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Abstract
This paper presents modelling, simulation and

optimization results for a novel SThm probe. The
model takes into account thermo-electro-mechanical
equations. Moreover, a tip-surface contact model derived
by taking into account microscopic multi-asperity contact
is proposed and discussed. Results of multi-objective
optimization are reported, and finally a multi-scale model
that should reduce the simulation time is stated.
KEY WORDS: Scanning thermal microscopy,
Nanoprobe, Tip-surface contact, Interface thermal
conductance, Multi-objective optimization, Asymptotic
model

1. Introduction

Modern technology of micro/nanoelectronic compo-
nents, sensors and MEMS/NEMS (Micro/Nano-Electro-
Mechanical-Systems) requires increasingly the control of
materials at the sub-micrometer down to the nanometer
scale. Additionally, the heat transfer phenomena, including
e.g. phonon heat conduction mechanism in micro- and
nanostructures, may differ significantly from that on the
macroscale. Therefore, micro- and nanometer resolution
is required for most of the experiments.

Scanning Thermal Microscopy (SThM) is a versatile
scanning probe technique allowing for high resolution
mapping of the thermal properties and temperature of
various substrates. SThM, as every AFM (Atomic Force
Microscopy) related technique enables study at micro- and
nanoscale which allows designers to better the understand-
ing of heat transport in micro- and nanoelectronic devices.

The invention of the scanning tunneling microscope
(STM) [2] and the atomic force microscope (AFM) [1]
have allowed sub-micrometer and, at times, atomic scale
spatially resolved imaging of surfaces. The spatial reso-
lution of these near-field techniques is only limited by
the active area of the sensor (which in the case of STM
may only be a few atoms at the end of a metal wire).
As described by Dinwiddie and Pylkki in 1994, first
scanning thermal microscopy (SThM) probes employed
resistance thermometry to measure thermal properties [3].
These probes were fashioned and made from Wollaston
process wire consisting of a thin platinum core (ca. 5 µm
in diameter) surrounded by a thick silver sheath (ca. 75
µm). Because of its high endurance, Wollaston probe is

attractive for microsystem diagnostics [16], however the
active area in the range of a few micrometers does not
allow quantitative thermal investigations at the nano-scale.

In this paper, we present and discuss a new thermal
probe that is designed to achieve quantitative measurement
in the range of few tenths nanometers. Two aspects of
its modelling are discussed. Since the current models and
theories are not sufficient to describe and predict the heat
flow through the tip-sample interface and in the vicinity
of the contact, a simple model of tip-sample heat transfer
is stated. It is obtained by combining recent published
results and experimental observations. In addition, a thin
plate model is described that includes the three involved
physical phenomena as well as the multilayered structure
of the probe. It should be useful to reduce the simulation
time and so to facilitate optimization. The latter has been
carried out using an in-house developed software package
SIMBAD for robust optimization and its connection with
the FEM simulation software package COMSOL. Three
objective optimization results are reported, namely to
decrease the thermo-mechanical tip deflection, to increase
the Joule heating effect in the tip and to increase the
sensitivity of the piezoresistive sensor.

The paper is organized as follows. Section 2 present
the probe design. In Section 3, the mathematical for-
mulation of the physical problem is stated. Section 4 is
dedicated to the tip-sample heat transfer model. Section 5
presents the SIMBAD-COMSOL package. In Section 6, a
parametrization of the SThm probe is introduced allowing
to perform the sensitivity analysis and then multi-objective
optimizations. The thin plate model is presented in the last
section.

2. The probe design
The novel type of nanosensor, described in this paper, is

equipped with sharp, conductive tip, an integrated deflec-
tion sensor, and an actuation system. A modification of
a double sided silicon micromachining process developed
for manufacturing of piezoresistive AFM microprobes has
been adapted to fabricate SThM sensors [7][8].

