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Abstract—Underwater wireless sensor networks (UWSNs) have
recently been proposed as a way to observe and explore aquatic
environments. Sensors in such networks are used to perform
pollution monitoring, disaster prevention or assisted navigation
and to send monitored data to the sink. Compared to traditional
sensor networks, sensors in UWSNs consume more energy due
to the acoustic technology used in under water communications.
Node clustering is a common method to organize data traffic and
reduce in-network communications while improving scalability
and energy consumption. In this paper, we present a new
clustering method to handle the spatial similarity between node
readings. We suppose that readings are sent periodically from
sensor nodes to their appropriate cluster-heads (CHs). Then a
two tier data aggregation technique is proposed. At the first level,
each node periodically cleans its readings in order to eliminate
redundancies before sending its data set to its CH. Once the CH
receives all data sets, it applies an enhanced K-means algorithm
based on a one-way ANOVA model to identify nodes generating
identical data sets and to aggregate these sets before sending them
to the sink. Our proposed approach is validated via experiments
on real sensor data and comparison with other existing clustering
and data aggregation techniques.

Index Terms—Underwater Wireless Sensor Network (UWSN),
data aggregation, one-way ANOVA model, hierarchical k-means
clustering.

I. INTRODUCTION

UNDERWATER wireless sensor network (UWSN) is a
special kind of wireless sensor network, which is com-

posed of underwater acoustic sensor nodes. UWSNs are
deployed in an underwater or aquatic environment and are
capable of monitoring nearby surroundings. They represent the
solution for many different applications such as real-time war-
ship monitoring, locating mooring positions and submerged
wrecks, oceanographic data collection, disaster prevention,
etc [1], [2]. Underwater sensor nodes are small devices with
constrained energy and little memory [3]. Moreover, these
nodes use acoustic signals that can travel to longer distance
than radio waves due to lower frequency [4]–[6]. Hence, unlike
traditional sensor networks, sensors in UWSNs consume more
energy due to the acoustic technology used in under water
communications. In addition, they are costly and difficult to
replace. Therefore, there are increasing demands for innovative
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methods to improve energy efficiency and to prolong the
network lifetime. The node clustering and the data aggregation
at the level of cluster heads (CHs) are two common methods
to organize data traffic and reduce in-network redundancies
while improving scalability and energy consumption. Indeed,
nodes clustering makes a network look smaller and extends
its lifetime by reducing data transmissions between the nodes
and the sink [7]; while data aggregation is considered to be the
best way to minimize the energy consumption by eliminating
redundant data received from sensor nodes, and to reduce the
number of transmissions to the sink. Thus, combining the
two techniques will lead to the enhancement of the network
performances.

Subsequently, many clustering protocols have been pro-
posed in UASN [6]. However, few protocols consider sensor
readings similarity and the correclation between received data.
Thus, the lack of suitable energy efficient protocols for han-
dling such correlations leads us to study a data aggregation
and clustering protocol that creates clusters of nodes with
identical readings. In underwater applications the sensor nodes
are usually deployed over large areas with the purpose of
periodically sensing nearby surroundings and transmitting data
to a sink or base station. In our approach, we consider that
each cluster is formed by a cluster head and several member
nodes. The role of a cluster head is to collect data from its
node members, aggregating these data before sending them to
the sink. Therefore, sensor nodes send their readings to the
CH that performs data aggregation in a periodic manner. In
this paper, we propose a two-tier data aggregation technique
to preserve energy in a UWSN. On the one hand, the first tier
is at the sensor node level, where each node is responsible for
cleaning and eliminating redundancies from the data collected
by the node at each period. We provide a simple algorithm
based on a distance function called link between sensor’s
readings. On the other hand, the second tier is applied at the
CH level where a data aggregation and clustering technique
is proposed. After receiving all data sets from the member
nodes, each CH applies a k-means based clustering method
to classify these sets by identical data sets with the aim to
eliminate redundancies and reduce the huge amount of data.
For this purpose, we propose an enhanced k-means clustering
method using the one-way ANOVA model and three different
statistical tests in order to identify neighboring nodes gener-
ating identical data sets. Finally, we study the performance
of our proposed technique while using real underwater sensor
readings. We show via simulations the effectiveness of using
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data similarity and the analysis of variance to reduce the
packets size, to minimize data redundancy, and to decrease
the energy consumption of the network.

