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Chapter 24 1

Uncertainty Propagation Combining Robust Condensation 2

and Generalized Polynomial Chaos Expansion 3

K. Chikhaoui, N. Kacem, N. Bouhaddi, and M. Guedri 4

Abstract Among probabilistic uncertainty propagation methods, the generalized Polynomial Chaos Expansion (gPCE) has 5

recently shown a growing emphasis. The numerical cost of the non-intrusive regression method used to compute the gPCE 6

coefficient depends on the successive Latin Hypercube Sampling (LHS) evaluations, especially for large size FE models, 7

large number of uncertain parameters, presence of nonlinearities and when using iterative techniques to compute the dynamic 8

responses. To overcome this issue, the regression technique is coupled with a robust condensation method adapted to the 9

Craig-Bampton component mode synthesis approach leading to computational cost reduction without significant loss of 10

accuracy. The performance of the proposed method and its comparison to the LHS simulation are illustrated by computing 11

the time response of a structure composed of several coupled-beams containing localized nonlinearities and stochastic design 12

parameters. 13

Keywords Robustness • Uncertainty • Generalized polynomial chaos expansion • Component mode synthesis • Meta- 14

model 15

24.1 Introduction 16

In structural mechanics and in practically all branches of industry, when parametric uncertainty is incorporated in the 17

mathematical model, its propagation is needed to evaluate how the randomness of input parameters affects the computed 18

outputs and to handle, consequently, more and more realistic behaviors. In a probabilistic framework, statistical approaches 19

such as the well-known Latin Hypercube Sampling (LHS) [1] use a great number of samples of random variables for 20

reasonable accuracy and therefore require a prohibitive computation time. On the other side, among other non statistical 21

approaches, the generalized polynomial chaos expansion (gPCE) [2] has shown a growing emphasis in recent years due to 22

its simple implementation and high performance. It combines polynomial basis vectors and deterministic coefficients, which 23

can be computed by means of intrusive or non-intrusive approaches [3]. In the context of the latter, more advantageous 24

than the former since it considers the original FE model as a black box, among other existing methods [4], regression 25

technique permits to estimate the gPCE coefficients by minimizing the difference between the referential LHS response and 26

the approximation, corresponding to a set of random variables chosen among combinations of Hermite polynomial roots. 27

Nevertheless, the most expensive part of its implementation lies in the successive LHS evaluations. To overcome this 28

issue, we focus, in this paper, on coupling the non-intrusive regression technique with a robust condensation method 29

adapted to the Craig-Bampton component mode synthesis (CBCMS). In fact, the prohibitive cost of prediction is due to: 30

the computational time of the full model using direct analysis, the computation of reduction basis for each random sample 31

while propagating uncertainties and the number of iterations necessary to obtain accurate approximations using iterative 32

techniques in presence of nonlinearities. Consequently, model condensation must be applied. Furthermore, the use of the 33

CBCMS [5, 6] allows considering some substructures, which are uncertain and/or containing localized nonlinearities, being 34

condensed independently of the others. Nevertheless, the main issue lies on forming a robust enriched condensed Craig- 35

Bampton Transformation (CBT) [6, 7] which takes into account uncertainties and localized nonlinearities. 36
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In the literature, some works focus on coupling uncertainty propagation methods and condensation techniques in order to 37

attain a robust design. In [8], the authors implemented the CMS taking into account stochastic aspect to compute frequency 38

linear structures responses using stochastic spectral FE method (SSFEM). In [9], a reduced-order model (ROM) is integrated 39

into SSFEM, using a basis spanned by displacements and derivatives of displacements, and implemented to optimize the 40

shape of a linear shell structure. Afonso et al. [10] implemented Monte Carlo (MC) method and Probabilistic Collocation 41

Method (PCM) based on reduced-order modeling (ROM) approach incorporated via proper orthogonal decomposition 42

method (POD). 43

The main originality of this paper lies on combining gPCE and robust CBCMS in order to obtain a metamodel, which 44

allows computing stationary temporal solution of large size stochastic periodic structures containing local nonlinearities, 45

with high accuracy and low computational cost. 46

24.2 Theoretical Backgrounds 47

24.2.1 Generalized Polynomial Chaos Expansion (gPCE) 48

Thanks to the generalization of the PC approach [2], several types of random variables and orthogonal polynomials are taken 49

into account to develop its expansion. In this section, a compact form of the gPCE formulation is presented [2–4]. The gPCE 50

of second order random variable is a decomposition, truncated by retaining only terms of the polynomials with degree up to 51

p, of the form 52

Y D
PX

˛D0
y˛ˆ˛ .�/ D yTˆ .�/ ; (24.1)

where y’ are the unknown deterministic coefficients, ˚˛ the multivariate polynomials of d independent random variables 53

