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Nonlinear Dynamics and Its Applications 
in Nanocantilevers

3.1 Introduction

Nanoelectromechanical systems (NEMS) are drawing interest 
from the scientific community for a wide range of applications 
due to their unique properties. Nanocantilevers are among those 
of the possible NEMS realizations that offer access to fundamental 
resonant frequencies in the microwaves and active masses in the 
femtograms. Nanocantilever have been proposed for ultrafast 
sensors and actuators, signal processing components, quantum 
computing (Bose and Agarwal, 2006), and ultra sensitive force 
(Jiang et al., 2008) and mass (Li et al., 2007) detection.

Actually, it is a challenge to optimize NEMS mass sensors 
in order to achieve high resolutions. Although the linear design 
optimization and mechanical transduction gain of the devices 
have been thoroughly studied, the drive power has always been a 
priori limited by the onset of nonlinearities. Indeed, driving the 
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cantilever at large oscillation amplitude leads to better signal to 
noise ratio (SNR) and, thus, simplifies the design of the electronic 
feedback loop. However, doing so in the nonlinear regime reduces 
the sensor performances since the frequency instability of a 
nonlinear resonator is proportional to its oscillation amplitude. 
Moreover, even when NEMS resonators are used as oscillators in 
closed-loop, a large part of noise mixing (Kaajakari et al., 2005b) 
due to nonlinearities drastically reduces their dynamic range 
and alters their detection limit. NEMS cantilevers are promising 
candidates for the new generation of physical, chemical and 
biological sensing. One reason for this is that they are commonly 
said to have a very large linear dynamic range compared to 
clamped-clamped nanoresonators, without any formal proof, 
quantitative comparison, or thorough study. Models for doubly 
clamped beams (Kacem et al., 2009, 2011b) cannot be easily 
adapted to cantilevers: indeed, their real specificity comes from their 
complex nonlinear dynamics including geometric and inertial 
nonlinearities. This partly explains why so little has been done 
about nonlinear dynamics of electrostatically actuated cantilevers.

The nonlinear dynamics of cantilevers have received consider-
able attention because of their importance in many engineering 
applications. Crespo da Silva and Glynn (1978a,c) derived a set of 
integro-partial-differential equations governing flexural-flexural-
torsional motions of inextensional beams, including geometric 
and inertia nonlinearities. They used these equations and the 
method of multiple scales to ascertain the importance of the 
geometric terms for the lower modes, especially the first mode. 
These equations have been also used for several investigations such 
as the non-planar responses of cantilevers to principal parametric 
and primary resonant excitations (Nayfeh and Pai, 1989; Pai and 
Nayfeh, 1990), the nonlinear response of an inextensional beam 
to a primary resonant excitation of one of its flexural modes when 
the first torsional frequency is of the same order as the lower 
flexural frequencies (da Silva and Zaretzky, 1994; Zaretzky and 
da Silva, 1994), as well as the nonlinear non-planar response of 
cantilever inextensional metallic beams to a parametric excitation 
of order two its flexural modes (Arafat et al., 1998). Chowdhury 
et al. (2005) provided a close-form model for the static pull-in 
voltage of electrostatically actuated cantilevers without including 
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the geometric nonlinearities. Ahmadian et al. (2009) employed a 
finite element formulation for the dynamic analysis of nonlinear 
Euler cantilevers electrostatically actuated including main sources 
of nonlinearities, but the resonant case has not been considered. 
Liu et al. (2004) simulated an electrostatically controlled cantilever 
microbeam and qualitatively showed period-doubling bifurcation, 
chaos, Hopf bifurcation, and strange attractors using the Poincaré 
map method, which are hardly exploitable by MEMS and NEMS 
designers.

In this chapter, the physical limitations in NEMS mass 
sensors when operating beyond their critical amplitudes are 
investigated. Based on the nonlinear dynamics of nanomechanical 
cantilevers, the main idea is to provide simple analytical tools 
for NEMS designers in order to optimize mass resonant sensors 
designs and enhance their performances for precision measurement 
applications such as mass spectrometry.

3.2 Resonant Sensor Specifications

3.2.1 Mechanical Analysis

The mechanics of a resonant cantilever is theoretically investigated 
as an important step towards the determination of the resonance 
frequency and the sensitivity expressions. Then, based on the res-
onator dynamic response, the transfer function is deduced which 
will be used in an advanced step for noise analysis.

3.2.1.1 Resonance frequency

Assuming that the nonlinear terms are negligible, the equation of 
motion of a beam in bending subjected to an axial tensile force (F) 
can be written as
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where E is Young’s modulus, I is the bending moment of inertia, 
 is the viscous damping coefficient,  is the material density and 
A is the beam section. The solution ( , )w x t  can be solved by the 
method of separation of variables where
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The equation of the beam mode shapes with respect to the position 
coordinate x  can be written as
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Constants C1–C4 can be evaluated depending on the boundary 
conditions of the resonator;  is a dimensionless parameter related 
to the wavelength, and it depends on the mode shape and the 
resonator boundary conditions. It can be evaluated numerically as 
listed in Table 3.1 for several bending modes of cantilevers as well 
as clamped-clamped beam resonators.

Table 3.1 Dimensionless parameter  for the first four eigenfrequencies 
of cantilevers and c-c beams.

Mode/ Cantilever beam Clamped-clamped beam

Mode 1 1.875 4.730
Mode 2 4.694 7.854
Mode 3 7.855 11.00
Mode 4 10.995 14.14

Using the Galerkin method, the time dependence can be cast in 
the form of a mass-spring-damper equation:

 eff eff eff+ + = 0,M a B a K a   (3.4)

where expressions for Meff and Keff can be written as (Roessig, 
1998)
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Thus, for a null axial force, the resonator natural frequency is
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3.2.1.2 Sensitivity

For a resonator vibrating in its fundamental mode, the natural 
frequency for a constant axial force (F) along the length of the 
beam can be written in terms of the nominal resonant frequency by 
evaluating the integrals in Eqs. (3.5) and (3.6).
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Thus, the force sensitivity of the resonator (mechanical scale factor) 
can be written as 

 
f 0=

2
S

SF f   (3.10)

In the same way, the mass sensitivity of the resonator can be de-
duced as 
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3.2.1.3 Dynamic response

The starting point for the simplest dynamic analysis is the 
characteristic differential equation describing the evolution of 
the displacement of the resonating element subjected to a linear 
time-varying drive force Fd.

 eff eff eff d+ + = cos( ),M a B a K a F t  Ω  (3.12)

where W is the drive frequency. Equation (3.12) can be written in 
its canonical form as
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where 0 = 2f0 and Q is the resonator quality factor that can be 
estimated by evaluating the different system losses. Using the 
Fourier transform, the resonator transfer function can be deduced 
as follows

 eff
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j
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W
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  (3.14)

For MEMS and NEMS designers, the quality factor is an important 
parameter, since it defines the sensor bandwidth. Moreover, as 
shown in Eq. (3.14), the resonator transfer function depends on Q. 
Hence, it is important to estimate correctly the quality factor.

3.2.2 Quality Factor

The mechanical quality factor Q is a measure for the energy losses 
of a resonator or in other words, a measure for the mechanical 
damping. The Q-factor is defined as the ratio between the total 
energy stored in the vibration and the energy loss per cycle:

 total energy stored in vibration
2

dissipated energy per period
Q   (3.15)

Low energy losses imply a high Q-factor. The Q-factor cannot be 
determined directly, but instead can be deduced from the response 
characteristics of the resonator. One common method of determin-
ing Q is from the steady-state frequency plot of a resonator excited 
by a harmonic force with constant amplitude:

 res

–3 dB

,Q





 (3.16)

where res is the frequency with maximum frequency response and 
−3 dB is the half-power bandwidth of the frequency response.

In nanomechanical resonators, there are numerous possible 
sources of dissipation, which may broadly be classified as either 
intrinsic or extrinsic. Intrinsic sources of dissipation, such as 
phonon–phonon and phonon–electron interactions, result from 
properties of the resonating material, whereas extrinsic sources, 
such as gas friction, clamping loss, and surface loss, result from 
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interactions with the environment. Obviously, little can be done to 
control dissipation from intrinsic sources other than careful choice 
of resonator material. Theoretical calculations have shown that 
these intrinsic sources of dissipation are small compared to the 
dissipation currently exhibited by nanomechanical resonators. 

There are many extrinsic mechanisms of dissipation in 
nanomechanical resonators. They can be listed by their origin as 
follows: 

3.2.2.1 Gas friction

At pressures above approximately 1 torr, viscous damping of a res-
onator by the surrounding gas is the dominant form of dissipation 
(Ekinci and Roukes, 2005). Here, the energy is radiated as sound. 
Fortunately, it is easy to achieve lower pressures where viscous 
damping no longer dominates. At these lower pressures, where the 
mean free path of the gas molecules is much larger than the relevant 
sound wavelength, energy may still be dissipated through momen-
tum transfer to individual molecules. In this case, the dissipation is 
expressed as

 –1
gas

eff r

,=
pA

Q
M v

 (3.17)

where p is the pressure, A is the surface area, Meff is the effective 
mass of the resonator, r is the resonator angular frequency, and ν is 
the thermal velocity of the gas. According to Eq. (3.17) and multiple 
experiments, gas friction is not a significant source of dissipation 
below 10 mTorr. 