The rest of the paper is organized as follows: related works
are discussed in Section II. Section III describes the cluster-
based architecture used in our technique, the scenario and
some definitions.The ANOVA model and statistical tests are
described in Section IV. Section V presents the aggregation
phase at the CH, based on K-means algorithm adapted to
ANOVA model. Experimental results are presented in Sec-
tion VI. Finally, Section VII concludes our paper and gives
some perspectives.

II. RELATED WORK

In UASN, a lot of researches have been proposed for data
aggregation based on clustering scheme aiming at minimizing
energy consumption and extending the network lifetime. The
idea behind this approach is to avoid multihop communications
and to build an aggregate path over the network. The authors
in [12] present a review of various data aggregation tech-
niques and clustering schemes proposed recently by different
researches in underwater sensor networks. In [13], the authors
propose a data aggregation technique based on clustering
which involves four phases. The main goal of these phases
includes reducing the energy consumed by the overall network,
increasing the throughput, and minimizing data redundancy
while still guarantying data accuracy. The authors in [14]
propose to design a fuzzy based clustering and aggregation
technique for UWSN. In this technique the parameters residual
energy, distance to sink, node density, load and link quality
are considered as input to the fuzzy logic. Based on the output
of fuzzy logic module, appropriate cluster heads are elected
and act as aggregator nodes. The authors in [15] propose
EBDSC, a distributed Energy-Balanced Dominating Set-based
Clustering scheme, to prolong the network lifetime by balanc-
ing energy consumption among different nodes. In EBDSC,
a node becomes a candidate cluster head if it has the longest
lifetime among its neighbors. In [16], the authors develop an
architecture which can be used to build different networks
with different routing protocols. One of the main advantages
of that architecture is that if all CHs switch off at the same
time, the system is able to continue working. In [17], the
authors propose a Cluster-based False data Filtering Scheme
(CFFS) that can detect and filter out false reports travel in the
network before leading to a waste of energy of this network. In
[18], the authors try to capitalize the delay-tolerance of various
applications with the aim of reducing the energy consumption.
The proposed approach relies on Adaptive Modulation and
Coding (AMC) to dynamically change the modulation and
coding scheme. In [19], the authors propose RTOC (Real-
Time Opportunistic Coding), a new XOR-based opportunistic
network coding architecture for real-time data transmission.
RTOC is an application-independent architecture that takes
into consideration the characteristics of real-time traffic and
provides an efficient framework to optimize multimedia appli-
cation requirements such as bandwidth, delay and loss.

In other studies, [20]–[22], the authors suggest using sim-
ilarity functions for data aggregation in cluster-based peri-

odic sensor networks. The main objective is to eliminate
redundancy and reduce the size of data transmitted in order
to optimize the energy consumption and to reduce overload
on the network level. The first level at sensor nodes, called
local aggregation, with which each sensor node sends, at each
period p, its aggregated set of data to the aggregator. At the
second level, a prefix frequency filtering (PFF) technique is
provided to identify all pairs of neighbor nodes generating
similar sets of data [20]. Then several optimizations of the
PFF technique [21] have been proposed in order to avoid
comparing all received sets thus minimizing data latency.
In [22] the authors use Euclidean distance and cosine distance
at the aggregator level to build an efficient underwater network
by reducing packet size and by minimizing data redundancy.
Although all similarity functions allow eliminating redundancy
among data, it remains a difficult technique for the aggregator
in terms of data latency, due to the comparison of each pair of
sets, and the energy consumption. In this paper, we propose a
data aggregation and clustering technique in order to eliminate
further redundancies, to enhance data latency and to optimize
the energy consumption of the whole network.

III. CLUSTER-BASED ARCHITECTURE FOR UASN

In this paper, we consider a 2-D UASN with cluster-based
architecture for the network. As mentioned before, clustering
is considered to be an efficient topology control method which
can increase network scalability and lifetime. In clustering
schemes, the network is divided into a number of clusters
based on certain rules where each cluster has a Cluster-
Head (CH). CH is responsible for managing the cluster. Data
transmission between sensor nodes and their appropriate CHs
is based on a single-hop communication. In our work, we
consider the periodic data collection model, where each sensor
node periodically sends (within a period p) its data to the
appropriate CH which, in turn, sends it to the sink (Fig. 1).
Then, we propose a two-tier data aggregation technique aiming
at reducing the redundancy among data transmitted over the
network thus extending network lifetime. The sensor nodes
form the first tier while the CH represents the second one. Our
proposed technique efficiently reduces the amount of data sent
to the sink while a minimum percentage of received data is
guaranteed.