� D f�i .�/gdiD1 and ˛ the multidimensional index such as j˛j D
dX

iD1
˛i . 54

The number of terms retained in Eq. 24.1 is defined as 55

P C 1 D .d C p/Š =d ŠpŠ: (24.2)

Solving the gPCE consists on computing the coefficients y’. Hence, the non-intrusive regression method is implemented, in 56

its standard form, minimizing the difference between the gPCE approximate solution and the exact one as follow 57

ey D Arg min
y

1

N

NX

nD1

�˚
Y .n/

� � yTˆ
�
�.n/

��2
: (24.3)

The solution considered as exact is a set of LHS responses
˚
Y .n/ D y

�
�.n/

�
; n D 1; : : : ; N

�
computed corresponding to a 58

set of random variables„ D ˚
�.n/

�N
nD1 called experimental design (ED). 59

The final obtained approximate solution of Eq. 24.3 is of the form 60

ey D �
ˆTˆ

��1
ˆT fyg D ˆC fyg (24.4)

where ˆnj � �
ˆj

�
�.n/

��
n D 1; : : : ; N

j D 0; : : : ; P

is called the data matrix. 61

A necessary condition for the numerical stability of the regression approximation is choosing an ED of size N � P C 1 62

which ensures the well-conditioning of the matrix (ˆTˆ) which will be inverted. The selection of the ED is carried out using 63

two different methods; according to the first one, the ED is chosen randomly with respect to the probability distribution of the 64

random variables, the second method consists on selecting the ED, in a deterministic way, among Hermite polynomial roots 65

[3]. In fact, the roots of the Hermite polynomial of degree p C 1 are at first computed, then all their possible combinations 66

.p C 1/d are calculated and finally these roots combinations are classified such that the following variable 67
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�N
�
�.n/

� D 2��d=2exp
�

�1
2
�.n/

2
�

(24.5)

is maximized or �(n)2 minimized. The roots combinations retained to create the ED are subject to another selection [4]. 68

Indeed, to ensure that the invertible matrix (ˆTˆ) is well-conditioned, a condition number � defined as 69

� D �
ˆTˆ

��1
:ˆTˆ (24.6)

must be minimized, where . is the 1-norm of the matrix. To the smallest value of � corresponds a number N of roots 70

combinations which verify Eq. 24.5 and thus create the ED needed for gPCE coefficients. 71

Once obtained, the estimated coefficients give the final gPCE as a metamodel of the form 72

eY D fM .X .�// D
PX

˛D0
ey˛ˆ˛ .�/ ; (24.7)

In uncertainty analysis, some statistical quantities have to be calculated. The mean and the variance are respectively given 73

by e�Y D ey0 and e�2Y D
PX

˛D0
ey2˛. 74

Note that the N successive deterministic FE evaluations needed for LHS method is the most expensive part of the gPCE 75

implementation especially for large size FE models, large number of uncertain parameters, presence of nonlinearities and 76

when using iterative techniques to compute dynamic structure responses. To overcome this issue, the regression technique is 77

coupled with a robust condensation method adapted to the CBCMS. 78

24.2.2 Model Condensation 79

In nonlinear dynamics, a mechanical system can generally be represented in the time domain by the following differential 80

equation 81

	
ŒM 	 f Ryg C ŒB	 f Pyg C ffint g D ffext g

fyg .t0/ D fyg0; f Pyg .t0/ D f Pyg0 W initial conditions
(24.8)

where [M] and [B] stand for the mass and damping matrices of the system, ffextg the exciting force and ffintg D 82

.ŒK	C ffNLg .fyg ; f Pyg// fyg the internal force vector, [K] is the stiffness matrix. 83

Modeling complex structures requires large size FE models for satisfying accuracy. To overcome the high computational 84

cost of the analysis, a reduced order model has to be designed using only few normal modes with respect to the frequency 85

range of interest. Therefore, the projection of the time response on an adequate condensation basis, considering the variable 86

transformation fy.t/g D ŒT 	 fq.t/g to generalized coordinates, is needed. Hence, the equation of motion Eq. 24.8 becomes 87

