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Abstract: In this work, a macro modeling is proposed to predict the dynamic response of
damaged laminates made of unidirectional orthotropic layers of a polymer matrix reinforced
with long fibers. The dynamic behavior of the composite structure is expressed through elas-
ticity coupled with damage based on phenomenological approach for cracked structures. The
structure is considered orthotropic but the damage is completely described by a single scalar
variable whose evolution law is determined from the maximum dissipation principle. The in-
cremental linear dynamic governing equations are obtained by using the classical Kirchhoff-
Love theory of plates. Then, assuming that the damage induces nonlinearity, the obtained
nonlinear dynamic equations are solved in time domain by Newmark method where an un-
conditionally stable scheme and iteration procedure are used. According to the numerical re-
sults, the mechanical behavior of the structure significantly change when the damage is taken
into account. Under an impact load, damage increases and reaches its highest value with the
maximum of the applied load and then remains unchanged. Besides, the eigenfrequencies of
the damaged structure decrease comparing to the undamaged ones. This methodology can be
used for monitoring strategies and life time estimations of hybrid complex structures because
of the damage state is known in space and time.
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1 Introduction

Composite materials are defined as the combination of more than two different materials
having different mechanical properties. This combination is performed so that the resulting
material has a better mechanical behavior from that of the individual components. Compar-
ing to metallic materials, composite structures are characterized by a high resistance / weight

ratio (Reddy 1997) which explains their wide use in the industry. Over the last decades, com-
posite materials are increasingly used especially in high-tech products. As an example, the
new project of aircraft such as Airbus A-380, where about 25% of the total weight of the air-
craft is made of composite materials. They are characterized by sufficient strength with low
density. In addition, they have other characteristics such as their resistance to corrosion and
chemical attack. The composite structure is often subject to static or dynamic loads which
can affect the mechanical properties and consequently which can change either the static or
the dynamic responses (stress distribution and the deformation field or eigenfrequencies and
mode shapes). These changes can induce a significant reduction in the structure lifetime. Var-
ious damage indicators are used to characterize the change in dynamic characteristics caused
by the damage, such as natural frequencies (Vestroni and Capecchi 2000). In 1971, Kulkarni
and Frederick (Kulkarni and Frederick 1971) have studied the presence and detection of de-
lamination in a circular cylindrical composite shell through the decrease of eigenfrequencies.
This idea was further investigated and deepened by Cawley and Adams (Cawley and Adams
1979). They have suggested that the shift of eigenfrequencies can be considered as a basis
for a new nondestructive control technique. The change or the shift in the eigenfrequencies is
then considered as an indicator able to report the damage evolution in composite structures.
Thus, detection of the location and especially the degree of severity of the damage is of great
importance in order to ensure the reliability and safety of service structures. Detecting dam-
age using changes in the dynamic characteristics has been the subject of many research in the
last years.
In this paper, a new investigation to predict the dynamic behavior and the damage evolution
in composite structures, is proposed and developped. Based on a phenomenological model
for cracked structures (Boubakar et al. 2002), the dynamic behavior is expressed through
elasticity coupled with damage. The studied structures are made of unidirectional orthotropic
layers of polymer matrix renforced with long fibers where the damage is expressed by a single
scalar variable. The principal of maximum dissipation is used to determine the evolution of
the damage which results in a material nonlinearity. Then, using the classical Kirchhoff-Love
theory, the resulting nonlinear formulation is implemented in MATLABr software. Then, a
numerical solution is obtained based on a Newmark unconditionally stable algorithm with a
prediction-correction scheme. Several numerical simulations have been performed showing
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that, under an impact load, damage increases and reaches its highest value with the maximum
of the applied load and then remains unchanged. Besides, the eigenfrequencies of the dam-
aged structure decrease compared with those of an undamaged one. Indeed, the displacement
of the damaged structure increases due to the decrease in rigidity parameters.