3.2.2.2 Surface losses

Surface losses are caused by adsorbed molecules, dangling or bro-
ken bonds, an amorphous oxide layer, or other metastable systems 
that occur at a resonator’s surface. These systems absorb energy 
from the fundamental resonant mode and irreversibly transfer it 
other modes and thermal energy. For resonating beams, the energy 
of a resonator is stored in the elastic strain throughout its volume 
and thus is proportional to its volume, V. If we assume that energy is 
predominately dissipated at the surface, then we would expect that 
the energy lost per cycle would be proportional to the surface area 
S, and thus,
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Fortunately, it may be possible to control surface losses (Jensen et al., 
2006) in NEMS resonators, through careful experimental techniques 
and the proper choice of resonator material.

3.2.2.3 Clamping loss

Clamping loss refers to mechanical energy dissipated through the 
supports of a resonator. Typically, this is theoretically modeled as 
elastic radiation of energy through the supports. There is still some 
contention as to the appropriate description of elastic clamping 
loss, though the most recent theoretical calculations predict a loss 
for a rectangular beam of
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where w is the beam width in the direction of vibration, t is the 
beam thickness, l is the beam length, and the proportionality 
constant is dependent upon material properties (Geller and Varley, 
2005). Clearly, to reduce clamping loss, a beam with a high aspect 
ratio is desirable. However, according to Eq. (3.19), clamping 
loss should be negligible for current resonator designs, including 
nanotube resonators with their extremely high aspect ratio.

3.2.2.4 Thermoelastic loss

Thermoelastic damping is the result of the transformation of elastic 
energy into thermal energy via thermal currents flowing between 
compressed and expanded regions of a deformed resonator. Zener 
(1938) first studied the phenomenon for a beam in flexure, giving 
the damping as
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where E is Young’s modulus,  is the thermal expansion coefficient, 
CP is the constant-stress heat capacity,  is the angular frequency 
of vibration, T is temperature, and 
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is the thermal relaxation 

time, with K the thermal conductivity and h the beam thickness.
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3.2.2.5 Ohmic loss

Another type of dissipation associated with electrostatic actuation 
is ohmic losses from the electrons moving on and off the resonator 
due to capacitive coupling to a nearby gate. Following Sazonova 
(2006), the system can be represented as a variable capacitor in 
series with a resistor to which a voltage V is applied. If the time 
scales for the electrons to flow on the resonator and the time 
for one oscillation are matched perfectly, all of the charge flows 
through a resistor, dissipating energy through Joule heating. Thus, 
the ohmic losses are given by
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R C V

Q
M

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where  is the angular frequency of vibration, C is the gradient of 
the capacitance, R is the output resistor and Meff is the effective mass 
of the considered mode. The smaller the resonator, the smaller the 
mass, the higher this contribution, hence NEMS are very sensitive to 
this effect.

In nanomechanical resonators, there are other extrinsic loss 
mechanisms such as anharmonic mode coupling and extrinsic 
noise (Mohanty et al., 2002), which can be neglected compared to 
the other sources of dissipation already cited.

3.2.3 Thermomechanical Noise

Thanks to the fluctuation-dissipation theorem, it can be written 
that the force noise spectral density due to thermomechanical 
fluctuations of the mass is (Postma et al., 2005)
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where Meff is the effective mass of the resonator, 0 is the angular 
frequency of vibration, Q is the quality factor, KB is Boltzmann’s 
constant, and T is the resonator temperature.

It may be assumed without loss of generality that the band-
width BW used by the phase locked loop (PLL) readout is very 
narrow compared with the −3dB bandwidth of the resonator. Then, 
following Eq. (3.14), the transfer function of the resonator at 
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resonance giving the displacement versus a constant force per unit 
length is
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The displacement spectral density is then
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Following Robins (1984), for a PLL-based readout technique, the 
frequency noise spectral density is
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where P0 is the displacement carrier power, i.e., the RMS drive 
amplitude of the resonator P0 =   1 __ 2   a d  2 . The latter should be driven 
below the hysteretic limit due to non-linearities. Even though this 
one will be higher when using a PLL-based technique, the open 
loop value may be used to stay on the safe side.

3.2.4 Resolution

The resolution is the lower limit of the dynamic range. It is set 
by the incoherent sum of all stochastic processes driving the 
resonator (Cleland and Roukes, 2002), such as thermomechanical 
fluctuations, quantum noise, noise from adsorption and 
desorption of gaseous species (Ekinci et al., 2004), and extrinsic 
sources such as vibrational and instrumental (read-out) noise. 
For simplicity, we solely consider thermomechanical noise in the 
case of a cantilever driven at its critical amplitude (open-loop 
stability limit). The resonator mass sensitivity (Eq. (3.11)) is 

 –3 –1
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Thus, the mass sensor resolution is given by
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At equilibrium, the concentration resolution for gas sensors 
is given by

  5–3 /2 1/2

P P g

. .= ,
m

C w l t
K V
d

d 


 (3.28)

where KP is the partition coefficient depending on the couple 
polymer-gas combination, VP is the polymer layer volume and g is 
the density of the gas analyte. 

Equations (3.27) and (3.28) demand some important 
comments: 
 •  In the case of resonant mass sensors, if the resonator di-

mensions are proportionally scaled down with respect to a 
given scale factor Nsf << 1, the resolution is proportionally 
improved with respect to  N sf  

2  . It proves that nanomechanical 
resonators, with their high fundamental resonance frequen-
cies, diminished active masses and tolerable force constants, 
are extremely sensitive to mass changes. Therefore, for reso-
nant mass sensors, NEMS resonators are a great alternative 
to improve the performances of such detectors. 

  2
sf

(NEMS)
=

(MEMS)
m

N
m
d

d
 (3.29)

 • For resonant gas sensors, for a constant resonator width, 
if the resonator length and thickness are proportionally 
scaled down with respect to a given scale factor Nsf << 1 
while keeping an acceptable slenderness ratio for Euler-
Bernoulli beam model validity, the concentration resolution 
is proportionally improved with respect to  N sf  

3  . It proves that 
nanomechanical resonators are a great alternative for ultimate 
gas measurements.

3.2.5 Physical Nonlinearities

The validity of Eq. (3.1) is limited by the resonator physical 
nonlinearities. The mechanical nonlinearities are considered as a 
fundamental limit of the linear lower bound of the resonant sensor 
dynamic range (Cleland and Roukes, 2002). Furthermore, the 
actuation force can bring additional nonlinearities into the 
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resonator dynamics. Electrostatic actuation is a good example for 
spring softening nonlinearities (Kacem et al., 2009, 2010).

Nanoscale mechanical resonant sensors offer a greatly 
enhanced performance that is unattainable with microscale devices. 
However, scaling down resonators from MEMS to NEMS makes 
nonlinearities quickly reachable (Cleland and Roukes, 2002) and 
drastically alters the sensor resolution.

To underline this fact, let us write Eqs. (3.27) and (3.28) without 
restrictions on the displacement carrier power.
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To simplify the analysis of Eqs. (3.30) and (3.31) when the 
resonator dimensions are scaled down, we suppose that the 
quality factor Q is constant. Then, it is clear that the resolution of 
nanomechanical resonators depends on the drive oscillation. The 
latter is limited by the mechanical nonlinearity for thin clamped-
clamped resonators.

Under this limit, Eqs. (3.30) and (3.31) show that proportionally 
scaling down the resonator improves the sensor resolution. 
It is even more convenient to reduce only the beam length l and 
thickness t while keeping an acceptable slenderness ratio for 
the validity of the Euler-Bernoulli model. Ultimate optimization 
depends on the drive amplitude of the resonator. Ideally, the res-
onator should be actuated to oscillate at the highest possible am-
plitude (below the pull-in for an electrostatic actuation). In open 
loop, the resonator is classically driven below its critical amplitude 
in order to ensure the stability of its dynamic response. This fun-
damental limit is set by the nonlinear dynamics of the resonator 
(details are given in Sections 3.3 and 3.4).

However, when used as a practical sensor, the resonator is 
most of the time used as an oscillator, embedded in a feedback loop, 
or a PLL. In such closed-loop operation, the phase is the control 
parameter of the system (the frequency is now an output) and 
hence stabilizes its dynamics: even in the non-linear regime, the 
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frequency is a single valued function of the phase (Yurke et al., 1995; 
Juillard et al., 2008). In other words, the steady-state solution in 
the closed-loop case is always stable.

Now, the question is: What is the most important issue when 
the resonator is driven beyond its critical amplitude in either open 
or closed loop? The answer is detailed below.

3.2.6  Nonlinearities and Noise Mixing

In a capacitive resonator, mechanical and electrostatic nonlineari-
ties are analytically combined to show that low-frequency voltage 
drift in the sustaining amplifier is directly converted into a 
frequency shift in the oscillator output. Experimental evidence of 
this effect is presented in Roessig et al. (1997), and it is shown that 
this is the dominant source of near-carrier frequency instability 
in tuning fork oscillators.

Figure 3.1 Schematic representation of noise aliasing in micro- 
oscillator. A linear resonator would filter out the amplifier 
low-frequency   1 __ f  -noise present at the resonator input, but 
nonlinear filtering element will result in noise aliasing 
(Kaajakari et al., 2005a).

