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Abstract. Designing large-scale systems in which parametric uncertainties and 
localized nonlinearities are incorporated requires the implementation of both 
uncertainty propagation and robust model condensation methods. In this context, 
we propose to propagate uncertainties through a model, which combines the 
statistical Latin Hypercube Sampling (LHS) technique and a robust condensation 
method. The latter is based on the enrichment of a truncated eigenvectors bases 
using static residuals taking into account parametric uncertainty and localized 
nonlinearity effects. The efficiency, in terms of accuracy and time consuming, of 
the proposed method is evaluated on the nonlinear time response of a 2D frame 
structure.  
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1 Introduction 

In a probabilistic framework, the well-known statistical LHS method (Helton and 
Davis 2003) allows propagating parametric uncertainties with high level of 
accuracy. It derives from the Monte Carlo Method (MC) (Rubinstein 1981) and 
converges faster than the latter since it distributes the sample points more evenly 
across intervals of equal probability. Nevertheless, the main issue of such method 
lies on the prohibitive cost of its implementation. The latter depends essentially on 
the great number of samples of random variables required for best accuracy. To 
overcome this issue, especially in the case of large-scale systems and iterative 
dynamic resolution procedures, it is inevitable to use reduced order models. In this 
context, the standard reduction methods are no longer efficient for designing 
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models, which incorporate both uncertainties and localized nonlinearities, since 
standard truncated eigenvectors bases of linear associated models do not contain 
any information about the latter aspects. Therefore, in order to form robust 
reduced models, we propose to enrich the standard bases by adding static residual 
vectors, which take into account the stochastic aspect and the localized 
nonlinearity effect. 

In the literature, Balmès (Balmès 1996) and Masson (Masson et al. 2006) 
introduced the concepts of evaluating the static contribution of the neglected 
eigenvectors resulting in a set of additional vectors completing the original Ritz 
basis to evaluate frequency response of a modified structure. Segalman (Segalman 
2007) added to the linear modes a set of basis functions to capture the nonlinearities 
to reduce the order of dynamical systems with localized nonlinearities. In (Bouazizi 
et al. 2006), a method based on the equivalent linearization method is applied to 
predict dynamic responses of structures affected by structural modifications and 
localized nonlinearities using a reduced basis enriched by static residual vectors. 

Several works focus on coupling uncertainty propagation and model reduction 
methods. Guedri (Guedri et al. 2006) implemented the residuals enrichment 
technique to take into account uncertainties in the computation of the frequency 
responses of linear structures using stochastic spectral FE method (SSFEM). In 
(Maute et al. 2009), a reduced-order model (ROM) is integrated into SSFEM, 
using a basis spanned by displacements and derivatives of displacements, and 
implemented to optimize the shape of a linear shell structure. 

In this work, the efficiency of the combination between the LHS method and 
the robust condensation technique, in terms of accuracy and computational time 
gain, is evaluated on the time response approximation of a frame structure, which 
contains localized nonlinearities and stochastic design parameters. 

2 Robust Reduced Model Dedicated to the Propagation of 
Uncertainties 

The nonlinear dynamic behavior of a mechanical system can generally be 
represented by the differential equation 

{ } { } { } { }int extM y B y f f      + + =                             (1) 

Where [K], [M] and [B] stand for the stiffness, mass and damping matrices of the 
system, {fint} = ([K]+{fNL}({y},{y})){y} for the internal forces vector and {fext}, 
and for the exciting forces vector. 

Resolving the governing equation (1), in time domain, on the full finite element 
model (FEM) requires high numerical cost, especially when using nonlinear 
Newmark time integration scheme (Géradin and Rixen 1997). Hence, a reduced 
order model has to be implemented. Standard condensation techniques are based on 
the use of truncated eigenvectors bases [T] = [φr] of the associated linear system, the 
index r is relative to the reduced term. Therefore, using such bases, in a stochastic 
case with localized nonlinearities, cannot satisfy the required accuracy. 
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To overcome this issue, the enrichment of [φr] by adding a complementary 
subbasis [ΔT] is necessary in order to construct a robust basis [T] = [φr ⊥ ΔT]. 