Proposed nanoprobes, as the only SThM/ECM probes
on the market are integrated with deflection detection,
which will significantly improve the system versatility and
will enable new applications. As the NANOHEAT system



as free of the bulk and complicated optical deflection
sensors, it can be used in small SEM chambers. The

(a) Schematic view of NANOHEAT SThm probe

(b) First design of the cantilever

Figure 1. NANOHEAT SThM probe

described SThM nanoprobes are designed to operate in
two modes: a) as a passive thermosensing element or b)
as an active heat flux meter. In the latter case, a larger
current is passed through the resistive tip probe. The
power that is required to maintain a constant temperature
gradient between the tip and the sample corresponds
to the local thermal conductivity of the sample. During
active measurements temperature of the tip is increased by
20− 30 K above room temperature. In order to perform
quantitative measurements of heat transport between the
tip and the surface several crucial criteria have to be met:

-low thermal mass of the microtip allowing for AC
thermal measurements (e.g. in the range of 10 kHz)

-high mechanical stiffness of the microtip. This ensures
high endurance of the thermal sensor, which is brought
into contact while surface scanning.

-low stiffness of the SThM cantilever, which is brought
in contact with the investigated surface. The low stiffness
of the SThM cantilever will enable surface measurements
with relatively low load forces. As a consequence the tip
wear is reduced and the sample is not modified.

-high thermal resistance of the SThM cantilever and
tip’s support. The high thermal resistance of the cantilever
will reduce the heat transfer from the thermal tip to the
cantilever supporting body. The effective thermal mass of
the SThM sensor will be reduced, and its influence on
the thermal behavior of the investigated structure will be

minimized.
Moreover, the heat transferred from the tip to the

cantilever base causes parasitic deflection of the sensor
and may influence signal from Wheatstone bridge. First
results of modeling and simulations exhibit significant
parasitic, 200 nm deflection of the cantilever due to tip’s
heating by 11 degrees above the room temperature.

According to the applications, developed SThM
nanoprobe will enable surface measurements in contact
scanning probe microscopy mode at load force ranging
from 10 nN up to 1 microN. The load force will be
detected with the resolution of 10 pN in the bandwidth
of 100 Hz. The low load forces as well as sub-nanometer
vertical spatial resolution in the range will be needed
in investigations of graphene and molecular samples,
whereas the high force will be applied in investigations
of high-k insulators.

3. Mathematical model description
The SThm probe is designed as a three-layered struc-

ture. The silicon supporting layer has a thickness of 5
µm, it is covered by a 50 nm SiO2 layer where 100 nm
thick platinum tracks are deposited. The latter consists of
a heating circuit, a sensing circuit and a sharp resistive
tip. The three corresponding domains are denoted by ΩSi,
ΩSiO2 and ΩPt and Ω denotes their union.

In Figure 1(b), the two inner platinum legs constitute
the heating circuit and the two outer constitute the sensing
circuit. A piezo-resistive sensor for stress measurement is
located to the base of the probe, it is used to measure the
tip displacement.

In all the paper, the Einstein summation convention is
adopted. We use Cq, Mq, kq where q ∈ {Pt,SiO2,Si} and
a, to denote the tensor of elasticity, the matrix of thermal
expansion, the matrix of thermal conductivity in each
layer and the matrix of electric conductivity in platinium.
We denote by u, T , and φ the vector of mechanical
displacements, the difference of the temperature to the
ambiant temperature and the electric potential. The system
is governed by the following equations,

−div(σ) = f in Ω
−divq = (∇φ)T a∇φ in ΩPt

−divq = 0 in Ω\ΩPt
−div(a∇φ) = 0 in ΩPt

(1)

where a = (1 + αT )−1are f , f is the body force load,
σ = Cqs(u)+Mq(T ) is the tensor of mechanical stresses,
s(u) = 1

2 (∇u+∇uT ) is the tensor of strains, q = kq∇T is
the heat flux, are f is the tensor of electric conductivity at
ambiant temperature, and α is the thermal coefficient.

Regarding the boundary conditions, the cantilever is
clamped and with an imposed temperature on a part Γ0
of the boundary, i.e. u = 0 and T = T0, and it is left
free of load and thermally insulated on the other part, i.e.
σn = 0 and ∇T.n = 0 where n denotes the outward unit
normal vector to the boundary. Finally, a current source



is applied to Γe
01 and Γe

02 is grounded, see Figure 1(b).
The tip-sample interface condition is discussed in details
in the next section, however it has not yet been taken into
account in the other parts of the paper which are focused
on the probe itself but not yet on its interaction with a
sample.