Besides, a significant near-carrier noise source is the aliasing 
of   1 __ f  -noise to carrier side-bands due to the mixing of low-frequency 
noise and carrier signal in the active circuit elements. Kaajakari 
et al. (2005a) showed that, in addition to amplifier nonlinearities, 
the electrostatic transduction commonly used for coupling to 
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silicon resonators is inherently nonlinear and leads to aliasing 
of noise. This process is illustrated in Fig. 3.1, which shows a 
schematic representation of an oscillator comprising a resonator 
and sustaining amplifier. In addition to amplifying oscillation 
signal uac, the amplifier output may present a significant amount of 
low-frequency   1 __ f   -noise to the resonator input. A linear resonator 
element would effectively filter out this low-frequency noise, but 
nonlinearities in the resonator will lead to unwanted aliasing of 
the low-frequency noise to carrier side-bands. Thus, the capacitive 
coupling is expected to be intrinsically more prone to noise 
aliasing. A detailed analysis of the noise-mixing mechanisms can 
be found in Kaajakari et al., (2005a), where the capacitive force 
nonlinearity was found to be the dominant up-mixing mechanism 
in electrostatic transduction.

Since the capacitive transduction is commonly used for 
resonant nanocantilevers, any source of frequency instability in 
the oscillator is detrimental to the noise behavior of the transducer, 
so these sources must be understood and minimized or canceled.

Practically, in order to avoid most of noise, which reduces the 
resonant sensor performances, the resonator should be driven 
linearly beyond its fundamental critical amplitude. Therefore, for 
ultimate optimizations, one should investigate the open loop 
nonlinear dynamics of nanocantilevers.

3.3 Nanocantilever Based on Electrostatic 
Detection

In order to develop a model for micro/nanocantilever beams, a 
slender uniform flexible beam is considered as shown in Fig. 3.2. 
The beam is initially straight, and it is clamped at one end and 
free at the other end, subject to viscous damping with a coefficient 
c  per unit length and actuated by an electric load v(t) = Vdc + Vac 
cos( tW ), where Vdc is the DC polarization voltage, Vac is the 
amplitude of the applied AC voltage, t is time, and tW  is the 
excitation frequency. In addition, the beam follows the Euler–
Bernoulli beam theory, where shear deformation and rotary inertia 
terms are negligible.
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Figure 3.2 Schema of an electrostatically actuated nanocantilever.

3.3.1 Equation of Motion

Following a variational approach based on the extended Hamilton 
principle and used by Crespo da Silva and Glynn (1978b,d) and 
Crespo da Silva (1988a,b), the nonlinear equation of motion 
describing the flexural vibration of a cantilever beam electro-
statically actuated can be written as
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 (3.32)

where primes and dots denote, respectively, the partial 
differentiation with respect to the arclength s and to the time t; w  
is the beam bending deflection, E and I are Young’s modulus and 
geometrical moment of inertia of the cross section, respectively; l 
and b are the length and width of the nanobeam, respectively;  is 
the material density; h is the nanobeam thickness in the direction 
of vibration; g is the capacitor gap width; and e is the dielectric 
constant of the gap medium.

The first term in the left-hand side of Eq. (3.32) is due to 
the nonlinear expression for the curvature of the beam, while 
the first term in the right-hand side, which involves a double 
time derivative, is the nonlinear inertial term. The last term in 
Eq. (3.32) represents an approximation of the electrostatic force 
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assuming a complete overlap of the area of the nanobeam and 
the stationary electrode where Cn is the fringing field coefficient 
computed using an existing analytical model (Nishiyama and 
Nakamura, 1990). The boundary conditions are

 (0, )= (0, )= ( , )= ( , )= 0w t w t w l t w l t     

     (3.33)

3.3.2 Normalization

For convenience and equation simplicity, we introduce the 
nondimensional variables:

 , , ,= = =
w s t

w x t
g l 



  (3.34)

where 
22 3

=
l
h E


 . Substituting Eq. (3.34) into Eqs. (3.32) and (3.33), 

we obtain 
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 (0, ) = (0, ) = (1, ) = (1, ) = 0w t w t w t w t    (3.36)

where primes and dots denote, respectively, the partial differentia-
tion with respect to the dimensionless arclength x and to the 
dimensionless time t. The parameters appearing in Eq. (3.35) are
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3.3.3 Solving

The beam total displacement w(x, t) can be written as a sum of a 
static dc displacement ws(x) and a time-varying ac displacement 
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wd(x, t). However, for devices under low pressure, i.e., quality factors 
Q are in the range of 103 to 104, the static deflection is negligible 
with respect to the dynamic deflection.

A reduced-order model is generated by modal decomposition 
transforming Eq. (3.35) into a multi-degree-of-freedom system 
consisting of ordinary differential equations in time. We use the 
undamped linear mode shapes of the cantilever as basis functions 
in the Galerkin procedure. To this end, we express the deflection 
as

 
k k

=1

( , ) = ( ) ( ),
n

k

w x t a t xf  (3.38)

where ak(t) is the kth generalized coordinate and fk(x) is the kth 
linear undamped mode shape of the straight microbeam, normal-
ized such that 1

k j kj0
=f f d  

where dkj = 0 if k ≠ j and dkj = 1 if k = j. The 
linear undamped mode shapes fk(x) are governed by 

   
d4fk(x)

 _________ dx4   =   k  2  fk(x) (3.39)

 k k k k(0)= (0)= (0)= (1),  f f f f  (3.40)

Here, k is the kth natural frequency of the cantilever. The 
electrostatic force in Eq. (3.35) is expanded in a fifth order Taylor 
series in order to capture 5 possible amplitudes for a given 
frequency in the mixed behavior (Kacem and Hentz, 2009). Then, 
Eq. (3.38) is substituted into the resulting equation, Eq. (3.39) 
is used to eliminate 

4
k

4

( )d x
dx
f , and the outcome is multiplied by fk 

and integrated from x = 0 to 1 for k  [1, n]  �. Thus, a system 
of coupled ordinary differential equations in time is obtained.

The DC voltage, which is generally at least ten times higher 
than the AC voltage, makes the second harmonic cos(2Wt) 
negligible with respect to the first harmonic cos(Wt). Also, assuming 
that the first mode is the dominant mode of the system, the 
study can be restricted to the case n = 1. Then, we obtain
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 (3.41)

We recognize in the Eq. (3.41) some canonical nonlinear terms 
such as the Duffing nonlinearity as well as the parametric 
excitation (Mathieu term). However, the presence of other high 
order nonlinearities makes the described system in Fig. 3.2 as 
a forced nonlinear cantilever under multifrequency parametric 
excitation. This kind of equation is not so frequently treated in the 
literature: It includes terms coming from mechanical and electro-
static nonlinearities. 

To analyze the equation of motion (3.41), it is convenient to 
invoke perturbation techniques, which work well with the assump-
tions of “small” excitation and damping, typically valid in NEMS 
resonators. To simplify the perturbation approach, in this case the 
averaging method, a standard constrained coordinate transforma-
tion is introduced, as given by 

 1 = ( )cos[ + ( )]a A t t tW   (3.42)

 1 = – ( ) sin [ + ( )]a A t t tW W   (3.43)

 2
1 = – ( ) cos [ + ( )]a A t t tW W   (3.44)

A(t) and (t) are slowly time-varying functions. In addition, since 
near-resonant behavior is the principal operating regime of 
the proposed system, a detuning parameter  is introduced, as 
given by

 1= + ,W    (3.45)

where ac dc

dc ac

2
1 1 3 3= – –2V V

V V  d d  and  is the small non-dimensional 
bookkeeping parameter. Separating the resulting equations and 
averaging them over the period   2 ___ W   in the t-domain results in the 
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system’s averaged equations in terms of amplitude A and phase  
given by

 3 2 4 2
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 (3.47)

The steady-state motions occur when = = 0A  , which corre-
sponds to the singular points of Eqs. (3.46) and (3.47). Thus, the 
frequency response equation can be written in its parametric 
form A = K1( ), W = K2( ) as a function of the phase . This set of 
two equations is easily implementable in Matlab or Mathematica. 
This ability makes the model suitable for NEMS designers as a 
quick tool to optimize the resonant sensors performance.

Figure 3.3 Analytical forced frequency responses for Q = 104 
and sev-

eral values of g and Vac; Wmax is the beam displacement at its 
free end normalized by the gap g, Ac is the critical amplitude 
above which bistability occurs, the different bifurcation 
points are {1, 2, 3, 4, 5, 6, 7, P}, the P point characterizes 
the initiation of the mixed behavior.
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The plots of Fig. 3.3 were carried out with the following set 
of parameters: l = 12.5 µm, h = 300 nm, b = 500 nm, and Vdc = 
50Vac; g and Vac were used for parametric studies. This analytical 
model enables the capture of all the nonlinear regimes in the 
resonator dynamics and describes the competition between the 
mechanical hardening and the electrostatic softening behaviors. 
In addition, the model permits the optimization of the resonator 
design by tuning the geometrical parameters in order to cancel 
out nonlinearities as shown in Fig. 3.3. For g = 1.8 µm, Vdc = 5 V and 
Q = bh 1

c


 
 = 104 (black curve). The obtained linear behavior 

enhances the detection limit of NEMS resonant sensors.

3.3.4 Critical Amplitude

The critical amplitude is the oscillation amplitude Ac above which 
bistability occurs. Thus, Ac is the transition amplitude from the linear 
to the nonlinear behavior.

3.3.4.1 The mechanical critical amplitude

By using Eqs. (3.46) and (3.47) when the mechanical nonlinearities 
(terms proportional to d1 or d2) are dominating the cantilever 
dynamics, the parametric form of the frequency response can be 
written as

 2 2
0 1 1= 1+ cot +0.077 sinW   d    (3.48)

 1= 2 sin ,A    (3.49)

where 0 = 0.142206c and 3
1

0.445
 = 

c

d
 .