A. Scenario and definitions

In PUASN, a period pj is divided into time slots sjT where
T is the total number of slots in the period pj . Each sensor
node n takes a new measure mji at each slot sji, where i ∈
[1,T ], then it forms a vector of measures during the period
pj as follows: Mn = [mj1,mj2, . . . , mjT ]. Fig. 2 shows
an example of PUASN where each sensor node takes five
measures (e.g. T =5), at each period pj (j ∈ [1,3]) and sends
its set of collected data M = [mj1,mj2,mj3,mj4,mj5] to
the CH at the end of the period.

Usually the collected measures are highly dependent on
the monitored condition. Subsequently, the dynamic of the
monitored conditions can slow down or speed up [23]. Hence,
the nodes may take the same or very similar measures several
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Fig. 1. Cluster-based network architecture for 2-D UASN.
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Fig. 2. Illustrative example of periodic UASN (PUASN).

times, especially when slots are short. In order to eliminate
redundant values from the set Mn, the node n searches for data
similarity in the set. Thus, to identify the similarities between
two measures, we define the two following functions:

Definition 1 (Similar function): We define the Similar
function between two measurements captured by the same
sensor node n as:

Similar(mi,mj) =

{
1 if ‖mi,mj‖ ≤ δ,
0 otherwise.

where mi and mj ∈ Mn and δ is a threshold determined
by the application. Furthermore, two measures are similar if
and only if their Similar function is equal to 1.

Definition 2 (Measure’s weight, wgt(mi)): The weight of a
measurement mi is defined as the frequence of the similar or
the same measurements (according to the Similar function)
in the same set.

For each new captured measurement (at each time slot),
a sensor node n searches for similarities of the new taken
measurement. If a similar measurement is found, it deletes
the new one and increments the corresponding weight by 1,
or else it adds the new measure to the set and initializes its
weight to 1. This leading to the following definitions:

Definition 3 (Cardinality of the set Mn, |Mn|): The cardi-
nality of the set Mn is equal to the number of elements in
Mn.

Definition 4 (Weighted Cardinality of the set Mn,
Cardw(Mn)): The weighted cardinality of the set Mn is
equal to the sum of all measures’ weights in Mn as follow:
Cardw(Mn) =

∑|Mn|
k=1 wgt(mk), where mk ∈Mn.

For the sake of simplicity, in this paper we consider that
all sensor nodes operate at the same sampling rate and each
node captures T measures in each period1. Thus we can
deduce that for every received set Mn from node n we have:
Cardw(Mn) = T .

Then, at the end of each period, each member node n
will possess a set of reduced measures associated to their
corresponding weights. The second step is to send it to the
appropriate CH which in its turn aggregates the data sets
coming from different member nodes.

IV. VARIANCE STUDY

Studying the variance between measurements in the data
sets is an effective way to find nodes that generate redundant
data. The ANOVA model provides a statistical tests of whether
or not the means of several sets are equal. In the typical
application of ANOVA, the null hypothesis (H0) supposes that
the variance between sets is not significant. Consequently, the
test result (R) of the ANOVA is the ratio of the computed
variance based on the measurements in the sets. R can be
calculated in different manners depending on the statistic tests
(presented in the next section) proposed in the ANOVA model.
The sets are considered duplicated if the result R is less
than a threshold T (significance level) for some desired false-
rejection probability (risk α).

At each period, we suppose that the CH receives n sets
from its sensor nodes, each set contains T measures. Also, we
assume that measures in each set Mj are independent, with
mean Yj and that the variances of sets are equal σ2

n = σ2.
Then the measure’s variables can be written as follows:

mji = Yj + εji; j = 1, . . . , n; i = 1, . . . , |Mj |

Where εji are the residuals which are independent and are
normally distributed following N(0, σ2).