[ΔT] is a set of static residual vectors calculated according to the type of 
enrichment. To take into account localized nonlinear effects, the static residuals 
must be computed (Bouazizi et al. 2006), according to the following form 

[ ] { }1

0
,NL ii

T K F
−

  Δ =
 

1, ...,i m=
                      

(2) 

where {Fi} is the residual force vectors containing unit values in nonlinear degrees 
of freedom and zeros otherwise, m is the total number of nonlinear degrees of 
freedom (dofs). 

In addition, to take into account stochastic aspect (Guedri et al. 2006), another 
type of residual vectors 

[ ]S zsT R F  Δ =                                       
(3) 

must be computed, where [R] = [K0]
-1-[φr][Λr]

-1[φr]
t is the static residual flexibility 

matrix and [Fsz] is a set of force vectors representing the stochastic effects for each 
stochastic zone (z), [K0] is the deterministic stiffness matrix and [Λr] is the spectral 
one (containing only retained eigenvalues).  

Then, the singular value decomposition (SVD) and the normalization of the 
additional residuals similarly to the standard basis [φr] are inevitable in order to 
ensure, respectively, the linear independence (the well-conditioning) and the 
orthogonality of the different vectors. Consequently, the enriched basis (EB) has 
the following form 

[ ] r NL ST T Tϕ Δ Δ =  
                          

(4) 

Projecting the time response on this basis, such as {y} = [T]{q} permits to 
express the equation of motion (1), at time step n+1, in the reduced following 
form 

{ } { } { }( ) { }( )int1 1 1 1extr rn n r rn n
M q B q f f

+ + + +
      + + = 

               
(5) 

where [M]r = [T]t [M] [T], [B]r = [T]t [B] [T], {fext}r = [T]t {fext}, and {fint}r = 

[T]t([K]+{fNL}([T]{q},[Τ] { }
n

q ))[T]{q} are the reduced matrices and vectors. 

Approximating the solution using the Newmark nonlinear time integration 
scheme and the iterative Newton-Raphson technique consists on minimizing the 
residual vector 

{ } { } { }( ) { }( )int1 1 1 1 1extr rn n n r rn n
R M q B q f f+ + + + +

      = + + − 
              

(6) 
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The equation (6) can be approximated, for the iteration k, as: 
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 is the effective stiffness matrix function of the 

tangent stiffness matrix, updated at each iteration, 
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.       (8) 

The statistical LHS method (Helton and Davis 2003) of uncertainty propagation 
consists on computing N successive deterministic responses {Y(n) = y(ξ(n)), n=1, …, N} 
according to a set of N samples of random variables. 

Statistical moments can then be computed, such as the mean and the variance 
(1st and 2nd moment). 

The proposed method in this paper consists to combine the LHS uncertainty 
propagation approach and model reduction by projecting the responses on the 
robust enriched basis defined above. 

3 Numerical Example 

In order to valid the proposed method and to illustrate their numerical 
performances, a 2D frame model is proposed (Fig.1). The mechanical and 
geometrical properties of the structure are given by: the width b=3.10-2 m and the 
thickness h0=5.10-2 m of the rectangular section, the length of the beams L=1.5 m, 
the Young modulus E0=210 GPa and the density ρ0=7800 kg.m-3. We suppose that 
the damping is proportional so that the modal damping is η=0.03 and two 
localized nonlinear Duffing springs of stiffness kNL = 1020 N.m-3 are linked to the 
frame structure. Two localized forces with equal amplitude F(N)=103cos(2πf2t) 
excite the second eigenmode (f2=78.8 rad.s-1) of the frame structure. Using two-
dimensional beam finite elements (three dofs per node: ux, vy, θz) to discretize the 
2D structure leads to 160 finite elements and a full model of 474 dofs. 