Mathematically, Acm is defined as the oscillation amplitude 
for which the equation   dW ____ 

d
   = 0 (infinite slope) has a unique 

solution cm =    __ 3  . Thus, the critical electrostatic force is deduced as 

1c =   0.456 √
___

 0  
 _________ 

d1
   . 

The critical amplitude Acm is obtained by substituting the 
critical electrostatic force into Eq. (3.49) at the point  =    __ 2  

 
and 

multiplying by the gap g and the value of the first linear undamped 
mode shape function f1 at the free point of the beam. Finally, we 
obtain the following close-form solution:
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 cm
1

= 6.3A
Q

 (3.50)

Remarkably, the mechanical critical amplitude of a resonant 
cantilever depends only on its length and its quality factor. 
However, for a clamped-clamped resonator, the mechanical 
critical amplitude is Acm = 1.68   h ____ 

 √
__

 Q   
   (Kacem et al., 2009); it depends 

only on the resonator width in the direction of vibration and its 
quality factor. For a given quality factor, the ratio between both 
critical amplitudes is 

c–f
cm

c ec–c
cm

= = 3.75 = 3.75
A l

R
hA

 , where e is the 
slenderness ratio of the beam. While the resonator is sufficiently 
slender to validate the Euler–Bernoulli theory, the dynamic range 
ratio between cantilevers and clamped-clamped beams is very 
high (>20), which makes nanocantilevers an advantageous 
candidate for NEMS resonators-based applications.

3.3.4.2 The electrostatic critical amplitude

In this case, the electrostatic nonlinearities in Eqs. (3.46) and 
(3.47) are supposed to be dominating the cantilever dynamics. 
Considering only nonlinear terms up to the third order, while 
neglecting the parametric terms and the terms proportional to  V ac   2  , 
the form of the frequency response can be written as
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 (3.52)

Mathematically, Ace is defined as the oscillation amplitude for which 
the equation   dW ____ 

d
   = 0 has a unique solution ce =    __ 3   . Thus, the critical 

electrostatic AC voltage is deduced as

 
c

3
3

ac dc 3 3
1

= 11.2V V
c

d


 (3.53)

The electrostatic critical amplitude Ace is obtained by sub-stituting 
Eq. (3.53) into Eq. (3.52) at the pointt  =    __ 2  

 
and multiplying 

by the gap g and the value of the first linear undamped mode 
shape function f1 at the free point of the beam.
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Unlike the mechanical critical amplitude (Eq. (3.50)), the 
electrostatic critical amplitude of a resonant cantilever depends 
on its length l, its width in the direction of vibration h, the gap g, 
the DC voltage as well as the quality factor Q.

3.3.4.3 Engineering optimization

The hysteresis suppression is based on the counterbalance 
between hardening mechanical nonlinearities and softening electro-
static nonlinearities. The mixed behavior, captured by including 
the fifth order nonlinear electrostatic terms, is less pronounced 
than in electrostatically driven clamped-clamped beams. Therefore, 
while neglecting the fifth order terms, the nonlinearity cancellation 
based on the critical amplitude expressions can be written as

 m ec c=A A  (3.55)

Thus, assuming a constant quality factor Q, the optimal DC 
drive voltage is

OP

39 14 6 42 10 6 19 7 3

dc 16 12 8

1 1.65 × 10 3.2 × 10 8.1 × 10
= + –

2
g h g h g h

V
l l l

 (3.56) 

In reality, the overall quality factor may decrease when Vdc 
increases because of the ohmic losses from the electrons moving 
on and off the resonator due to capacitive coupling to a nearby 
electrode (Sazonova, 2006). This ohmic contribution adds up to 
the other sources of dissipation (thermomechanical, anchor losses, 
adsorption/desorption …) like –1 –1 –1 –1

total thermo anchor ohmic= + + +Q Q Q Q  and 

may be expressed as 
2

dc–1
ohmic

eff

( )1
=

R C V
Q M

 
 

 
, (Sazonova, 2006) where 

C is the gradient of the capacitance, R is the output resistor and 
Meff is the effective mass of the considered mode.

Then, the quality factor should be changed to   1 ____________ 
Q–1 +  Q ohmic  

–1  
  , for 

the electrostatic critical amplitude and thus, the optimal DC drive 
voltage can be deduced using the same Eq. (3.55).
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In the particular case of Fig. 3.3, the mechanical critical 
amplitude is Acm = 0.2 g. When g = 1.8 µm and for a quality factor 
Q = 104, the optimal DC drive voltage taking into account the ohmic 
losses, is around 5 V. At this voltage, as shown by the black curve 
of Fig. 3.3, the peak amplitude is linear and beyond the critical 
amplitude (Apeak = 0.8 g). Therefore, the enhancement  (   Apeak

 _____ Ac
    )  rate of 

the sensor performance is around 4. 
Remarkably, the electrostatic critical amplitude is 

independent on the AC voltage. This is due to the use of a low AC 
voltage compared to the DC voltage for the cantilever actuation, 
which makes the contribution of Vac in the electrostatic Duffing 
term negligible. Hence, in this configuration, the compensation of 
the nonlinearities is independent on the AC voltage. This interesting 
result makes possible the enhancement of the nanocantilever 
performances up to very high displacements comparable to the 
gap in the case of an electrostatic actuation by increasing the AC 
voltage, and limited by an upper bound instability such as the 
pull-in (Nayfeh et al., 2007).

The aim of this model is to provide practical analytical rules 
for MEMS and NEMS designers in order to optimize resonant 
sensor performances. Hence, it is important to check its validity 
experimentally on nanocantilever electrostatically actuated.

3.3.5 Fabrication

Practical applications of nanocantilever beams benefit much 
from on-chip signal processing, whereby optimal performance is 
achieved in case of monolithic integration with CMOS (Verd et al., 
2006, 2008; Arcamone et al., 2008, 2007). Such NEMS/CMOS made 
of silicon combine unique sensing attributes, thanks to the high 
resonance frequency mobile mechanical part, with the possibility 
to electrically detect the output signal in enhanced conditions. 
For those reasons, the nanobeams that are experimentally 
studied in this work have been monolithically integrated with a 
dedicated CMOS circuit to enhance the capacitive readout of their 
resonance “motional” current. This heterogeneous integration has 
required a very specific fabrication process described hereafter. 
More details about the process and the functionality of this 
NEMS/CMOS system can be found in Arcamone et al. (2007, 2008). 

Nanocantilever Based on Electrostatic Detection
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The cantilevers fabrication process used here has been 
performed at CNM-IMB (CSIC) in Barcelona (Spain) and at EPFL 
in Lausanne (Switzerland). It is based on a post-processing 
approach in which CMOS circuits are first fabricated according to a 
standard CMOS technology, then NEMS resonators are subsequently 
patterned by nanostencil lithography (nSL) (van den Boogaart 
et al., 2004) and fully fabricated. nSL is a shadow-mask based, 
full-wafer and parallel nanopatterning technique providing a 
resolution down to 200 nm and a high fabrication throughput.

After concluding the fabrication of the CMOS circuits, dedicated 
areas (located close to each circuit, 1 per circuit) are selectively 
patterned with an 80 nm thick aluminum layer by nSL. The 
following step is a reactive ion etching (RIE) of silicon that transfers 
the aluminum patterns to the polysilicon structural layer of the 
resonators. The last step consists in releasing the resonators and 
removing the Al mask by a local wet etching based on HF acid. The 
circuit is robustly protected during this etching by an adequately 
annealed photoresist layer. This entire process is described in 
Arcamone et al. (2008). 

Figure 3.4 Optical picture of the NEMS resonator/CMOS readout circuit 
system. The scanning electron micrograph zooms the cantilever 
beam itself and its driving electrode.

CMOS wafers containing each 2000 fully fabricated nanome-
chanical devices of diverse types have been obtained with that 
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process; all connected to dedicated CMOS circuits for signal in-
terfacing and amplification. Figure 3.4 depicts a fully fabricated 
nanocantilever beam (optimized for in-plane motion) which is 
monolithically integrated with its dedicated CMOS readout circuit. 

3.3.6 Electrical Characterization

Electrostatic actuation and capacitive detection are used for 
detecting in-plane oscillations (in the MHz range) of those Si 
nanocantilever resonators. When the resonator is electrostatically 
driven by a DC + AC voltage, the readout electrode (i.e. the 
cantilever itself in our case, see Fig. 3.4), electrically connected to 
the closely located CMOS circuit input, collects a capacitive current 
in enhanced conditions since parasitic capacitances at the NEMS 
output are drastically reduced to the few f F range. The motional 
current IM, which is a fraction of the total NEMS output current 
IMEMS, is specifically generated by the variation of electrode/
resonator capacitance due to the mechanical motion itself. The 
other part, the background current IBG, is related to the capacitive 
feed through between the NEMS input and output electrodes, one 
part of it being the “static” capacitance between the cantilever and 
the in-front electrode, the other part being the parasitic fringing 
capacitance between both.

The dedicated CMOS readout circuit ensures a constant 
voltage biasing at the resonator output, while it amplifies the 
readout current by a factor 100 and converts it to an output 
voltage according to an external load resistor RLOAD (see Fig. 3.5). 
Arcamone et al. (2007, 2008) give more details on the circuitry 
and the readout scheme.