For each set Mj , we denote by Yj its mean, σ2
j its variance

and Y the mean of all the n sets respectively as follows:

Yj =
1

Cardw(Mj)

|Mj |∑
k=1

(
mjk × wgt(mjk)

)
,

σ2
j =

1

Cardw(Mj)

|Mj |∑
k=1

(
wgt(mjk)× (mjk − Yj)2

)
,

Y =

n∑
j=1

|Mj |∑
k=1

( 1

Cardw(Mj)
×
(
mjk × wgt(mjk)

))
where mjk ∈Mj .

Since Cardw(M1)=. . .=Cardw(Mj)=. . .=Cardw(Mn)=T :

Yj =
1

T

|Mj |∑
k=1

(
mjk × wgt(mjk)

)
,

1Note that it is possible to take different T for sensors.
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σ2
j =

1

T

|Mj |∑
k=1

(
wgt(mjk)× (mjk − Yj)2

)
,

Y =
1

T

n∑
j=1

|Mj |∑
k=1

(
mjk × wgt(mjk)

)
where mjk ∈Mj .

The total variation is the sum of the variation (SR) within
each set and the variation (SF) between the sets. The basic
idea is to calculate the mean of the measurements within
each set, then to compare the variance among these means
with the average variance within each set. Under the null
hypothesis that the measurements in the different sets all have
the same mean, the weighted among-sets variance will be the
same as the within-sets variance. As the means get further
apart, the variance among the means increases. The statistical
test is thus the ratio of the variance among means divided
by the average variance within sets, or Fs. This statistical
test has a known distribution under the null hypothesis, so
the probability of obtaining the observed Fs under the null
hypothesis can be calculated.

A. Statistical Tests

In this section, we use three tests in the ANOVA model
(Fisher, Tukey and Bartlett), to compute the means and the
variances for a group of sets, then to decide if the sets in this
group are redundant or not.

1) Fisher Test/F -test: The result of the F -test is calculated
by the following formula:

R =
SF/(n− 1)

SR/(n× (T − 1))

=

(
T ×

∑n
j=1(Yj − Y )2

)
/(n− 1)(∑n

j=1

∑|Mj |
k=1 (wgt(mjk)× (mjk − Yj)2)

)
/(n× (T − 1))

(1)

At the end of each period, the CH receives n sets from
its sensor nodes and it will test the hypothesis that all the
means of sets are the same or not. If the hypothesis is correct
then, R will have a Fisher distribution, with F (n − 1, n ×
(T − 1)) degrees of freedom. The hypothesis is rejected if
the R calculated from the measures is greater than the critical
value of the F distribution for some desired false-rejection
probability (risk α). Let T = F1−α(n− 1, n× (T − 1)). The
decision is based on R and T :

• if R > T then the hypothesis is rejected with false-
rejection probability α, and the variance between sets are
significant.

• if R ≤ T the hypothesis is accepted.

2) Tukey Test:
Tukey’s test [24] can be applied to n data sets based on the

following equations:

SStotal =

n∑
j=1

|Mj |∑
k=1

(
wgt(mjk)×m2

jk

)
−

(∑n
j=1

∑|Mj |
k=1

(
wgt(mjk)×mjk

))2
n× T

(2)

SSamong =

∑n
j=1

(∑|Mj |
k=1

(
wgt(mjk)×mjk

)2)
T

−(∑n
j=1

∑|Mj |
k=1

(
wgt(mjk)×mjk

))2
n× T

(3)

SSwithin = SStotal − SSamong; dfamong = n− 1;

dfwithin = n× (T − 1); MSamong =
SSamong
dfamong

;

MSwithin =
SSwithin
dfwithin

; R =
MSamong
MSwithin

Where:
• n : Number of total sets,
• T : Number of measures in each set,
• SSwithin : Sum of squares within the n sets,
• SSamong : Sum of squares between the n sets,
• MSwithin : Mean squares within the n sets,
• SSamong : Sum of squares between the n sets.

Therefore, when we calculate the result of the Tukey,
e.g. R, we check to see if R is statistically significant on
the probability table with appropriate degrees of freedom
T = df(dfamong, dfwithin). The decision is based on R and
T :
• if R > T the hypothesis is rejected with false-rejection

probability α, and the variance between sets are signifi-
cant.

• if R ≤ T the hypothesis is accepted.

