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Abstract
Damping plays an important role in bolted joints of assembled structures due to their significant capacity to dissipate en-
ergy. The underlying mechanisms of these dissipative phenomena are generally poorly understood and result from contact
and friction effects within the joint interfaces. In order to provide useful virtual prototyping tools for reducing response
levels, accurate model-based estimation of modal damping is required. The present study employs an energetic method to
calculate the loss factor associated with the localized dissipative interfaces of a global linear structure. The current method
is based on the concept of the dissipated energy in the interfaces for which the closed-form expression of the loss factor
is the ratio between dissipated energy and maximal potential energy, over a cycle of periodic vibration. The aim of this
work is to investigate the advantages and drawbacks of this methodology for particular conditions such as: modal projec-
tion, localized damping level and model density. Simulated academic examples, where accurate estimations of the exact
solutions are available, will be used to illustrate the methodology and to explore the potential difficulties that may arise in
more complex industrial applications.
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1 Introduction
The study of the dissipation in the joints has been the subject of several studies [1]. However, the prediction of damping
in structures assembled from the design phase started since a decade [2, 3]. Bolted joints are responsible for the major
part of the energy dissipation in assembled structure [2]. Constitutive modeling of mechanical joints is an important part
of predictive dynamic modeling of joints structures because joints are often the dominant source of energy dissipation and
vibration damping in those structures. For very expensive components that are safety critical, predictive dynamic modeling
is necessary. In order to predict modal damping in an assembled structures two kinds of methods exist in the literature :
experimental methods [4] and calculating methods [5]. Afterwards we will only be interested in the calculation methods.
Mechanical engineers often use proportional damping assumption for vibration calculations, even if the structures have a
configuration of localized damping. The modal assumption risks to not respect physical properties of the dynamic system.
This can causes vibration amplitudes differences and modal damping errors when comparing the proportional model with
the real model [7]. The purpose of this paper is to investigate the limitations of the energetic method when predicting modal
damping for localized structures. Therefore, this paper is structured as follows : section 2 presents the energetic method
to estimate modal damping and section 3 illustrates the prediction level of this methodology and its validity domain on
academic examples.

2 Energetic method
To estimate the damping with localized dissipation in bolted joints of an assembled structures when the eigenmodes are
well separated, we can use state space method and the energetic method. In this work we describe just the second method.
But results of these two methods are taken into account to calculate modal damping of proposed academic examples.
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The present study employs this approach to calculate the loss factor associated with the localized linear interfaces of a
globally linear structure. In practice, the response of the system is not calculated explicitly due to the high computational
burden. When assuming a linear and dissipative problem of assembled structures, the discrete form of the damped vibration
problem may be governed by the equation :

Mÿ(t) + Cẏ(t) +Ky(t) = 0 (1)

where K, M and C are respectively the stiffness, mass and damping matrices, y is the vector of the external loads.
The objective of the energetic method is to determine the damping factor corresponding to each vibration mode of the

structure. It is based on the concept of the dissipated energy in the interfaces for which the close form expression of the loss
factor is the ratio between dissipated energy and maximal potential energy, over a cycle of periodic vibration. as shown in
this relation :

ξν =
1

4π

Edissν

Edefν

; ν = 1, 2, ...., n (2)

where Edissν and Edefν are respectively the dissipated energy and maximal potential energy. In the following we will
present the necessary formulas for calculating these energies.

The estimation of the dissipated and maximal potential energies requires an accurate characterization of the response
levels of the system and the latter remain an approximation since they depends a priori on a knowledge of the different
dissipation mechanisms. So, dissipated energy is calculated by the following expression :

Edissν =

T∫
0

ẏ(t)
T
fc(t)dt (3)

Where

• T = 2π
ων

the cycle of periodic vibration

• fc(t) = Cẏ(t) : dissipated force

• ẏ(t) = Re(jωνy(ων)ejωνt) the velocity of harmonic response

Potential energy is calculated as follow :

Edefν =
1

2
{y(wν)}TK {y(wν)} (4)

where y(wν) is the frequency response of the system.
We distinguish to cases : the proportional damping and localized damping. In the first case the frequency response of

the system is equal to

y(wν) =

n∑
ν=1

φνqν (5)

If the response is projected on a single mode of vibration then equation (5) becomes

y(ων) = φνqν (6)

where φν and qν are respectively the eigenmode and modal amplitude corresponding to eigenfrequency ων . The exacte
frequency response is equal to :

y(ω) = (K + jωC − ω2M)−1 × f (7)

In the case of proportional damping, if the eigenmodes φν are orthonormalized with respect to the mass matrix M, i.e.
φTkMφl = δkl, so from equations (4) and (5) the total strain energy can be derived in the form :

Edefν =
1

2

n∑
ν=1

ω2
νq

2
ν (8)



If the damping is assuming to be hysteretic; i.e.