Figure 3.5 Electrical scheme of the monolithic NEMS/CMOS system.
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The mechanical frequency response of those nanocantilevers 
has been electrically characterized with a network analyzer 
(AGILENT E5100A) in air (with a probe station) and vacuum (with 
wire-bonded samples). In both configurations, the capacitive 
detection scheme including the CMOS circuit successfully transduced 
into an electrical signal the mechanical motion corresponding to 
the fundamental in-plane flexural resonance mode of vibrating 
cantilevers. The data collected by the network analyzer, in terms 
of magnitude and phase, are under the following form:

 OUT AC
NA

IN AC

( )= 20log
V

R f
V

 (3.57)

The NEMS resonator total current (at the cantilever output, 
not at the circuit output) being

 NA
20IN AC

BG M MEMS
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+ = = 10
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I I I

R
 (3.58)

The modulus and argument of the NEMS resonator electrical 
admittance Y can be calculated based on the circuit characteristics 
and the network analyzer response as follows:
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 arg( )= – ,Y P f  (3.60)

where P is the phase signal as measured by the network analyzer 
and f is the phase delay introduced by the circuit; in our case 
f      __ 4   . In the 2-port configuration of these measurements, a 
NEMS cantilever can be modeled as two parallel branches (see 
Fig. 3.5):
 • a capacitive branch (of capacitance CP), of admittance YBG, 

corresponding to the background signal, in which IBG flows. 
YBG is given by YBG = sCP with s = j.

 • an RLC branch of admittance YM, corresponding to the 
resonating part, in which IM flows. YM is given by 

  M 2

s
=

s + s +1
C

Y
LC RC
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The total admittance is then Y = YBG + YM. The theoretical model 
described in the previous section is expressed in terms of YM only, 
i.e., the term describing the oscillations. Therefore, it is required 
to apply a simple data treatment to extract the motional 
admittance YM from the measured admittance Y, YM being given by 
YM = Y − YBG = Y − sCP. Hence, its modulus is given by

 2 2
M P| |= [| |cos(arg( ))] +[| |sin(arg( ))– ]Y Y Y Y Y C  (3.61)

CP can be estimated by considering the electrical response RNA−OOR 
at a given frequency fOOR that is out of resonance, then CP is given by
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 (3.62)

Figure 3.6a shows the raw electrical response RNA around 
the mechanical resonance of cantilever A (l = 14.5 µm, b = 460 nm, 
h = 400 nm, g = 600 nm) as directly measured by the network 
analyzer. Figure 3.6b shows the motional admittance YM 
extracted from the data of Fig. 3.6a according to Eq. (3.61). Using 
the developed model, the motional admittance can be computed 
as follows:

 res
M M ac dc= =

dC
I Y V V

dt
 (3.63)

 1res n 0 1 1
20

1 1

( ) ( )
=

(1– )( ) ( ))
dC bC x a t

dx
dt a t x

e f

f


  (3.64)

The derivative of the resonator capacitance with respect to 
the dimensionless time t has been expanded in a fifth order 
Taylor series, which enables the analytical computation of the 
integral in Eq. (3.64). Then, Eqs. (3.42) and (3.43) are substituted 
into the outcome equation and the trigonometric functions are 
linearized. Since the electrical measurement filters out all 
frequency components of the readout signal except which of the 
drive frequency, the first harmonic of the Fourier transform of 
Eq. (3.63) gives the motional current frequency response 
including the coupling between the dynamics of the resonator 
and the read-out voltage Eq. (3.64). Although this coupling brings 
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extra nonlinear terms, their contribution happens to be negligible 
and the read-out voltage is proportional to the dynamic deflection. 

Figure 3.6 (a) Raw electrical response RNA around the mechanical 
resonance of a nanocantilever. This is the response as measured 
by the NA of the full NEMS-CMOS system. (b) Motional 
admittance frequency response extracted from the data of 
Fig. 3.6a according to Eq. (3.61).

3.3.6.1 Measurements in air

It is important to underline that all the inputs of the model 
are known physical parameters including the fringing field 
coefficients computed using the analytical formulae (Nishiyama 
and Nakamura, 1990), except the measured quality factor Q and 
the parasitic capacitance CP . Therefore, to evaluate the model, Q 
has been fitted using linear curves. For a fully analytical prediction, 
the quality factor may be computed using existing models 
taking into account the thermoelastic damping (Lifshitz and 
Roukes, 2000), the support loss (Hao et al., 2003), and the surface 
loss (Yang et al., 2002). Such a computation gives results in good 
agreement with experimental measurements.

Figure 3.7 shows the characteristic responses analytically 
computed and electrically measured of cantilever A (l = 14.5 µm, 
b = 460 nm, h = 400 nm, g = 600 nm) operated in air for several 
DC voltages. Due to some mass that has been deposited at the 
free end of the cantilever, its resonance frequency was shifted 
from 2 MHz down to 1.5 MHz. The first linear curve (Vdc = 16V ) 
is fitted by adjusting the parasitic capacitance CP and the quality 
factor Q. Then, the same value of CP has been used for the three 
other curves while adjusting the Q factor for each one. 
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Figure 3.7 Analytical and measured motional admittance frequency 
curves (in air) of cantilever A. Wmax is the cantilever displace-
ment at its free end normalized by the gap.

Figure 3.7 shows that the resonance frequency of the 
cantilever can be tuned by varying the applied DC voltage and a 
clear spring-softening effect is seen with increasing Vdc. The 
analytical curves are in good agreement with experimental results 
and the critical amplitude predicted analytically for a 21 V DC 
voltage has been experimentally confirmed as shown in Fig. 3.7. 
which demonstrates the accuracy and performance of the model. 
Out of resonance, the experimental curves slightly increase which 
is due to the variation of f during the measurements.

When experiments are performed in air, in order to reach 
detectable signals, the applied DC voltage has to be high (Vdc > 10 V). 
As the quality factor is low (15 < Q < 20), the dynamic behavior 
of the nanocantilever is dominated by the nonlinear softening 
electrostatic forces which significantly increases the critical 
amplitude Eq. (3.54).

3.3.6.2 Measurements in vacuum

The chip containing cantilever B (l = 14.5 µm, b = 570 nm, h = 260 nm, 
g = 820 nm) has been wire bonded and it has been measured 
in a vacuum chamber under a pressure of 10−2 mBar. The fits 
have been made in the same way as for the experimental curves 

Nanocantilever Based on Electrostatic Detection
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measured in air. Figure 3.8 shows two measured frequency 
responses and their predicted analytical curves.

Figure 3.8 Analytical and measured motional admittance frequency 
curves (in vacuum) of cantilever B. Wmax is the cantilever 
displacement at its free end normalized by the gap. 

Due to the high quality factors obtained in vacuum, low drive 
voltages are enough to polarize the device: 1 or 2V DC added to a 
0.092V AC. A 2V DC polarization is sufficient to provoke a nonlinear 
behavior yielding almost vertical slopes both in magnitude and 
in phase. The extracted Q factor decreases from 9150 down to 6650 
for 1 and 2V DC polarization due to the ohmic losses (Sazonova, 
2006).

The high quality factors reduce the critical amplitude Ac 
as shown in Fig. 3.8, which confirms the accuracy of the model 
beyond the critical amplitude (second curve with 2V DC). The 
effect of the spring softening is also present due to the electrostatic 
negative stiffness. Even with high quality factors, the cantilever 
B displays a softening behavior. This can be explained by the fact 
that the nonlinearities coming from the electrostatic force are 
stronger than the mechanical hardening nonlinearities due to the 
length of the beam and the small gap thickness.

In air, NEMS cantilever have a large critical amplitude (75% of 
the gap as shown in Fig. 3.7 for cantilever A) which implies a large 
dynamic range compared to clamped-clamped NEMS resonators 
(their critical amplitude could be lower than 1% of the gap). In 
addition, even in vacuum with high quality factors, the critical 
amplitude of nanocantilevers still interestingly large (50% of the 
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gap as shown in Fig. 3.8 for cantilever B). This important property 
makes cantilevers the best candidates for resonant mass and gas 
sensing devices.

The electric characterization of the NEMS/CMOS devices 
earlier described was an important step towards the validation of 
the nonlinear model for NEMS cantilevers. As previously shown, 
the competition between both behaviors (softening and hardening) 
is controlled by the design parameters, the quality factor as well 
as the DC voltage. The model shows that for appropriate values 
of those parameters, it is possible to suppress the hysteresis and 
to obtain an optimal design for which the mechanical and the 
electrostatic nonlinearities would be equilibrated. The next step 
is the complete validation of the model through the compensation 
of the nonlinearities, which is the subject of the next section.

3.4 Nanocantilever Based on Piezoresistive 
Detection

3.4.1 Device Description

The device is composed of a fixed-free lever beam and two 
piezoresistive gauges connected to the cantilever at a distance 
d = 0.15l from its fixed end. This value was chosen to maximize 
the stress inside the gauges due to the cantilever motion (Fig. 3.9). 
The gauges have been etched along the <110> direction in order 
to benefit from the high gauge factor associated with p++ doped 
silicon. A driving electrode was patterned along one side of the 
resonant cantilever for electrostatic actuation. The NEMS cantilever 
is actuated electrostatically at the primary resonance of its first 
linear undamped mode shape. The cantilever oscillation induces 
stress inside the piezoresistive gauges and the collected strain is 
transduced into a resistance variation due to the piezoresistive 
effect. Thus, the sensor frequency response is obtained via a 
piezoresistive read-out perfectly decoupled from the capacitive 
actuation of the resonator. The amount of molecules absorbed by 
the functionalized surface of the cantilever changes its effective 
mass, which lowers its frequency resonance. By evaluating the 
frequency shift, the mass of the added species can be estimated. 