3) Bartlett Test: To investigate the significance of the dif-
ferences between the variances of n normally distributed sets,
let σ2

j denote the variance of the set Mj where j = 1, ..., n.
Bartlett Test [25] has the following expression:

R =
(T − 1)(n× ln(σ2

p)−
∑n
j=1 ln(σ

2
j ))

λ
(4)

where :

λ = 1 +
(n+ 1)

3× n× (T − 1)
(5)

and σ2
p is the pooled variance, which is a weighted average

of the period variances and it is defined as:

σ2
p =

1

n× (T − 1)
×

n∑
j=1

σ2
j
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Bartlett’s test has a (n − 1) degrees of freedom. Thus the
null hypothesis is rejected if R > Tn−1,α (where Tn−1,α is the
upper tail critical value for the Tn−1 distribution). We suppose
that T = Tn−1,α, thus the decision is based on the following
rule:
• if R > T the hypothesis is rejected with false-rejection

probability α, and the variance between the sets are
significant.

• if R ≤ T the hypothesis is accepted.

B. Variance Study based Algorithm

In our technique, the one-way ANOVA model is used to
identify if a set of data sets has a low variance between their
measures or not (Algorithm 1). The algorithm uses the set of
data sets which will be tested and returns a boolean value
indicating that the sets are redundant or not. First, it calculates
the corresponding R result as described in each test presented
before. Then, it searches the corresponding threshold T based
on the probability table for each test with the appropriate
degrees of freedom (line 2). Finally, it concludes that
the data sets are redundant only if the variance between
their measures (R) is less than the threshold T (lines 3 and 4).

Algorithm 1 Variance Study Algorithm.

Require: Set of measures’ sets M = {M1,M2...Mn}.
Ensure: Boolean value: true or false.

1: compute R for M
2: find T
3: if R ≤ T then
4: return true
5: else
6: return false
7: end if

V. AGGREGATION AT THE CH
The second phase of the aggregation is done at the CH

level where at the end of each period it receives the sets of
measurements with their weights from all its node members.
The main objective at this level is to identify neighboring
nodes that generate the same or very similar data sets in
order to reduce the amount of data to send to the sink.
Hence, depending on the changes of the monitored condition,
neighboring sensor nodes may collect duplicated data if they
are geographically too close or send the sensed data to the
CH over a short period of time. In this phase the CH uses an
updated k-means algorithm based on the data variance of the
received sets. It uses a one-way ANOVA model to determine
duplicated sets based on the variance study. In this section, we
describe our method based on this study and the k-means for
data aggregation.

A. K-means Clustering Algorithm

In this section we introduce a k-means based method
for clustering in UWSN. Clustering has been proved as an

effective way to find sensor nodes that generate redundant data
sets [26]. It allows data reduction and provides more accurate
field testing information and system status information by
sending only the useful information. The useful information
will be used at the sink to provide correct judgment and to
acquire more reasonable results. In addition, sending data will
consume more energy than its own consumption.

The main objective of our clustering method is to create
groups of data sets, or clusters, in such a way that data sets
in the same cluster are very similar and data sets in different
clusters are quite distinct. Among clustering algorithms, the
K-means clustering algorithm, proposed by MacQueen three
decades ago [27], is one of the best-known and most popular
clustering algorithms used in a variety of domains such as
scientific field research and industrial applications [28], [29].

It is relatively simple and is mainly based on the Euclidian
distances to form the clusters. Generally, procedure of K-
means algorithm starts with initial K cluster centroids, then
it assigns each data sets to the nearest centroid, updates the
cluster centroids, and repeats the process until the criterion
function converges (Algorithm 2). Commonly, the K-means
algorithm criterion function adopts square error criterion (E)
[30], where E is the total square error of all the data sets in
the cluster. The criterion function is to make the generated
cluster as compacted and independent as possible.

Algorithm 2 K-means Algorithm.

Require: Set of measures’ sets M = {M1,M2...Mn}, K.
Ensure: Set of clusters C = {C1, C2...CK}.

