices, 𝐿 is 

a skew-symmetric matrix and 𝐻 is a symmetric semi-definite positive matrix. In this formulation, all 

matrices can depend on 𝜔. A parametric eigenvalue analysis is then performed where the pulsation 𝜔 

is fixed as real parameter, allowing introduction of damping effects. The wavenumbers 𝜆𝑖 = 𝑗𝑘𝑖 and 

the associated right eigenvectors 𝜙𝑖
𝑟 are computed by solving the quadratic eigenvalue problem. 

For frequency-dependent systems, the estimation of the group velocity is not trivial [5, 6]. We focus 

on homogeneous cases where the frequency dependency is characterized by a Young’s modulus such 

that 𝐸 = 𝑓(𝜔)𝐸0 and a constant Poisson’s ratio. Hence 𝐾 = 𝑓(𝜔)𝐾0, 𝐻 = 𝑓(𝜔)𝐻0 and 𝐿 = 𝑓(𝜔)𝐿0. 

In this case we obtain  
 

𝐶𝑔 = 𝑟𝑒𝑎𝑙 (
𝜕𝜔

𝜕𝑘𝑖
) = 𝑟𝑒𝑎𝑙 (

𝑗𝜙𝑖
𝑙𝑇

[𝑓(𝜔)(−𝐿0 + 𝐿0
𝑇 + 2𝜆𝑖𝐻0)]𝜙𝑖

𝑟

𝜙𝑖
𝑙𝑇

[𝜔2 𝜕𝑓
𝜕𝜔

− 2𝜔]𝑀𝜙𝑖
𝑟

). (3) 

 

The height of the polymeric interface has been chosen such that the resonance of the pillar occurs 

between 15 𝑘𝐻𝑧 to 45 𝑘𝐻𝑧. A comparison between the results obtained using the reference structure 

and the tunable structure is presented on Fig 4. The two states are obtained by changing the tempera-

ture of the polymeric interface: at 50°𝐶, the band gap is visible around the selected frequency. Above 

the glass transition, the phononic crystal tends to behave as an homogeneous plate. 
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Figure 4 Dispersion curves of the various configurations 