2 Problem formulation

Initially used for modeling isotropic structures, the plate theories were later extended to model
composite structures. A little reminder is provided, in this paragraph, around the formulations
used to solve a dynamic problem in the case of composite structures. These formulations are
essentially divided into two categories; those which are based on the Equivalent Single Layer
Theory and those that are based on the Layer-Wise theory . The first category includes mainly
the Classical Laminate Theory, the First-order (FSDT) and High-order (HSDT) Shear Defor-
mation Theories, while the second category includes the Independent and Dependent layers
theories. According to Reddy (Reddy 1997), it is recommended to use a theory from the first
category if the global response of the stucture is unknown such as the eigenfrequencies and
mode shapes in dynamic analysis. In the present work, The FSDT is retained for its simplicity
of implementation and also because of the small thikness of the studied structures. So, the
displacement field of a plate is written as follow:

{u(x, y, z, t)} =


u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)

+ z


ϕy(x, y, t)

−ϕx(x, y, t)

0

 (1)

Where ϕx(x, y, t) and ϕy(x, y, t) are the rotation, respectively, with respect to the ~x and ~y
axes. The mechanical behavior is considered elastic. Noting that Ep and Ec are respectively
the total potential and the kinetic energies of the structure, and according to virtual work
principle, then:

δ

∫ t2

t1

(Ep + Ec)dt = 0 (2)

The problem is discretized by finite elements method using a quadrangular element Serendip

Q8 with eight nodes. The choice of this type of element is justified by its excellent perfor-
mance in finite element modeling of thin and thick composite stuctures (CHEE 2000). Using
the Gaussian integration method with 4 integration points where the integration weight is as-
sumed equal to 1, and a single point in the thickness direction located in the middle of each
layer thickness, the global stiffness [K] and mass [M ] matrices of the laminated structure
consisting of "n" layers are obtained. In addition, the damping matrix is supposed propor-
tional, and it is expressed by [B] = α1[K] +α2[M ]. Finally, the dynamic equation of motion
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can be written as :

[M ]ü+ [B]u̇+ [K(D)]u = F (3)

The damage describes the creation of cavities and cracks within the structure (Lemaitre et al.
2001), that is in other words, the development of micro-discontinuities in the structure dur-
ing the loading F . According to Boubakar et al (Boubakar et al. 2002), the effect of the
damage on the elastic behavior depends on the micro-cracks opening mode as depicted in
figue 1. Then, a three parameters H22, H44 and H66 are introduced to characterise those
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Figure 1: Micro-cracks orientation in the matrix (Boubakar et al. 2002)

effects respectively on the transverse Young’s modulus E2, shear modules G12 and G23. A
self-consistent method (Perreux and Oytana 1993) permits to define a damage matrix [H(D)]

where the damage is fully expressed by a single scalar variable D which represents the relative
reduction of the transverse Young’s modulus:

[H(D)] =



0 0 0 0 0 0

0 H22 0 0 0 0

0 0 0 0 0 0

0 0 0 H44 0 0

0 0 0 0 0 0

0 0 0 0 0 H66


;


H22 =

D

1−D
S22

H44 =
D√

1−D
√
S11S22

H66 =
D√

1−D
S22

(4)

Where Sii depict the flexibility components of [S] of the undamaged material. The damaged
flexibility matrix [S̃] is expressed in function of [S] and the damage matrix [H(D)] as follows:

[S̃] = [S +H(D)] (5)

For an undamaged case D = 0, 0 < D < 1 for a damaged case, but there is a complete
failure of the structure when D = 1. The damage evolution law is expressed by using the
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thermodynamics of irreversible processes. A thermodynamic force Y associated to the dam-

age is obtained, Y =
1

2
σT

(
∂H

∂D

)
σ, where σT is the transpose of the stress tensor σ and(

∂H

∂D

)
is the derivative of [H(D)] with respect to D . Indeed, a damage threshold function

is defined as Ȳ = Yc + qDp where Yc, q and p are material constants. Thereby, the following
charge function is established:

fd = Y − Ȳ =
1

2
σT ∂H

∂D
σ − Ȳ (6)

If fd < 0, the damage thermodynamic force Y is less important than the damaged domain
Ȳ , i.e. the damage does not yet appear. But, if the fd function tends to become positive, an
increase of damage occurs so as to offset the increase of the function Y and make fd and its
derivative ḟd null.