ŒT 	T ŒM 	 ŒT 	 f Rq.t/g C ŒT 	T ŒB	 ŒT 	 f Pq.t/g C ŒT 	T ffint gr D ŒT 	T ffext g ; (24.9)

where the index r denotes the term reduced, ŒT 	T ŒM 	 ŒT 	 D ŒM 	r ; ŒT 	
T ŒB	 ŒT 	 D ŒB	r ; in this case, the internal force vector 88

is expressed as 89

ffint gr D ŒT	T .ŒK	C ffNLg .ŒT	 fqg ; ŒT	 f Pqg// ŒT	 fqg : (24.10)

The time solution of the Eq. 24.9 can be approximated by using the Newmark nonlinear time integration scheme, which 90

allows expressing the displacement and the velocity at the instant tnC1 as a function of their expression at tn. 91

The implementation of the Newmark method permits to write the equation of motion Eq. 24.9 in an incremental form 92

��
Keff

�
r

�
n

fqgn D 


�˚
feff

�
r

�
n

(24.11)
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where ([Keff ]r)n is the instantaneous (effective) stiffness matrix function of the tangent stiffness matrix .ŒKT 	r /n D 93

@.ffint gr /n=@ ŒT	 fqgn obtained by applying the Newton iterative scheme. 94

24.2.3 Robust Craig-Bampton Component Mode Synthesis Method (CBCMS) 95

Dividing the complete structure into several components (substructures) is interesting in the case of presence of uncertainties 96

and localized nonlinearities in large size complex structures. It permits to apply the adequate condensation technique to each 97

component independently of the others. 98

In deterministic linear case, the reduced model is obtained using standard CBCMS [5, 6] of the linear system in its blocked 99

interface configuration. In this case, the CBT is defined, for a substructure k, as 100

fygk D
	
yj

yi


 k
D

�
Ijj 0

 ij 'i

�k	
qj

qc


 k
D ŒTCB 	

kfqgk (24.12)

where fyigk are the interior coordinates transformed to the blocked junctions modal coordinates fqcgk, fyjgk are the junction 101

coordinates denoted as constraint coordinates fqjgk,
�
 ij

� D �K�1
i i Kij is the static subbasis which contains the constraint 102

modes, Ijj is the identity matrix, and [®i] is the dynamic one containing the truncated normal modes basis at blocked interfaces 103

(
˚
yj

� D 0) of the corresponding component. Nevertheless, using standard CBT requires computing more and even all normal 104

modes for accurate results, which leads to a prohibitive computation cost. 105

In stochastic case with localized nonlinearities, the standard CBT [TCB] cannot satisfy the required accuracy and 106

robustness of the model. Therefore, adding a complementary basis [
T] is necessary in order to form an enriched CBT 107

(ECBT) [TECB]. The obtained basis, for each sub-structure, is thus of the form 108

ŒTECB	
k D

h
TCB

::: 
T

ik
: (24.13)

The complementary basis is a set of static residuals calculated according to the type of enrichment. 109

For each component k, to enrich the basis by taking into account stochastic aspect, the residual vectors are static responses 110

with correspondence to a set of residual forces [FS] presenting the stochastic effects. These forces are generated depending 111

on the stochastic zones of the mass and stiffness matrices [8]. The first complementary subbasis [
TS]k is thereafter obtained 112

and added to the standard Craig-Bampton one. 113

To take into account localized nonlinearity effects, another type of complementary subbasis [
TNL]k has to be created 114

[7] as a set of static responses corresponding to unit residual force vectors fFigk with respect to each nonlinear degree of 115

freedom (dof) i for each component k. 116

The CBT can also be enriched if the external loading effect is considered [6]. Thus, an additional subbasis [
TE]k must 117

be computed using a set of unit static loadings fFEgk imposed on internal excited substructure dofs. 118

Consequently, the final enriched basis has the following form 119

ŒTECB	
k D

h
TCB

::: 
TS
::: 
TNL

::: 
TE

ik D
�
Ijj 0

 ij 'i

:::
0


TS

:::
0


TNL

:::
0


TE

�k
(24.14)

Note that a singular value decomposition (SVD) is needed to ensure linear independence of the vectors forming each 120

complementary subbasis and also carried out on [TECB]k to ensure the linear independence of the subbases and thus the 121

well-conditioning of the ECBT. The synthesis of the complete structure requires finally the assembly of the different CBT 122

matrices according to the hypothesis of continuity of displacements at junction dofs. 123