C =
η

ω
K (9)

where η is the unknown loss factor. One can easily show that at frequency ων , the modal damping qν can be expressed
in fonction of ξν by :

qν = −j φνf
ω2
νην

= −j φνf

2ω2
νξν

(10)

Where : ην = 2 ∗ ξν . Equation (10) leads to the amplitude qν , from which one can determine the energy dissipated in
each joint. Hence, the energy dissipated in all joint leads to the estimated value of the total damping factor :

ξjointsν =
1

4π

Ediss

Edef
(11)

3 Advantages and limitations of the energetic method
The energetic method proposed has been implemented on a demonstrator as a model in Matlab. Three numerical simulations
have been performed in order to highlight the validity domain of energetic method. The goal of this part consists in studying
the influence of the following parameters on the accuracy of this method: modal projection effect, localized damping level
and modal density when predicting modal damping.

3.1 Influence of the mode projection
The system studied to demonstrate the effect of a projection on a user device is composed of two beams connected together
by a localized dissipative interface (figure 1).
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Figure 1: Double-beam with simple bending

Each component is discretized into ten 2D beam finite elements (2 DOFs per node), so the full model has 40 DOFs. Two
lumped masses (m1,m2) are fixed at the free end of the beams. The excitation force is applied to node number 1 of the first
beam. This model represents two structures assembled by a bolting joint. Simulation data are summarized in the tables 1.
The joint is represented by a linear lumped model composed of spring ki and a viscous damper ci elements.

The dissipation force is expressed in terms of the velocity by the equation:

fc(t, u̇) = ci ×∆u̇ (12)

The modal damping results calculated with three methods are illustrated on Figures 2: The reference method is, in this
case, the state space method [6], the methods EM1 and EM2 are the variants of the Energetic Method EM respectively
with mode projection on truncated modal sub-basis using equation (6) and with modal projection on a single mode of



Table 1: Physical and geometric properties of the structure / Inerface parameters

E Steel’s Young modulus (GPa) 210 ki Linear stiffness (N/m) 105

ρs Steel density (kg/m3) 7800 ci Viscous damper (N/(m/s)) 20
h Beam thikness (m) 2 10−2 m1 Mass (Kg) 0.2
b Beam width (m) 2 10−2 m2 Mass (Kg) 0.2
L1 Beam first length (m) 0.6
L2 Beam second length (m) 0.5
ν Steel’s Poisson ratio 0.3

interest using equation (7). The method EM1 predicts the modal damping with unacceptable errors: for mode 2 (19%),
4(55%) and 6(>80%). Whereas for the method EM2 these error levels drop significantly to reach 0.06 and 0.07 respectively
for modes 2 and 4. This improvement is due, in this case, at the projection in a single mode of the forced response of the
system.
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Figure 2: Comparaison of estimated modal damping
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Figure 3: Error in estimating modal damping

Results of damping errors found between the energetic method EM1 and EM2 versus the reference method (figure
3) are expected if one takes into account the contribution of neighboring terms before calculating the modal damping
coefficients. The frequency response of the system (figure 1) when looking for a modal damping can be expressed by :

y(ω) =

n∑
ν=1

φν
φTν f

ext

ω2
ν − ω2 + 2jωωνξν

=

n∑
ν=1

φν × qν (13)

where qν is the contribution of mode ν. The coefficient ( qiqj ) presents the ratio of the contribution of mode i relative to mode
j. We can thus define a theoretical coefficient of the sum of neighboring mode contribution on single mode j as follows :

γj = 100×

∑
i 6=j

qi
2

qj2
(14)

Figure 4 presents the variation of damping errors with respect to the variation of the sum of neigbouring mode contri-
bution γj .