Nanocantilever Based on Piezoresistive Detection
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Thus, the considered device can be used as either a mass or a gas 
sensor.

Figure 3.9 Resonant nanocantilever based on piezoresistive detection.

3.4.2 Transduction

The cantilever motion is detected by using the piezoresistive 
transduction principle (Mo Li and Roukes, 2007). The piezoresistive 
transducers consist on semiconducting silicon p++ (boron) doped 
suspended nanogauges. The rationale for using piezoresistive 
doped silicon nanogauges is related to the giant piezoresistance 
effect of these materials appearing for sub-100 nm dimensions 
(He and Yang, 2006). They are suitable for integrated transducers 
and for self-sensing devices (Arlett et al., 2006). The figure of merit 
characterizing these materials is the piezoresistive gauge factor 
g defined as

 
l

1 ,=(1+ )+


g 
e 

 (3.65)

where  is the resistivity, el the gauge elongation and  the 
Poisson ratio. The gauge factor relates the mechanical strain applied 
on the gauges to its relative resistance change. The resistance 
change depends on two effects. The first term in Eq. (3.65) is a ge-
ometrical consequence and is associated with elastic deformation, 
while the latter is related to the modification of the energy bands 
inside a crystal and thus altering its resistivity. In metals only 
the first term participates which ranges from 1–2 and is the way 
chosen by Roukes et al. (Yang, 2006). In semiconductors, the 
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second term provides a significant contribution, which was shown 
to be more than three orders of magnitude higher (He and Yang, 
2006). The force applied to the lever is amplified by the appropriate 
design and transferred to the gauges. This design makes possible 
to exploit a first order piezoresistance effect with the suspended 
gauges acting as strain collectors instead of second order one 
(He et al., 2008). We should notice that there is no need for 
further metallization layers, which lead to additional damping 
and energy dissipation. The strain collected by the gauges is 
transduced into a resistance variation due to the piezoresistance 
effect proportional to 
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3.4.3 Equation of Motion

The nonlinear equations of motion describing the flexural vibration 
of the device described in Fig. 3.9 can be derived using the extended 
Hamilton principle (Silva and Glynn, 1978b,d; Silva, 1988a,b). 
The cantilever bending deflection 0w j is decomposed into 0w 0 for 
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where s is the arclength; Ec and Ic are Young’s modulus and 
moment of inertia of the nanocantilever cross section, respectively; 
l and h are the length and width of the nanobeam, respectively; 
b is the device thickness;  is the material density; g is the 
capacitor gap width; and e is the dielectric constant of the gap 
medium. The last term in Eq. (3.67) represents an approximation 
of the electrostatic force assuming a partial distribution along 
the nanobeam length. H is a Heaviside function and Cn is the 
fringing field coefficient. The boundary conditions are 
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where t  is time, hg and Ig are the width and the moment of inertia 
of the gauge cross section. Equations (3.70) and (3.71) are obtained 
by writing the force and torque moment equilibrium equations 
at the point s = d.
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where Tsc is the shear force applied to the cantilever, Mbc is its 
bending moment, Tag is the axial force applied to the gauges, and 
Mg is its corresponding torque moment.

3.4.4 Normalization and Solving

Similarly to the cantilever model presented in Section 3.3, we 
introduce the same nondimensional variables. Then, a reduced-
order model is generated by modal decomposition (Eq. (3.38)) 
transforming the normalized equation of motion into a multidegree-
of-freedom system consisting in ordinary differential equations 
in time. The undamped linear mode shapes, which are defined 
as piecewise functions for the device described in Fig. 3.10, are 
used as basis functions in the Galerkin procedure.

The electrostatic force is expanded in a fifth order Taylor series, 
and Eq. (3.38) is substituted into the resulting equation. Then, 
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Eq. (3.39) is used to eliminate   d
4fk(x)

 _______ 
dx4  , and the outcome is multiplied 

by fk and integrated from x = 0 to 1 for k  [1, n]  �. Thus, a system 
of coupled ordinary differential equations in time is obtained.

Figure 3.10 shows that between the clamped end of the cantilever 
and the gauges, the vibrations of the sensor are relatively negligible 
with respect to its dynamics between the gauges and the free 
end of the cantilever for the first four modes. Consequently, the 
nonlinear coupling between the mode shapes is negligible for 
x  [0, d] and when the sensor is actuated on its first mode, its 
dynamics can be approximated by the dynamics of a cantilever 
of length l − d.

Figure 3.10 The first four linear undamped mode shapes of the device 
described in Fig. 3.9.

Assuming that the first mode is the dominant mode of the 
system, the study can be restricted to the case n = 1, which results 
in a nonlinear Mathieu-Duffing Equation. It can be solved using a 
perturbation technique which permits the transformation of the 
nonlinear second order equation into two first order nonlinear 
ordinary differential equation that describe the amplitude 
and phase modulation of the system frequency response. For 
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Vac << Vdc, the second harmonic terms are neglected. The resulting 
phase and amplitude averaged equations over the period   2 ___ W   

and 
around the primary resonance (W = 1 + ) are

 1= ( , )A f A   (3.74) 

 2= ( , )f A   (3.75) 

The steady-state motions occur when = = 0,A   which corresponds 
to the singular points of Eqs. (3.74) and (3.75). The normalized 
displacement Wmax with respect to the gap at the free end of the 
cantilever and the drive frequency W can be expressed in function 
of the phase . Thus, the frequency response curve can be plotted 
parametrically as shown in Fig. 3.11 for the following parameters: 
l = 5 µm, b = 160 nm, h = 300 nm, lg = 500 nm, hg = 80 nm, a = 350 nm 
and Vac = 0.1Vdc. The gap g and the DC voltage Vdc were used for 
parametric studies.

Figure 3.11 Analytical forced frequency responses of the resonant 
piezoresistive device presented in Figs. 3.9 and 3.12 for a 
quality factor Q = 104. Wmax is the displacement of the beam 
normalized by the gap g at its free end.

3.4.5 The Critical Amplitude

3.4.5.1 The critical mechanical amplitude

The nonlinearities acting between the fixed end of the cantilever 
and the nanogauges are negligible since the vibration amplitudes 
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of this part are close to zero for the first linear undamped mode 
shape as shown in Fig. 3.10. Therefore, the NEMS behaves 
dynamically as a resonant nanocantilever of length l − d. Hence, using 
Eq. (3.50), the critical mechanical amplitude can be written as
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–
= 6.3

l d
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Q
 (3.76)

3.4.5.2 The critical electrostatic amplitude

In this case, the mechanical nonlinearities are neglected. Also, 
the electrostatic nonlinearities are acting only on the sensor part 
comprised between the gauges and the free end of the cantilever. 
By considering only nonlinear terms up to the third order, while 
neglecting the parametric terms and the terms proportional to  
V ac  2   and following Eq. (3.54), the critical electrostatic amplitude can 
be expressed as 
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3.4.5.3 Engineering optimization

As shown in Fig. 3.11, when g << h, the mechanical nonlinearities 
are negligible with respect to the electrostatic nonlinearities. 
Then, the NEMS forced frequency curve displays a softening be-
havior (red curve of Fig. 3.11) and the critical amplitude is given 
by Eq. (3.77), which depends on the quality factor Q, the cantilever 
width h, the gap g, the DC voltage Vdc and the distance l − d between 
the piezoresistive nanogauges and free end of the cantilever. 
In this case, the open-loop stability of the NEMS resonant sensor is 
limited by an oscillation amplitude around 60 nm. 

If g >> h, the electrostatic nonlinearities are negligible with 
respect to the mechanical nonlinearities. Then, the NEMS forced 
frequency curve displays a hardening behavior (blue curve of 
Fig. 3.11) and the critical amplitude is given by Eq. (3.76) which 
only depends on the quality factor Q and the distance l − d. In 
this case, the open-loop stability of the NEMS resonant sensor is 
limited by an oscillation amplitude around 270 nm: more than 
four times higher than the previous case. Thus, the mass resolution 
is enhanced by a factor enh = 4 compared to the first case.

Nanocantilever Based on Piezoresistive Detection
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Hence, designing NEMS cantilevers displaying a softening 
behavior is disadvantageous and can significantly alter the sensor 
resolution especially when this supposes that we are able to 
fabricate structures with very small gaps, which is rather awkward. 
Indeed, assuming that the upper bound limit (the pull-in) occurs 
at an amplitude of the gap order, even if the cantilever can vibrate 
linearly up to very high amplitudes comparable to the gap, the sensor 
performances can be altered due to its small dimensional amplitude 
limited by the gap. In other words, enhancing the dimensionless 
critical amplitude (red curve of Fig. 3.11) is not important when the 
gap is significantly reduced.

The optimal gap is gp = 600 nm for which the mechanical 
and the electrostatic nonlinearities are balanced which permits 
the linearization of the frequency response as shown in Fig. 3.11 
(black curve). For this design, which is technologically feasible, 
the mass resolution is enhanced by a factor enh = 9, compared to 
first case. 