1: for i← 1 to K do
2: Ci ← ∅
3: randomly choose centroid ri among Mj belongs to Ci
4: end for
5: repeat
6: for each set Mj ∈M do
7: Assign Mj to the cluster Ci with nearest ri

(i.e., d(Mj , ri) ≤ d(Mj , ri∗); i ∈ {1, . . .K})
8: end for
9: for each cluster Ci, where i ∈ {1, . . .K} do

10: Update the centroid ri to be the centroid of all sets
currently in Ci, so that ri = 1

|Ci|
∑
j∈Ci

d(Mj , ri)
11: end for
12: until all K clusters meet the criterion function convergence
13: return C

The initial number of clusters (K) is the main challenge
of K-means. Therefore, several attempts such as [30]–[32]
have been made to solve the cluster initialization problem
by proposing either static or dynamic initialization. In the
first one, the K-means algorithm assumes that the number
of clusters K is already known by the users, which is not
true in practice. In the second one, the K-means initializes
the number of clusters to the total number of data sets then
it joins the clusters that are close, according to the criterion
function, to obtain at the end the optimal value of K. To
the best of our knowledge, we propose in this section a new
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initialization method to find dynamically the optimal number
of clusters. Compared to existing dynamic methods, our
proposed method assumes that all data sets are in the same
cluster at the beginning then it uses the dependence between
measurements in these sets based on the one-way ANOVA
model to obtain the optimal number K.

1) Definitions and Assumptions: Let N =
{N1, N2, . . . , Nn} denote the set of sensor nodes with
their data sets M = {M1,M2, . . . ,Mn} generated at each
period respectively. Let C = {C1, C2, . . . , CK} denote the
final clusters where the data sets will be assigned to them,
K ≤ n. We also assume that each cluster Ci has the centroid
ri. Therefore, we provide the following two definitions
that compute the Euclidean distance between the mean Yj ,
respectively the variance σ2

j , of the set Mj and the centroid
ri of the cluster Ci as follows:

Definition 5 (Mean distance, dm(Yj , ri)): The Euclidean
distance between the mean Yj of the set Mj and the cluster
centroid ri is defined as follows:

dm(Yj , ri) =

√
(Yj − ri)2. (6)

Definition 6 (Variance distance, dv(σ2
j , ri)): The Euclidean

distance between the variance σ2
j of the set Mj and the cluster

centroid ri is defined as follows:

dv(σ
2
j , ri) =

√
(σ2
j − ri)2. (7)

2) Adapted K-means Algorithm Description: When receiv-
ing all data sets from its member nodes at the end of each
period, the CH considers that all the data sets are in the
same cluster. Then, it begins dividing this cluster each time by
applying the adapted K-means algorithm until it obtains the
null hypothesis (Algorithm 3). In our approach, the criterion
function of the k-means algorithm is the result of the statistical
test studied before and based on the ANOVA model. Algorithm
3 describes the K-means adapted to UWSN. First, it starts, as
said before, by grouping all the received sets at the initial
same cluster (line 5). Then, it searches the variance between
measurements in all the sets in the initial cluster, using one
of the three tests described before (line 9). If the test’s result
indicates a low variance between the sets then, the algorithm
considers this cluster as a final cluster and it puts it in the list
of final clusters (lines 9, 10 and 11). Else, it divides the initial
cluster in K sub clusters by applying K-means algorithm (line
13).

To improve the performance of the K-means, we propose
two values for K: K1 = 2 or K2 = b

√
n/2c, to divide

dynamically each time a cluster to K sub clusters. The first
value is a logic value that divides a cluster containing sets
with high variance among them into two sub clusters, while
the second value is defined in the rule of thumb [33]. This
procedure of dividing clusters iterates until all sub clusters
converge to the low variance between their sets (Fig. 3).

Algorithm 3 K-means Adapted to Variance Study.

Require: Set of measures’ sets M = {M1,M2...Mn}, K.
Ensure: Set of clusters C = {C1, C2...CK}.