4. Heat transfer through the tip surface contact

Scanning thermal microscopy probes the heat transfer
between the integrated heater/sensor of a scanning probe
cantilever and a sample surface. The heat flux across
the tip-surface contact directly relates to the measured
quantities, namely the thermal resistance into or out of
the sample, which is to be related to thermal conduc-
tivity of the sample, and the sample temperature [14].
For a quantitative understanding and simulation of the
tip-sample heat transfer, it is essential to quantify this
thermal resistance and its dependence on the interface
parameters. A schematic of the tip-surface contact and

Figure 2. a) Schematic of the tip-sample heat transfer b) a microscopic
multi-asperity contact c) an atomic scale interface d) atomic-scale
roughness.

the associated thermal resistances are shown in Fig. 2 a).
Scanning thermal microscopy tips are typically designed
such that the thermal resistance of the tip Rtip is small
compared the contribution of the sample Rsample. This
is achieved by choosing good thermal conductors such
as metals or silicon as tip materials. However, in quest
of achieving high spacial resolution, the dimensions of
the tip become smaller and as a consequence its thermal
resistance becomes significant. In the case of silicon tips
the phonon mean free path of about 100 nm at room
temperature exceeds the diameter of the tip.

As a consequence, diffusive thermal transport as simu-
lated in finite element modeling cannot be directly applied
any longer. Instead, heat conduction through the tip is
modeled as quasi-ballistic transport. For example, follow-
ing the expression of thermal conductivity from kinetic
theory: k =CvΛ, with k being the thermal conductivity, C
the heat capacity per unit volume, v the phonon velocity,
and Λ the mean free path, one can apply Mathiessen’s
rule to calculate a mean free path modified from the bulk
value through boundary scattering. For simple geometries
such as conical, analytic expressions exist [5].

The thermal resistance of the sample can be calculated
in a similar manner. If the characteristic length scale of the

spreading resistance into the sample, the contact diameter,
is much larger than the average mean free path of heat
carriers in the sample, then diffusive transport leads to
a scaling with the inverse of the contact diameter. In
contrast, the resistance within the sample scales inversely
proportional to the contact area in the ballistic transport
regime. For spherical contact areas, both cases can be
described with a single analytic interpolation formula.

The contributions from tip and sample to the resistance
can be calculated with existing and established models,
for simple geometries even using analytic equations. The
contribution of the interface, however, is more complicated
because both phonon mismatch and mechanical contact
geometry have to be taken into account. Phonon mismatch,
i.e. the difference in phonon dispersion between two
solids, causes a thermal interface resistance (or thermal
boundary resistance). Even for interfaces of perfect quality
this leads to an appreciable resistance [15]. In reality,
however, the interface quality is not perfect, due to oxide
layers, non-continuous contact areas, or weak coupling
bonds between the atoms of either solid. To account for
the weak coupling, advanced contact models have been
developed in which the transmission probability is related
to the mechanical coupling spring between the two solids
[12], [11].

In SThM there are further aspects to be considered.
Due to the roughness of the tip and sample surfaces, the
apparent contact area may in fact be divided into smaller
contact spots. Appropriate modeling of this effect depends
on the length scale L of the contact spots. If L is much
larger than the mean free path of heat carriers than the
solutions mentioned above can be applied. If L is smaller
than the mean free path then ballistic solutions play a role.
This has been pointed out for example by Prasher and
Phelan [13]. As discussed recently [10], [4], the notion
of finite contact spots may be extrapolated to the atomic
scale. This can lead to a situation in which the contact
spot diameter L is smaller even than the coherence length
λcoh of the phonons while the distance between individual
contact spots may exceed λcoh. In this regime, quantization
of conductance may occur [4].

Including all these aspects into the modeling of the
tip-surface contact requires taking all relevant length
scales into account. Some of the effects mentioned above,
namely the weak coupling between tip and sample as
well as the effect of roughness on the contact area, are
experimentally observed in the form of pressure depen-
dence of the interface resistance. This effect will increase
thermal conductance with applied load (together with an
increased nominal contact area of a curved tip pressed
into a surface). The magnitude of the load-dependence
can therefore be an indication of the transport regime.