Three zones (Fig.1) are supposed to be stochastic: the Young modulus and the 
density, in the vertical beams, and the thickness in the upper horizontal beam. 
Their randomness is modeled as 

( ) ( ) ( )
0 0 0

1 ; 1 ; 1E E h hE E h hρ ρσ ξ ρ ρ σ ξ σ ξ+ + += = =
                

(9) 

where ξE , ξρ and ξh are random variables of respectively lognormal, lognormal and 
exponential probability distributions and σE = σρ = σh = 0.2 are the considered 
dispersions. 
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Fig. 1 Frame structure with stochastic parameters and localized nonlinearities 

To evaluate the efficiency of the proposed method in nonlinear dynamic 
analysis, with uncertainties and localized nonlinearities, two different criteria have 
to be satisfied. The time indicators (Hemez and Doebling 2003) 

( ) ( )2i

si
t t y t dt

+∞

−∞
−Μ = ,                       (10) 

where i the order of the moment and ts the temporal shift chosen in our case as 
ts=0 allow quantifying the accuracy of the response in terms of amplitude using 
the total energy E=M0 and periodicity using the central time and the root mean 
square duration defined respectively by T=M1/M0 and D2=(M2/M0)-( M1/M0)

2 . 
To evaluate the time consuming, the Central Processing Unit (CPU) time is 

computed for each implemented method. 
The obtained results combining the LHS method, for 1000 samples, and the 

robust reduced model (LHS-EB) are compared to the reference responses using 
LHS method, for 1000 sample on the full model (LHS-REF). Several observation 
dofs are considered; the results below correspond to a chosen dof (Fig. 1, dof O). 

Note that high uncertainty and nonlinearity levels are chosen in order to 
evaluate the accuracy of the enriched basis with respect to the standard one. 

The comparison between the deterministic modes and the mean of the 
stochastic ones through the MAC (Modal Assurance Criterion) matrix, Fig. 2, and 
the superposition of the deterministic response and the mean of the stochastic one, 
Fig. 3, illustrate the effect of the uncertainties. In fact, the randomness of the 
chosen uncertain input parameters affects both the stiffness and the mass matrices. 
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Fig. 2 MAC matrix comparing the deterministic modes and the mean of the stochastic 
modes 
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Fig. 3 Mean of the stochastic displacement computed with the full model (LHS-REF) 
compared to the deterministic model 
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Fig. 4 Mean of the stochastic displacements and phase diagrams computed using the EB (LHS-
EB), the standard truncated eigenvectors basis (LHS-MB) and the full model (LHS-REF) 

Fig.4 shows the performance of the robust model (57 vectors in the enriched 
basis EB) by its comparison to the standard basis of same size, with respect to the 
reference responses obtained with the full model. The standard modal basis (MB) 
cannot represent the model behavior accurately while the enriched basis (EB) 
allows it. 

The model size, the time indicators (mean values of all dof reponses) and the 
CPU time are listed in Table 1. The proposed method allows a reduction size ratio 
of 87.9 % and a computational time gain of 52.7 % with very small errors on 
accuracy. 

Table 1 Model size and evaluation criteria 

Method Model 
size (dof) 

Errors on Time indicators 
(%) 

CPU 
time (%)

E T D² 

LHS-REF 474 0.00 0.00 0.00 100 

LHS-MB 57 0.70 0.10 0.05 39.9 

LHS-EB 57 0.00 0.00 0.00 47.3 
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4 Conclusion 

Combining uncertainties propagation and robust model reduction permits to 
approximate the dynamic behavior of mechanical structures containing stochastic 
design parameters and localized nonlinearities with a low computing time and 
without a significant loss of accuracy. The robustness of the model reduction 
method is achieved with the enrichment of the standard truncated modal basis 
using static residuals, which permits to take into account both the stochastic and 
the localized nonlinearity effects. Future work will include the extension of the 
proposed methodology to complex mechanical structures. 
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