24.2.4 Robust Metamodel Combining CBCMS and gPCE 124

The CBCMS and the gPCE methods were previously independently presented. The main aim of this paper is to couple them 125

in order to replace large size dynamical structures with considerably condensed and sufficiently accurate metamodel. Indeed, 126

we propose to compute the succession of N deterministic responses of LHS simulations
˚
Y .n/ D y

�
�.n/

�
; n D 1; : : : ; N

�
, 127
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Fig. 24.1 Coupled beams structure

needed for the gPCE regression method implementation (Eq. 24.4), using the ECBT Eq. 24.14. The notion of robustness 128

consists, in our study, on satisfying two different criterions; the accuracy of the responses and the gain in terms of 129

computational time. To verify the first criterion, a set of temporal statistic moments M i, also called times indicators or 130

energy criterions, has to be calculated in order to quantify the response accuracy in terms of amplitude and periodicity errors. 131

These moments are expressed as [11] 132

Mi D
C1Z

�1
.t � ts/

iy.t/2dt (24.15)

where y(t) is the temporal response, i the order of the moment and ts the temporal shift chosen in our case as ts D 0. 133

The total energy of the response E D M0 permits the verification of the accuracy in term of amplitude. M1=M0 D T 134

and M2=M0 � .M1=M0/
2 D D2 are respectively the central time and the root mean square duration computed to verify 135

the accuracy of the response in term of periodicity. 136

A numerical application is presented in Sect. 24.3 in order to illustrate the main features of the proposed robust metamodel 137

designed to analyze the dynamic behavior in presence of uncertainties and localized nonlinearities. 138

24.3 Numerical Application 139

24.3.1 Proposed Structure and Validation Process 140

The proposed academic structure, Fig. (24.1), is composed of five identical beams loaded in pure flexion. The discretization 141

of each beam into 20 elements (two dofs per node: vy, � z) leads to a 200 dofs FE model. The beams are of rectangular 142

section with b D 3 � 10�2m and h D 1 � 10�2m, length Lb D 5 � 10�1m, Young modulus E0 D 2:1 � 1011Pa, 143

density �0 D 7800 kg:m�3 and Poisson’s ratio � D 0:3 and are submitted each one to a localized excitation force (N) 144

Pf D 10 � cos .2�f1t/, where f1 D 82:96 rad:s�1 is the first eigenfrequency, according to the vy dof (Y direction). The 145

five beams are coupled using five local dampers such as c D 102N:s:m�1, five linear springs k0 D 106N:m�1 and nonlinear 146

ones kNL D 1011N:m�1. Several observation points Poj .j D 1; 2; : : : / are considered to evaluate the efficiency of the 147

proposed metamodel. 148

The stationary temporal response evaluation is done in the time interval [0–0.5 s], divided into steps of 10�4s, in which 149

the stationary regime is already attained. 150

To apply the CBCMS method, the complete structure is divided into substructures. In fact, being in the case of periodic 151

structure, we propose to consider each set of coupling elements (localized damper, linear and nonlinear springs) and a beam 152

as a substructure (Fig. 24.1). The first and the third components are considered as two stochastic zones in which the Young 153

modulus of the beam and the linear coupling stiffness are supposed to be uncertain parameters such as 154
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Table 24.1 Model size and associated temporal moments

t3.1

t3.2

E D E0 .1C �E�E/ and k D k0 .1C �k�k/ (24.16)

where �E and �k are two random variables of respectively uniform and lognormal probability distributions and �E D �k D 155

10% are the considered dispersions. The effect of the stochastic aspect of the uncertain parameters is shown using the MAC 156

(Modal Assurance Criterion) [6] matrix, which compares the normal modes of the deterministic model to the means of the 157

modes of the stochastic model computed with correspondence to each random variable. 158

The proposed metamodel results are discussed with respect to the responses considered as reference, computed using 159

LHS method using 1,000 samples of random variables. In fact, the process of evaluation of the metamodel efficiency is as 160

follow 161

(A) Implementing the 1,000 samples LHS method on: 1- the complete model (projection on complete eigenvectors basis) 162

denoted LHS-REF, 2- the reduced model (projection on the ECBT matrix) denoted LHS-ECBT; 163