Following experimental data on the pressure depen-
dence of conductance across weak interfaces [6] gives us



an order of magnitude of the interface conductance

gint(p) = g0 +g1 p

with gint the interface conductance in units of W/(m2K),
g0 around 4×107 W/(m2K), p the pressure at the interface
and g1 on the order of 10−2 W/(NK). In contrast, for
systems that may involve quantized transport pressure de-
pendencies on the order of 1 W/(NK) have been reported.
At sufficiently high pressures the pressure-dependence of
the thermal conductance reduces again [6], [4]

5. Simbad a tool for optimization
The software SIMBAD provides a generic simulation-

based design tool for investigating the behaviour of com-
plex modeled systems. A MATLAB link has been set be-
tween COMSOL and SIMBAD so that COMSOL models
may be used as an input for a design under SIMBAD. It
includes the definition of the optimization problem: the
initial value of parameters, the parameter relative ranges,
the objective features and the constraints for geometry and
objective features. It serves to transmit current parameters
between the two software packages.

Three SIMBAD toolboxes have been used. The design
sensitivity and effects analysis toolbox is used to quan-
tify the impact of design variable modifications on the
design objective of interest. It allows the design space
to be reduced to the subset of influential variables. The
multi-objective performance optimization toolbox is used
to obtain an approximation of the Pareto front for the
different design objectives. It provides the analyst with a
useful indicator on the trade-offs between the objectives
of interest. Finally, the model validation and uncertainty
quantification is used to quantify the impact of both
aleatory and epistemic (lack of knowledge) uncertainties
in the design variables and system environment on the
design objectives and constraints.

6. Optimization
The first step in optimization consists in building a

full parametrization of the probe geometry, see Fig 3.
The geometric parameters are updated during the sen-
sitivity analysis as well as the optimization loops. Ac-
cording to the applications of this probe, three objectives
are set, the maximization of the maximum temperature
Tmax = maxx∈Ω T (x), the minimization of the maximum
vertical mechanical displacement umax =maxx∈Ω u3(x) for
a fixed voltage source and no body force load and the
maximization of the mean value σmean of the sensor stress
i.e. the von-Mise stress in the piezoresistive sensor for a
prescribed tip displacement. The multi-objective optimiza-
tion is carried with two different simulation conditions.
To optimize Tmax and umax, only the voltage source is
imposed at 0.12 V. Then, the optimized value of σmean is
found by fixing a 1 µm tip displacement.

In the following discussion, we distinguish between
the original design shown in Figure 1(b) whose initial

parameters are provided by the probe designers, and
the nominal design shown in 3 whose initial parameters
come from a preliminary optimization. The parameters
of the original design are splitted into three groups of
layer thicknesses, leg dimensions and tip gaps. The latter
includes the triangle-shaped and T-shaped gaps near the
tip.

In the first group, both Tmax and umax are increasing
with the platinum layer thickness and decreasing with
the silicon layer thickness, and the sensor stress σmean
is increasing with the silicon layer thickness. In fact, the
tip displacement is more sensitive to the platinum layer
thickness than the tip temperature because the thermal
expansion coefficient of the platinum is three times larger
than that of the silicon layer.

In the second group, only the width of the heating
circuit and the gap around the middle leg are influential
on the objectives. Since the fixed voltage is applied
on the heating circuit, a wider heating circuit means a
higher heating power and a larger thermal expansion, and
consequently a higher tip temperature and a larger tip
displacement. A larger gap means softer supporting layer
and consequently a larger tip displacement and a lower
sensor stress.

In the third group, Tmax and umax are increasing with
the widths of the tip gaps and σmean is not sensitive to
the parameters in this group. This is because wide tip
gaps implies concentrated heat distribution in the tip and
locally soft supporting layer. The tip temperature is also
sensitive to the cross section of the heater.

By a preliminary optimization, the original design has
been simplified as shown in Figure 3. According to a new
sensitivity analysis, the influential parameters namely the
width Wg2 of the middle gap, the widths Whb and Whu of
the heating tracks, the widths Wcb and Wcu of the sensing
tracks, the width WJn of the narrow part of the middle
leg, the bottom end position H f in of the heater which
also corresponds to the heater length, and the height Hh2
of the middle part of the tip gap are selected as active
variables.