1: C ← ∅ // list of all final clusters
2: Q← ∅ // a temporary list of clusters
3: C1 ← ∅
4: for each set Mj ∈M do
5: C1 ← C1 ∪ {Mj}
6: end for
7: Q← Q ∪ {C1}
8: repeat
9: if Variance Study(Ci) is true then

10: C ← C ∪ {Ci}
11: remove Ci from Q
12: else
13: Q← Q∪ K-means(Ci,K)
14: end if
15: until no cluster Ci ∈ Q
16: return C

C1:30

C2:20 C3:10

C4:15 C5:5 C6:6 C7:4

C8:7 C9:8

C10:5 C11:3

K-means

K-means

K-means

K-means

K-means

(a) K = K1 = 2

K-means

K-means

C1:30

C2:20 C3:6

C5:7 C6:8

C8:5 C9:3

C4:4

C7:5

K-means

Intermediate cluster

Final cluster

(#:#) : (cluster number : number of sets)

(b) K = K2 = b
√
n/2c

Fig. 3. Searching clusters using improved K-means.

Subsequently, we propose a different manner for each test
to calculate the Euclidean distance between the centroids
of clusters and a set (e.g. d(Mj , ri) in Algorithm 2). Since
Fisher and Tukey tests are based on the measures inside the
sets and the means of the sets when calculating the result R
(Equations 1, 2 and 3), we propose to calculate the Euclidean
distance between the mean of a set and the centroids of
clusters when assigning this set to the nearest centroid in the
K-means algorithm. In other word, K-means computes first
the means of all sets then it selects randomly K means of
sets to be the initial centroids of clusters and it begins to
assign each set to the nearest centroid based on dm(Yj , ri)
in definition 5. On the other hand, the Euclidean distance
between the variance of a set and the centroids, i.e. dv(Yj , ri)
in definition 6, is calculated when using the Bartlett test since
its result is based on the variance of sets (Equations 4 and 5).

B. Redundancy Deleting at the CH

After having identified the final clusters that contain
redundant data sets, the CH deletes redundancy from each
cluster in order to reduce the amount of data transmitted to
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the sink. Algorithm 4 shows how the CH selects the data
sets to be sent to the sink among redundant sets in each
cluster. Instead of sending all the data sets in each cluster, the
CH decides to send only one useful information to the sink
which corresponds to the data set with the highest number of
measures.

Algorithm 4 Selecting Sets Algorithm.

Require: Set of clusters C = {C1, C2, . . . , CK}.
Ensure: List of selected sets, L.

1: L← ∅
2: for each cluster Ci ∈ C do
3: consider the set Mj has the longest cardinality in Ci,

(i.e., |Mj | > |Mj∗|; where Mj∗ ∈ Ci)
4: L← L ∪ {Mj}
5: end for
6: return L

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
technique, at both sensor node and CH levels. We show via
simulation on real data the efficiency of our approach in
saving energy and reducing the huge amount of data thus
extending the network lifetime of real UASNs. We used real
data collected from the Argo project [34]. Argo deployed more
than 3000 sensors distributed over the global oceans which
collect salinity and temperature measurements from the upper
2000m of depth. In this paper, we are interested in 240 sensors
deployed in the Indian ocean over an area of 5000× 5000m2.
Then, these nodes are classified into three clusters of N1 =
40, N2 = 80 and N3 = 120 sensors respectively. Each
node reads periodically real measures while applying the first
aggregation phase. At the end of this step, each node sends
its set of measures with frequencies to their corresponding
CH which in his turn applies the CH aggregation phase.
For the sake of simplicity, in this paper we are interested in
one field of sensor measurements: the salinity2. Furthermore,
we compare our results to those obtained by applying the
Prefix Frequency Filtering (PFF) technique used for periodic
sensor networks [20]. We evaluated the performance using the
following parameters: a) δ, which defines the threshold for
Similar function between two measurements. We varied δ to :
0.01, 0.03 and 0.05. b) T , the number of sensor measurements
taken by each sensor node during a period. We varied T to:
200, 500 and 1000. c) α, the false-rejection probability in the
ANOVA model which we varied to 0.01 and 0.05. and d) K,
number of sub clusters resulting from K-means wich takes two
values K1 = 2 and K2 =

√
n/2.

A. Data aggregation ratio at the sensor node

Due to the ”Similar” function, each sensor node has
the ability to reduce the amount of data collected at each
period by eliminating redundancy from them. Fig. 4 shows
the percentage of remaining data which will be sent to the

2the other is done by the same manner.