When γ increases for one mode, the damping error of this mode increases too. For this case modes 2,4 and 6 have the
biggest neighboring mode contribution and the biggest damping error values. In the reminder of this study, we will use the
dynamic responses with projection on a single mode as this generates better results in the prediction of the modal damping
coefficients.
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Figure 4: Modal participation of energetic method EM1

3.2 Effects of the localized damping level
In this section, we are interested in studying the effect of the localized damping level (figure 1) on damping prediction
by the Energetic Method EM2. So, six numerical simulations are performed by increasing the viscous damping (ci =
10, 20, 30, 40, 50 and 60 Ns/m). When localized damping value ci increases as if the dissipated energy increases. Figure
5 illustrates the evolution of relative error obviously for modes 1 and 2, which is calculated between the energetic method
EM2 and the reference method. Figure 5 represents also the curves rise for both modes 1 and 2 when localized damping
value increases. For other modes we notice the same curve shape but with lower levels of error.
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Figure 5: Infuence of the degree of dissipated energy at the interface

When ci increases, for example when ci = 60N/(m/s), damping value ξ2 goes up 10% and attains a peak of 13% (figure
6). Beyond this modal damping level, damping error increases to unacceptable values (figure 7). The reference method
(state space method) may not give good results when ci exceeds a specific modal damping level.

The raison is that state space method is based on the assumption described by the following equation

sν = −ξνων + jων

√
1− ξν2, ξν << 1 (15)
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Figure 6: Comparaison of estimated modal damping
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Figure 7: Error in estimating modal damping

Where sν is the eigensolution of νth mode ; j2 = −1. So to evaluate the quality of the estimated modal damping by the
energetic method, and the previous assumption is valid only with low modal damping values. In the following, we compare
the frequency responses functions FRFs of the four methods (energetic method EM1, energetic method EM2, state space
and exact method). The exact method consists in the calculation of the FRFs by direct inversion of the full impedance
matrix at each frequency (equation (7)). The FRFs computing by the energetic method(EM1, EM2) use a truncated basis
of ten modes contained in the frequency band (0, 2× fmax), fmax = 2000Hz is the maximum frequency of interest.

To calculate FRFs level error in (%) between two responses y1 and y2 in the frequency band of interest [0,2000 Hz], we
use the following expression :

εy = 100× ‖y2 − y1‖
‖y1‖

(16)

For State space method, the FRF comparaison with exact method gives almost similar results (figures 8) when ci =
20Ns/m. But it don’t gives the same amplitude levels for high level of viscous damping, for exemple when ci = 60Ns/m,
(figures 9). That’s way in the following we will use exact method as a reference instead of state space method, especially
when dealing with high damping level.
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Figure 8: FRFs error: State space vs Exact method - ci =
20Ns/m
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Figure 9: FRFs error: State space vs Exact method - ci =
60Ns/m

Figures 10 illustrates that the method EM2 estimates the damping factor with good accuracy for low damping level.
But, Figure 11 shows that this method is not valid for high damping value.
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Figure 10: FRFs error: EM2 vs Exact Method - ci =
20Ns/m
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Figure 11: FRFs error: EM2 vs Exact Method - ci =
60Ns/m

As studied in section 3.1 The method EM1 doesn’t give good results when comparing with exact method for both cases
(ci = 20Ns/m and ci = 60Ns/m), (figures 12 and 13).
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Figure 12: FRFs error: EM1 vs Exact Method - ci =
20Ns/m
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Figure 13: FRFs error: EM1 vs Exact Method - ci =
60Ns/m

So in the rest of this work we will just investigate the method EM2 in the aim to know it’s limits for the specific
condition : the influence of modal density.