The results of optimization for Tmax and umax are
shown in Figure 4. The coordinates of each plotted point
are ( umax

u0
max

, Tmax
T 0

max
) where u0

max and T 0
max are related to the

nominal design. In this approach, all the points along the
pareto front correspond to optimal designs but for different
compromises. Table 1 reports the chosen design in Figure
4. Compared with the original design, improvements by
300% for Tmax (41.6 K vs 10 K) and 90% for umax (20.67
nm vs 200 nm) were achieved. The piezoresistive sensor
stress σmean is not presented in the two-dimensional graph,
however, it has been improved by 3.59%. Those results
are significant but simulation time was long, i.e. 12 hours
for 1022 samples, each sample requiring a simulation. The
average number of FEM elements in each simulation is
about 3200 and the average time is 45 s. The simulation
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Figure 3. Parametrization of second design

Figure 4. Two-objective optimization

time consists of about 3 s for the setting of COMSOL
server environment, 2 s for building the geometry, 3 s for
setting equations, 34 s for solving the equations and 3 s
for extracting objective features. Considering the relative
simplicity of the problem and the low number of active
parameters, we consider the total optimization takes far
too long so that to be routinely used. Since the number of
finite elements cannot be reduced without degrading the
accuracy, we have developed a thin plate model, presented
in the last section, aimed at simplifying the model and thus
to significantly reduce the computation time.

In addition, a robust analysis based on the Monte Carlo
method has been applied to the chosen optimal design
with 100 samples and a ±10% variation of active variables
around the optimal value. Figure 5 shows the result where
the optimal design is marked by a black square. The
optimal design is considered as robust since it is located
close to the center of the 95% confidence ellipse.

Free Variable Initial Optimal Relative value (%)
Wg2 22 4.744 21.55
Whb 18 9.979 55.44
Whu 10 9.642 96.42
Wcb 10 1.44 14.4
Wcu 10 2.589 25.89
WJn 5 1.923 38.45
H f in 10 19.74 197.4
Hh2 10 3.624 36.24

Table 1. Optimization report

Figure 5. Scatter plot with 95% confidence ellipse

7. Thin plate model

The thin plate model introduced in this section is aimed
at reducing the model 1 which is defined on the thin
structure Ω. Its derivation is based on an asymptotic
method related to the ratio ε between the order of the
thickness and that of the width or of the length. Moreover,
regarding to the small value of the thermal conductivity
kSiO2 = 1.4 compared to kPt = 71.6 and to kSi = 34, we
introduce the scaled coefficients

kPt,0 = kPt, kSiO2,0 = kSiO2/ε2 = 140 and kSi,0 = kSi,

which are almost of the same order. The two-scale trans-
form S used for this model is a linear transformation
mapping a function v defined on the three-dimensional
domain Ω into Sv a function defined on the product of the
two-dimensional mid-plane ω of the plate with an interval
J1 which is a dilation of the thickness by the factor ε.
The mid-plane ω is comprise of the projection ωPt of ΩPt
on the (x-y)-plane and ω0

S = ω\ωPt the projection of the
complementary part. The interval J1 is also composed of
three sub-intervals J1

Pt, J1
SiO2 and J1

Si, the scaled thickness
of the three layers. We assume that the two-scale transform
of each field v involved in the model admits an asymptotic
expansion Sv = εm0 v0 + εm0+1v1 where m0 is determined
by a preliminary mathematic analysis. For more detailed
information on two-scale analysis, we refer to e.g. [9],
but the detailed derivation of the present model differs by
some points and will be published in a separate paper.



We introduce the temperature fields TPt, TSiO2 and TSi to
distinguish between the temperature fields in each layer.
The exponent m0 is equal to −1 in the expansion of S(u3)
and is equal to 0 in the expansion of the other terms.