3 Solving

When the structure is subjected to a sufficient load able to trigger damage, this damaged state
is kept in memory. So, it is recommended to use an incremental way in solving process. For
each time iteration, a stress increment ∆σ is generated. This accumulation of stress continues
until the function fd becomes positive. This implies the creation of a damage increment ∆D

which will be obtained by solving the consistence equation ḟd. As a results, the solution is
reduced to seek the damage increment ∆D which cancels the function fd,i+1 for the (i+1)th

iteration, knowing the damage and stress states in (i)th iteration, and writing the stress σi+1

us a function of ∆D. So, the equation with the unknown variable ∆D is:

fd,i+1 =
1

2
[σi+1H

′(Di + ∆D) σi+1]− [Yc + q(Di + ∆D)p] (7)

Where H ′(Di + ∆D) is the derivative of the damage tensor H with respect to D and ex-
pressed at (Di + ∆D). The equation (7) is solved using the Newton-Raphson method. After
getting the damage increment, the stiffness matrix must be updated to take into account for
this change of material properties. With this new stiffness, displacement, strain and stress are
also updated and a residue is calculated to ensure the dynamic equilibrium expressed by the
convergence criterion ||ri+1 − ri

ri
|| < ε.

The computing steps are detailed in the predictor-corrector alghorithm shown in Figure 2. For
the step of damage test, in each Gauss point, a damage criterion is introduced such that when
the damage Di+1 exceeds 1 in a Gauss point, the stiffness in this point is assumed to be null.



Nonlinear dynamic response analysis of damaged laminated composite structures 6
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Figure 2: Dynamic predictor-corrector scheme for predicting the damage evolution and the

nonlinear response of laminated damaged structure

4 Results and discussion

Several numerical simulations have been performed in order to highlight the mutual influence
between damage and dynamic response. The geometrical and mechanical properties of the
considered laminated beam are given in table 1. The beam is made of three layers oriented
as (90◦/0◦/90◦), it is clamped at x = 0 and free at x = L. It is subjected to a distributed
impact along its free side and in ~x direction with F = 1971.5N as magnitude and τ = 1ms

as a duration.
In figure 3, the displacement amplitude is greater in the damaged case than in the undamaged
one. Therefore, the damage has an important impact on the dynamic response since it affects
the structure stiffness. This effect is visible in figure 4 and also when the eigenfrequencies
of the undamaged and damaged beams are compared as in figure 5. So, when the damage
is taken into account, the eigenfrequencies have a significant decrease which reaches up to
25% for the first mode. Moreover, comparing the damage evolution in curves (c) and (d) of
the figure 3, the damage decreases from the clamped side towards the free end of the beam.
This can be explained by the fact that the tensile stress has also the same monotony. Also,
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Table 1: Geometrical and mechanical properties of the laminated beam

Elastic modulus E1 (~e1) 45680MPa

Elastic modulus E2 (~e2) 16470MPa

Shear modulus G12 6760MPa

Poisson ratio ν12 0.34
Poisson ratio ν23 0.34
Yc 0.0027MPa

q 1.246MPa

p 0.816

Beam length (~x) : L 0.3m

Beam width (~y) : b 0.03m

Beam thickness (~z) :e 0.001m

numerical simulations show that the damage has an exponential shape and its slope tends to
be more vertical when the damage becomes increasingly important. From 30%, the scalar
variable D increases considerably, and the function fd,i+1 in equation (7) will no longer have
solution in the real space, which means that the complete damage is reached in this area of
the structure.

Figure 3: Dynamic impulse response; (a) damaged beam, (b) undamaged beam & the damage evo-

lution in time; (c) in a Gauss point located near the free side (d) in a Gauss point located near the

clamped side
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Figure 4: Damage propagation in the first layer oriented as 90◦ of the laminated beam

Figure 5: Decrease ratio between the eigenfrequencies, fD & f0, respectively of damaged and undam-

aged laminated beam

5 Conclusion

The non-linear dynamic response of laminated beam was investigated including the material
nonlinearity generated by damage. Hence, a macro modeling was proposed and investigated
to predict the damage in the structure and its dynamic reponse under an impact load. Sev-
eral numerical simulations have been performed to highlight the effect of the damage on the
dynamic behavior, particularly, the eigenfrequencies and mode shapes. Also, the proposed
modeling permits to predict the damage evolution in the space-time reference during loading.
Hence, the damage modifies significantly the dynamic reponse reflected in the increase of
the displacement response and the decrease between the eigenfrequencies of damaged and
undamaged structures. This decrease can be reach up to 25% for the first natural frequency
in the case of an impact load. Hence, the damage should not be neglected. The benefit of this
investigation is damage predicting and its localizing in time and space. The changing effect
of material properties induced by damage is taken account and introduced into the dynamic
analysis during loading. Therefore, this methodology can be used in monitoring strategies
and life time estimations of the complex structures.
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