3.4.6 Fabrication

The NEMS device presented in Fig. 3.12 was fabricated in 
CEALETI clean rooms using CMOS compatible materials with nano-
electronics state-of-the-art lithography and etching techniques. 
A 200 mm silicon-on-insulator (SOI) wafer of <100> orientation 
was used. It comprises a 160 nm-thick top silicon structural layer 
(resistivity ≈ 10 Wcm) and a 400 nm-thick sacrificial oxide layer. 
The top silicon layer was implanted with boron ions (p-type) 
through a thin layer of thermal oxide. Homogenous doping (3 × 
1019 

cm–3) in the whole thickness of the top silicon was obtained 
through specific annealing step (for material reconstruction and 
doping activation), resulting in top layer resistivity of approximately 
6 mWcm. A hybrid e-beam/DUV lithography technique (Colinet 
et al., 2009) was used to define the nanoresonators and electrode 
pads, respectively. Top silicon layer was etched by anisotropic 
RIE. In order to decrease the lead resistances, the interconnecting 
leads have been thickened with a 650 nm thick AlSi layer, a 
typical metal for CMOS interconnection process. Finally, the 
nanoresonators have been released using a vapor HF isotropic 
etching to remove the sacrificial layer oxide beneath the structures. 
The main process steps are summarized in Fig. 3.13.
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Figure 3.12 SEM image of the in-plane piezoresistive structure. 

Figure 3.13 In-plane piezoresistive structure process flow.

3.4.7 Electrical Characterization

The strain collected by the gauges is transduced into a resistance 
variation due to the piezoresistance effect proportional to

 3 2
l g 11 01 1

( ) 1
= ( )= [ ( )– ( )] ( )

24
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l h gE d d a
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where R is the gauge resistance and E Young’s modulus. The 
displacement frequency response a1(W) can be written in its para-
metric form in order to plot parametrically the resistance frequency 
response with respect to the phase . 

3.4.7.1  Down-mixing technique

The devices under test were connected to a radio frequency (RF) 
circuit board through wire bonding and loaded to a RF vacuum 
chamber for room temperature measurements. The beam is 
actuated electrostatically through capacitive coupling and detected 
through piezoresistive displacement transduction. The electrical 
read-out at high frequency is complicated by parasitic capacitances, 
which change the expected behavior of the electrical circuit. 
In order to avoid parasitic impedances and to easily reach the 
nonlinear regime, an  down-mixing technique has been used to 
read-out the resistance variation at a lower frequency  (Bargatin 
et al., 2005) (a schematic of the setup is shown in Fig. 3.14). 
The change in resistance R() is read by applying a proper bias 
Ib( − ) to the gauges, which are acting as signal mixers and 
measuring the potential at the bridge center. The output voltage 
at low frequency is proportional to

 out b
1 . .( ) cos( )
2

V I R t     (3.79) 

The two gauges situated on opposite sides of the lever work in 
tensile and compressive strain alternatively offering a double 
advantage. Firstly they allow making a differential measurement 
at the centre, working both at the same time, thus contributing 
twice on the output signal. Second this flexible design constitutes 
a balanced bridge configuration which permits suppression of the 
background at the middle point by applying two 180 degrees out 
of phase voltage signal to the gauges extremities. The adequate 
decoupling of actuation and detection by using orthogonal 
principles as well as separating them in frequency has a direct 
consequence on the background reduction. As shown in Fig. 3.15, 
a huge signal of the order of 2−3 mV at resonance and a very 
low background was obtained with these devices giving rise to 
a signal to background ratio of more than 60 dB. 
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Figure 3.14 Test-bench for motion detection of piezoresistive resonant 
NEMS based on an  down-mixing technique. PS, LPF are 
power splitter and phase shifter, respectively.

Figure 3.15 Linear resonance frequency responses measured using an  
zown-mixing technique. The effect of the DC voltage on the 
resonance frequency is presented. 

Several measurements were performed on the device for 
a fixed bias voltage (Vbias = 1.56 V peak-peak). The cantilever 
displacement depends on the applied electrostatic force which 
is proportional to F =   1 __ 2   C (Vdc + Vac cos(t))2. This force will have 
an AC (Fac()) and a static (Fdc) component proportional to  
V dc  

2   for Vdc >> Vac. The first will have a direct consequence on the 
displacement amplitude while the second affects the lever 
stiffness thus changing the resonance frequency. This is confirmed 
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by the experimental results showing that the resonance frequency 
curve shifts to the low frequencies due to the electrostatic 
negative stiffness (Fig. 3.15).

Figure 3.15 shows three linear resonance peaks obtained 
for Vac = 150 mV and DC voltages going from 1 V up to 3 V. The 
analytical resonance frequency is around 21 MHz, while the 
measured one is around 19 MHz. This can be due to many factors 
such as silicon residual stress, size effect on Young’s modulus 
as well as micro and nanofabrication tolerances. The measured 
quality factor of the first linear curve (Vdc = 1 V) is around 5000. 
Remarkably, increasing the DC voltage did not degrade the 
quality factor. In fact, in these devices, since the detection is 
piezoresistive, there is no correlation between the electrical 
resistance of the device and the measured quality factor. The 
expected dissipation from this mechanism (ohmic losses) is thus 
negligible. The last resonance curve of Fig. 3.15 (in red) is close to 
the critical amplitude that has been analytically computed using 
the developed model (Eq. (3.77) for a softening behavior), which 
results in Ac ≈ 90 nm.

Then, in order to reach the nonlinear regime, the cantilever 
has been actuated using high DC voltages. Moreover, the frequency 
response has been tracked experimentally using a lock-in 
amplifier in frequency sweep-up and -down in order to obtain 
a full characterization of the resonator bifurcation topology. No 
extramechanism loss has been observed due to the nonlinear 
dynamics of the cantilever and therefore the same quality factor 
has been conserved (Q = 5000). Figure 3.16 shows two nonlinear 
resonance peaks: 
 • The first resonance curve (in dashed line) was obtained for 

Vac = 150 mV and Vdc = 5 V. It displays a softening behavior 
characterized by a jump-up frequency at the bifurcation 
point B2 and a jump-down frequency at the bifurcation 
point B3 for which the cantilever oscillation amplitude is 
around 75% of the gap (150 nm).

 • The second resonance curve was obtained for Vac = 75 mV 
and Vdc = 8 V. Remarkably, in frequency sweep down, two 
jumps have been observed: a jump-up at the bifurcation 
point B1 and a jump down at the highest bifurcation point in 
the softening domain B3 for which the cantilever oscillation 
amplitude is around 150 nm. This characterizes a particular 
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mixed hardening-softening behavior (Kacem and Hentz, 
2009), which is not the logical expected result since the 
increase in the DC voltage, amplifies the nonlinear negative 
stiffness due to the electrostatic forces. Combined with an 
oscillation amplitude below the first softening curve, this 
should ensure negligible mechanical nonlinearities with 
respect to the electrostatic nonlinearities. Hence, the dynamic 
behavior should be purely softening.

  Nevertheless, in frequency sweep up, only a jump-up has been 
identified at the bifurcation point B2. Then, the resonance 
response follows a softening branch. In this configuration, 
the nonlinear dynamic behavior of the cantilever is complex 
(between a softening and a mixed behavior) which leads to a 
sensitivity to the initial conditions. 

Figure 3.16 Nonlinear resonance frequency responses measured using 
an  down-mixing technique and showing the location of 
the different bifurcation points {B1, B2 and B3}. Wmax is the 
cantilever displacement at its free end normalized by the gap. 

3.4.7.2 Optimal DC voltage

For this piezoresistive resonant NEMS, the quality factor Q is 
constant with respect to the DC and AC voltages. Then, using 
Eqs. (3.76) and (3.77), the optimal DC drive voltage is
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The computed DC voltage that permits the hysteresis 
suppression is then computed using Eq. (3.80) resulting in 
VdcOP = 1 V. Hence, a high AC voltage is needed in order to validate 
the nonlinearity cancellation. In practice and as shown in Fig. 3.15, 
the AC voltage should be higher than 0.5 V which makes the 
assumption of neglected second harmonic terms invalid and the 
used model must be corrected by including additional linear 
and nonlinear terms. 

Nevertheless, one can use a 2 configuration which enables 
the third order nonlinearity cancellation under primary resonance 
combined with a dynamic stabilization due to the superharmonic 
resonance (Kacem et al., 2011a).

3.4.7.3 2 Down-mixing technique

In order to actuate the cantilever at its primary and super harmonic 
resonances simultaneously, a 2 down-mixing technique has been 
used enabling a read-out of the resistance variation at a lower 
frequency  (a schematic of the setup is shown in Fig. 3.17). 

Figure 3.17 Test-bench for motion detection of piezoresistive resonant 
NEMS based on a 2 down-mixing technique. PS, LPF are 
power splitter and phase shifter, respectively.

Several measurements were performed on the device for a fixed 
bias voltage (Vbias = 1.56 V peak-peak). The cantilever displacement 
depends on the applied electrostatic force which is proportional to 

2
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 =  +  cos
2 2

F C V V t
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Figure 3.18 shows two linear peaks obtained using a 2 
down-mixing technique for Vac = 2 V. The measured quality factor 
is about 5000, which confirms the independence of Q on the DC 
and AC voltages. When, the DC voltage is increased from 0.2 V up 
to 0.3 V, the variation of the negative stiffness is negligible and 
consequently, no remarkable frequency shift has been observed. 
Interestingly, the measured output signal of the second linear 
peak is close to 3 mV for a low DC voltage, which was not reachable 
linearly for the  down-mixing configuration. 