In the two-scale model of the thermo-electro-
mechanical thin probe, the temperatures T 0

Pt and T 0
Si in

the platinium and the silicon layers, the voltage φ0 and
the mechanical displacement u0

3 are constants in the
thickness direction. Moreover, the temperature T 0

SiO2 of
the SiO2 layer is equal to λ(x1

3 − b) + T 0
Si in ωPt with

λ = l−1(T 0
Pt −T 0

Si), l and b being the length of J1
SiO2 and

the bottom coordinate of J1
SiO2, and T 0

SiO2 = T 0
Si in the

other part ω\ωPt. Evidently, T 0
Pt is defined in ωPt only

and extended by zero in ω\ωPt. The fields T 0
Pt, T 0

Si, φ0

and u0
3 are solution to the coupled two-dimensional partial

differential equations,

−kPt∆T 0
Pt + rSiO2kSiO2λ = a∆φ0 in ωPt

−div(a∇φ0) = 0 in ωPt

−kSi∆T 0
Si − r−1

Si rSiO2kSiO2λ = 0 in ωPt
−kSi∆T 0

Si = 0 in ω\ωPt
−∂2

αβ(mαβ +T 0
PtM

Pt
αβ +T 0

SiM
Si
αβ) = ∂αqα + f H

3 in ω
mαβ =−CH

αβθγ∂
2
x0

θx0
γ
u0

3 in ω.

The temperature gradient λ in J1
SiO2 plays the role of a

negative heat source for the equation of T 0
Pt and a positive

heat source for this of T 0
Si. Denoting by

∮
J1

X
f (x1

3) dx1
3 the

mean value over J1
X, the parameters of the model are the

volume ratio rSiO2 between ΩSiO2 and Ω, the volume ratio
rSi between ΩSi and Ω, the electric conductivity a = (1+
αT 0

Pt)
−1are f , the mean lateral body force qα =

∮
J1 x1

3 fαdx1
3

and the mean vertical body force f H
3 =

∮
J1 f3 dx1

3. The
piecewise constant elastic tensor is defined by CH

αβθγ =∮
J1(Cαβθγ+Cαβk3(2−δk3)LM

k3θγ)
(
x1

3
)2 dx1

3 for x0 ∈ωPt and

by CH
αβθγ =

∮
J1

SiO2∪J1
Si
(Cαβθγ + Cαβk3(2 − δk3)LM

k3θγ)
(
x1

3
)2

dx1
3 for x0 ∈ ω\ωPt where the coefficients LM

k3θγ are so-
lution to (2 − δk3)Ci3k3LM

k3θγ = Ci3θγ for any θ, γ. The
three matrices of thermal expansion coefficients are MPt

αβ =

|J1
Pt|

|J1|
∮

J1
Pt

x1
3Mh

αβ dx1
3 +MSiO2, MSi

αβ =
|J1

Si|
|J1|

∮
J1

Si
Mh

αβx1
3 dx1

3 −
MSiO2 for x0 ∈ ωPt and MSi

αβ =
∮

J1
SiO2∪J1

Si
x1

3Mh
αβ dx1

3 for

x0 ∈ ω\ωPt, where MSiO2 =
|J1

SiO2|
|J1|

∮
J1

SiO2
l−1(x1

3 −b)Mh
αβx1

3

dx1
3 with Mh

αβ = δαβM + 2Cαβη3LH
η3 +Cαβ33LH

33 and the
parameters LH

η3 are solution to (2−δk3)Ci3k3LH
k3 = δi3Mi3.

The projection of the boundaries Γ0, Γe
01 and Γe

02 on the
(x-y)-plane are denoted by γ0, γe

01 and γe
02. The tempera-

tures satisfy the boundary conditions T 0
Pt = T 0

Si = 0 on γ0,
the voltage source is imposed on γe

01 and γe
02 is grounded.

The usual clamping conditions u3 = ∂nu3 = 0 apply
on γ0 together with the free load boundary conditions
(mαβ + T 0

SiM
Si)nβnα = 0 and ∂τ((mαβ + T 0

SiM
Si)nβτα) +

∂β(mαβ +T 0
SiM

Si)nα = −qαnα on ∂ω\γ0. Finally, the in-
terfaces between ωPt and ω\ωPt are subjected to natural
transmission conditions.

This model has not yet been implemented, but we
observe that it is posed in a two-dimensional domain
instead of a three-dimensional domain which implies a
dramatic mesh reduction. Moreover, it involves one more
temperature field but two less mechanical displacement
fields. In total, we expect a significant simulation time
reduction.

8. Conclusion
A novel SThm probe design has been presented with

its functioning mode. Various aspects of its modeling,
simulation and design have been reported: a tip-surface
interaction model, a study of the design optimization, and
a two-scale model of the thin probe which should shorten
the simulation time.
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