3.3 Influence of modal density
In this section, the system studied to investigate the effect of high modal density or the effect of neighboring modes is the
triple beam as described on figure 14. The structure was chosen for its ability to generate neighboring modes by adjusting
the parameters of the beam and those of linear interfaces. The triple beam structure is composed of three linear interfaces
respectively between nodes 6 and 12, 12 and 18, and between the frame and node number 18, (figure 14).
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Figure 14: Triple-beam with simple bending

Each interface consists of a stiffness ki and a linear damper ci. The simple bending excitation is applied to the node number
1. the used parameters are performed in table 2. Hasselman [8] proposed the following condition of decoupling modes :

Table 2: Physical and geometric properties of the triple beams

E Steel’s Young modulus (GPa) 210
ρs Steel density (kg/m3) 7800
h Beam thikness (m) 10 10−3

b Beam width (m) 50 10−3

L1 Beam first length (m) 0.6
L2 Beam second length (m) 0.5
L3 Beam second length (m) 0.5
ν Steel’s Poisson ratio 0.3

ωj − ωi � 2× ξi × ωi (17)

Namely, two modes i and j are decoupled if the pulsation difference between these two modes is much greater than the
product of the pulsation and the damping coefficient of one mode multiplied by two. We focus on the case of neighboring
modes so eigenfrequencies (ωi = 2 ∗ π ∗ fi) must respect the following inequation :

fj − fi ≤ 2× ξi × fi (18)



We can thus define a theoretical limit frequency neighborhood as follows :

fj lim = (1 + 2× ξi)fi (19)

To investigate the effect of high modal density a study campaign has been performed. This study consists at evolving
the parameters of the stiffness and keeping damping parameters unchangeable. The aim of changing the stiffness of the
interfaces is to get neighboring modes, so that we can study the importance of this phenomena when applying the iterative
energetic method to calculate damping. In this section, the used parameters are performed in table 3.

Table 3: interfaces parametres evolution

Damping Stiffness

Nonidentical and fixed damping ci Identical and evolutive Stiffness ki
c1 = 40 ; c2 = 80 ; c3 = 40 case 1 : k1 = k2 = k3 = 1 104

... case 2 : k1 = k2 = k3 = 2 104

case 3 : k1 = k2 = k3 = 4 104

...
case N : k1 = k2 = k3 = 6 105

For the first case damping results are presented in table 4. We get two triplets of neighboring modes, the first one is
composed of modes {1, 2, 3}, and the second one is composed of modes {4, 5, 6}.

Table 4: Comparison of modal damping calculated using three methods

Modes(Hz) 1 2 3 4 5 6
Frequenciesfi 141.26 143.09 145.25 920.58 920.93 921.01
fi+1 − fi 1.83 2.17 775.33 0.35 0.08
flim 145.74 173.79 923.13 938.43
ξν

Ref(%) 0.79 5.36 16.53 0.06 0.47 1.48
ξν

var2(%) 0.88 5.64 16.14 0.07 0.50 1.45
Error(%) 11.74 5.15 2.32 12.07 5.23 2.06

It is found that the error increases when the eignemodes are more close. The error can exceed 10 % when the frequency of
neighbor modes becomes less than the theoretical limit frequency. For example the mode 4 depicts an error equal to 12.08%
with a frequency spacing of 0.35 Hz. (f1 = 920.59Hz, f2 = 920.93Hz, flim = 923.13Hz and f2 ≺ flim ). Figure 15
shows the evolution of the damping error of mode 4 (blue curve) and mode 5 (red curve) based on the difference between
the frequencies of modes 4 and 5.

Each point of the two curves presents a test case. The frequency difference between Mode 4 and 5, presented in Table 4
and equal to 0.35 Hz, shows the first point on the x-axis graph. The first point on the y-axis graph of the blue curve shows
the relative error (%) between damping calculated by the reference method and the energetic method EM2. The error is
equal to 12.08%. It is the same for the red curve which represents the error for mode 5, the first point on the y-axes is an
error of 5.24%. Figure 15 illustrates also that when modes are more close then the damping error increases. The method
EM2 may have some limitations for closed modes. Because, in case of high modal density it seems difficult to isolate a
single mode, also because in this case the generalized damping matrix presents high non-diagonal terms, these terms affect
the final results.

4 Conclusion
In this paper, the energetic method is presented and investigated for particular conditions to linear interface joints. The
method is based on the ratio between the dissipated energy in the interfaces, and potential energy of the global structure.
Firstly, the authors compared the localized damping in interfaces calculated by three methods. He aims at showing the
importance of the mode projection by using a double beam system. Secondly, the effects of the localized damping level
when localized viscous damping increases was investigated. Finally the influence of increasing modal density when calcu-
lation modal damping by the energetic method was studied. To do so, the academic structure of triple beams system was
simulated. As a result, the energetic method is not valid when the system has a high modal density.
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