(B) Implementing the regression gPCE: 1- on the complete model for two gPCE orders (2 and 4) denoted respectively 164

REG-2-REF and REG-4-REF, 2- combined with the ECBT (proposed metamodel) also for two gPCE orders, denoted 165

respectively REG-2-ECBT and REG-4-ECBT. 166

24.4 Results and Discussion 167

The ECBT matrix contains nj D 8 junctions dofs, ni D 8 retained normal modes and ne D neSCneNLCneE D 2C5C1 D 8 168

enriching static residual vectors, where neS corresponds to the stochastic enrichment, neNL to the nonlinear one and neE to the 169

external force enrichment. Hence, the size of the ECBT transformation matrix is 200 � 24, which signify that the reduction 170

ratio of the full problem is of 88 % (200 dofs). 171

For a second order gPCE, the ED is of size 31 random variables combinations chosen with correspondence to the 172

conditions defined in Eqs. 24.5 and 24.6 among 81 Hermite polynomial roots combinations (.p C 1/d D 34 D 81) and 173

then transformed with respect to the probability distributions (Table 24.1). For the fourth order, 84 random variables are 174

needed among 625 possible combinations. 175

Figure 24.2 shows the stochastic effect on the model normal modes through the MAC matrix. Figures 24.3 and 24.4 176

illustrates the comparison between the means of stochastic velocities obtained by implementing the different methods with 177

correspondence to the above proposed process (A and B) at two chosen observation points Po1 and Po4. 178

The MAC matrix, presented in Fig. 24.2, illustrates the stochastic effect on the eight first modes retained for ECBT. 179

Indeed, the level of uncertainty is not high but sufficient to show the interest of the stochastic enrichment. Consequently, the 180

level of nonlinearities is chosen to be low in order to ensure the contribution of each type of enrichment in the ECBT. In fact, 181

high level of nonlinearities leads to a negligible stochastic enrichment contribution in the ECBT and thus enriching using 182

only nonlinear effect is sufficient. 183

The obtained results of different implemented models are compared in terms of accuracy and time consuming by means 184

of the CPU computation time and the temporal moments E, T and D2 (Tables 24.1 and 24.2). In fact, Table 24.1 recalls the 185

size of the problems to be solved and gives the values of the associated temporal moments and Table 24.2 contains different 186

computational time values. 187
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Fig. 24.2 MAC matrix
comparing the deterministic
normal modes and the means of
the stochastic ones
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The results displayed in Figs. 24.3 and 24.4 show that the proposed metamodel can replace the original one without a 188

significant loss of accuracy with respect to the reference results computed by LHS method on the full structure. Note that the 189

higher the order of the gPCE is, the more accurate the results are, the longer the required computational time is, as shown in 190
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Table 24.2 Computational CPU
time

t5.1

t5.2

Table 24.2. Only the fourth order gPCE approximations are presented, the second order gPCE results are discussed through 191

their temporal moments presented in Table 24.1. The ECBT efficiency can be at first evaluated comparing the two first curves 192

(Figs. 24.3 and 24.4) and the two first lines of Table 24.1, which show that the amplitude and periodicity errors between the 193

results of the LHS method on full and condensed model are very small. 194

Table 24.2 shows that the computation time can be reduced by 93.4 % when implementing the proposed metamodel, and 195

it increases when the gPCE order is higher. Note that despite the fact that the example is not sufficiently representative in size 196

and uncertain parameter number to show the efficiency of the CBCMS, the gain of nearly 30 % attained when implementing 197
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ECBT with LHS or gPCE reflects more than 30 h of time reduction (1 % of gain is 61 min). For larger size examples, and 198

also when using properly optimized algorithms, the robust CBCMS contribution should be more illustrated. 199

24.5 Concluding Remarks 200

In this paper, a robust metamodel is proposed in order to approximate structure behaviors in presence of uncertainties and 201

localized nonlinearities. This metamodel is obtained by the combination between the parametric uncertainty propagation 202

method and a robust CMS approach. The efficiency of the metamodel was successfully evaluated on the temporal response 203

approximations of the coupled beams structure with respect to the reference LHS method results, thanks to different verified 204

robustness criterions. The reduction in terms of time consuming and model size using the comparison of the computation 205

times and temporal moments prove the efficiency and the usefulness of the proposed metamodel for the robustness analysis 206

of large size nonlinear stochastic model. 207
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