Figure 3.18 Linear resonance frequency responses measured using a 
2 down-mixing technique. The effect of the DC voltage on 
the resonance frequency is negligible. Wmax is the cantilever 
displacement at its free end normalized by the gap.

Since the superharmonic resonance has no effect on the 
bistability limit of the resonator (Kacem et al., 2012), the 
mechanical critical amplitude of a cantilever under simultaneous 
resonance is then Acm = 6.3  l ____ 

 √
__

 Q  
   . However, in the electrostatic critical 

amplitude, one must add the contribution of the AC voltage in 
the nonlinear electrostatic stiffness, which changes substantially 
the close form solution of the optimal drive DC voltage. The 
latter has been estimated using the model for Vac = 2 V resulting in 
Vdc = 0.5 V.

The resonance peak of Fig. 3.19 displays a slightly softening 
behavior close to the critical amplitude. The measured peak has 
been obtained using a 2 down-mixing configuration for Vac = 2 V 

Nanocantilever Based on Piezoresistive Detection
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and Vdc = 0.5 V. Analytically, for this set of parameters the nonlinear 
electrostatic and mechanical stiffness’s are balanced and the 
oscillation amplitude of the cantilever is close to 200 nm at its free 
end. Indeed, the maximum of induced stress into the piezoresistive 
gauges is reached, as the free end of cantilever touched the 
electrode without a damageable pull-in for which the cantilever 
becomes unstable and collapses. In order to verify that the 
pull-in amplitude has been reached, the DC voltage has been 
increased successively from 0.5 V up to 2 V. Consequently, the 
cantilever nonlinearity becomes potentially softening which 
should increase the oscillation amplitude of the NEMS sensor. 

Figure 3.19 Slightly softening resonance frequency response measured 
using a 2 down-mixing technique at the optimal DC voltage. 
The peak is close to the critical amplitude. Wmax is the 
cantilever displacement at its free end normalized by the gap.

Figure 3.20 shows a softening resonance curve obtained for 
Vdc = 2 V. The increase of the electrostatic softening nonlinear 
stiffness is displayed clearly by the distance between the two 
bifurcation points (softening domain) significantly enlarged in 
comparison with the frequency response in Fig. 3.18. Remarkably, 
the output signal at the peak is around 5.4 V which is the 
same value of Vout at Vdc = 0.5 V. Moreover, the slope of the 
softening branch between the two bifurcation points is close to 
zero, which confirms that the pull-in amplitude is reached giving 
the maximum of stress variation into the piezoresistive gauges. 
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Figure 3.20 Softening frequency response measured using a 2 down-
mixing technique at Vdc = 2 V. The maximal stress on the 
piezoresistive gauges is reached for the pull-in amplitude. 
Wmax is the cantilever displacement at its free end normalized 
by the gap.

3.4.8 Mass Resolution Enhancement 

NEMS are usually embedded in a phase locked loop (PLL) or a self-
excited loop in order to monitor time evolution of their resonant 
frequency. The frequency stability of the overall system (e.g., 
of the NEMS and the supporting electronics) is characterized by 
the Allan deviation, defined as (Mo Li and Roukes, 2007) 
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where i is the average angular frequency in the ith 
time interval, 

N is the number of independent frequency measurements, 
which is assumed to be a sufficiently large number. The mass 
resolution dm is then 0

eff
0

2M
d
  for 1 second integration time. 

At the linear regime and for a cantilever oscillation amplitude 
around 65 nm, the dynamic range (DR) experimentally measured 
was about 100 dB (Mile et al., 2010). This would lead to a 

theoretical ultimate Allan deviation 
DR
20–

0

0 th

10
=

2Q

d


 of around 10

−9 

(Ekinci et al., 2004). For an effective mass of 200 fg and a Q-
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factor of 6500, this would result in a potential mass resolution of 
DR
20–eff= 10 0.3 zg

M
m Qd   at room temperature and at relatively low 

frequency (20 MHz).
Using the drive conditions of Fig. 3.19, at an extremely 

enhanced critical amplitude of the gap order, the mass sensor 
dynamic range can be potentially enhanced to reach the level of 
110 dB. Consequently, a resolution around 100 Da (0.1 zg) is 
achievable. However, to reach this performance, the temperature 
fluctuation should be controlled at least below 10–2 

K (Giessibl, 
2003). Actually, the experimental Allan deviation leads to a mass 
resolution of approximately 105 zg at room temperature (Mile 
et al., 2010).

Figure 3.21 The next generation of NEMS resonant mass/gas sensor 
currently in fabrication in the clean rooms of LETI. 

Once the noise contributions from the actuation voltage and 
the thermal bath issue are solved at low temperature, the ultimate 
resolution is then 100 Da. At this level, the cantilever probably 
touches the electrode as explained in Fig. 3.20. Consequently, no 
further optimizations are possible and one should think about 
a next generation of the studied device where the gap is quite 
larger than 200 nm. Nevertheless, the more we enlarge the gap, 
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the more the applied drive voltage must be significantly increased 
to achieve very high oscillations. Practically, one of the best 
solutions for the next generation of the NEMS resonant mass 
sensor consists in moving the actuation electrode closer to the 
piezoresistive gauges so that the free end of the cantilever is 
allowed to oscillate at amplitudes larger than the gap g. As shown in 
Fig. 3.21, the cantilever can potentially undergo oscillations of 
the order   H2 ___ H1

   g at its free end. Combined with the use of an advanced 
top-down nanowire fabrication techniques (Ernst et al., 2008) with 
expected giant gauge factors, as well as a possible nonlinearity 
cancellation, this may greatly decrease the resolution down to one 
single Dalton.

3.5 Conclusions

In this chapter, the development of an analytical model and its 
validation to quantitatively assess the nonlinear dynamics of nano-
cantilever have been presented. This model includes the main 
sources of nonlinearities (mechanical and electrostatic) and is 
based on the modal decomposition using the Galerkin procedure 
combined with a perturbation technique (the averaging method).

As a first step, the experimental validation of the model has 
been performed on NEMS cantilevers fabricated using wafer- 
scale nanostencil lithography (nSL) enabling the definition of 
very low critical dimension devices. These cantilevers were 
monolithically integrated with CMOS circuits, which made possible 
the electrical characterization of their frequency responses. The 
NEMS devices have been driven in different conditions (in air and 
in vacuum). All parameters of the model, except the quality factor 
and the parasitic capacitance, are set prior to the comparison, 
which shows an excellent agreement in resonance frequency, 
peak shape and amplitude. Hence, it proves the efficiency of the 
model as a predictive tool.

The effects of some design parameters on the nonlinear 
behavior of nanocantilevers have been analytically investigated 
and close-form solutions of the critical amplitude under dominating 
mechanical nonlinearities and electrostatic nonlinearities, 
respectively, have been provided which demonstrates the large 
dynamic range of NEMS cantilevers compared to doubly clamped 

Conclusions
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nanobeams. The mechanical critical amplitude of a cantilever is 
then Acm = 6.3  l ____ 

 √
__

 Q  
    (Kacem et al., 2010). More specifically, the 

analytical expression of the optimal DC drive voltage has been 
extracted which is an interesting tool for resonant sensors 
designers. Theoretically, it allows for the cancellation of the 
nonlinearities in order to drive the NEMS cantilever linearly beyond 
its critical amplitude. Consequently, this may be a great gain in 
sensors’ sensitivity, as the resonator’s carrier power is largely 
increased while keeping a linear behavior; this may prevent most 
of noise mixing (Kaajakari et al., 2005a). 

In a second step the model has been validated on a high 
frequency NEMS device electrostatically actuated based on 
piezoresistive detection (160 nm thick) fabricated using a hybrid 
e-beam/DUV lithography technique. The nanomechanical sensor 
has been characterized using a down-mixing technique. The  
configuration is first used in order to easily reach the nonlinear 
regime. Then, the optimal DC voltage being very low, a 2 down-
mixing configuration has been used in order to enable the 
compensation of the nonlinearities as predicted using the model.

The experimental results show an excellent agreement with 
the predicted dynamic behaviors. Particularly, the compensation of 
the nonlinearities has been validated for cantilever displacements 
up to the gap. Consequently and in a stable linear fashion, the 
optimal stress variation into the piezoresistive gauges has been 
reached using the 2 down-mixing technique. Moreover, in this 
configuration the mixed behavior has not been observed up to 
the pull-in amplitude due to the effect of the superharmonic 
resonance in retarding and suppressing undesirable behaviors. 
An impressive ultimate resolution about 100 Da is achievable at 
low temperature and linearly at an oscillation amplitude comparable 
to the gap for which the maximum of strain collected by the 
piezoresistive gauges is reached. In order to overcome the gap 
limitation for the cantilever oscillations, the next generation of the 
studied device involves an actuation electrode shifted to the gauges 
side.

Very Large Scale Integration (VLSI) of such devices (Fig. 3.21) 
will potentially enable a wide range of new sensors, such as 
massive arrays of oscillating NEMS and sensitive multigas sensors. 
Indeed, the analytical rules provided in this chapter are applicable 
for resonant chemical and biological nanosensors in order to 



127

ensure the optimal mass resolution. Hence, these nonlinear analyses 
could be very interesting for many nanotechnology challenges 
such as sub-single-atom resolution in NEMS mass spectrometry 
(Boisen, 2009).
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