CH without and with applying the local aggregation phase at
the nodes level. The obtained results show that each sensor
node will send in the worst case scenario, e.g. δ = 0.01 and
T =200, 24% of its collected data to the CH after applying the
aggregation phase comparing to 100% of its collected data
without applying it. These results are very interesting in terms
of eliminating redundancy from data sent by each sensor to
the CH. Subsequently, we can observe that the aggregation
phase eliminates more data redundancy when δ or T increases,
because Similar function will find more similar measures at
each period.
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Fig. 4. Percentage of aggregated measures at the sensor nodes.

B. Data aggregation ratio at the CH

In this section, we show how each CH is able to reduce
the redundancy among sets sent by its sensor nodes at each
period before sending them to the sink (Fig. 5). First, we
fixed in Fig. 5 (a, b and c) T and risk α and we varied the
number of sensor nodes (N ) for a CH to N1, N2 and N3

respectively. Then, we fixed N and α in Fig. 5 (d, b and e)
and we varied T to 200, 500 and 1000 respectively. After that,
we fixed N and T in Fig. 5 (b and f) and we varied α to 0.01
and 0.05 respectively. The obtained results show clearly that,
our technique allows CH to eliminate, when varying δ, more
redundant sets at each period comparing to the PFF technique.
This is because, the variance condition used in the ANOVA
model is more flexible, in terms of finding redundant sets,
comparing to the Jaccard similarity function used in PFF. We
can also observe that, CH can reduce 25 to 66% of data sets
sent to the sink comparing to the PFF, with different tests and
parameters used.

Several observations can be made based on the results in
Fig. 5:

• Bartlett test sends the less percentage of sets to the sink
comparing to Fisher and Tukey tests. This is because
Bartlett test is more flexible regarding the variance be-
tween measures (Equations 4 and 5) compared to the
variance calculated in Fisher (Equation 1) and Tukey
(Equations 2 and 3).

• CH eliminates more redundant sets when N increases
(subfigs. a, b and c). This is because, when a CH has
more sensor members, their data, collected over the given
area, will be more similar.
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(a) N = N1, T = 500, α = 0.01
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(b) N = N2, T = 500, α = 0.01
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(c) N = N3, T = 500, α = 0.01
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(d) N = N2, T = 200, α = 0.01
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(e) N = N2, T = 1000, α = 0.01
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(f) N = N2, T = 500, α = 0.05

Fig. 5. Percentage of sets sent to the sink.

• The percentage of sets sent to the sink for the three tests
is almost fixed when increasing δ in each subfigure. This
is because, the data set saves the same variance when
changing δ.

• CH eliminates more redundant sets in the three tests when
decreasing α (subfigs. b and f). This is because, when the
risk α increases the null hypothesis will a have higher
probability of being rejected.

C. Energy consumption study

In this section, our objective is to study the energy con-
sumption at the sensor nodes and CH levels. Therefore,
energy consumption in sensor networks is highly dependent
on amount of data sent and received. First, Fig. 6 shows the
energy consumption comparison with and without applying
the aggregation phase by each sensor node and when varying
T and δ. Since the aggregation phase reduces significantly
the redundancy among data collected by the sensor node (see
Fig. 4), it allows it to save proportionally its energy when
transmitting its data to the CH at each period. This truth is
clearly shown in Fig. 6 when the sensor node applies the
aggregation phase and when δ or T increases. It is important
to notice that our technique can conserve energy of a sensor
node up to 96%.
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(a) T = 200
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(b) T = 500
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(c) T = 1000

Fig. 6. Energy consumption at each sensor node.

On the other hand, Fig. 7 shows the energy consumption
comparison between the ANOVA model with the three tests
and the PFF technique at the CHs level. In Fig. 7 (a, b and
c), we fixed T and α and we varied N to N1, N2 and N3

respectively, while we fixed N and α in Fig. 7 (d, b and e)
and we varied T to 200, 500 and 1000 respectively. Then,
we fixed N and T in Fig. 7 (b and f) and we varied α to
0.01 and 0.05 respectively. The obtained results show that
our technique outperforms PFF for all values of thresholds
and it reduces up to 70% of the energy consumption when
compared to PFF. This result is logical since CHs eliminate
more sets when using the ANOVA model comparing to the
PFF technique (see Fig. 5).

Therefore, the above truth allows us to conclude some
observations shown in Fig. 7:
• Bartlett test decreases energy consumption of the CHs

more than the other tests.
• CHs conserve more energy comparing to PFF when N

increases (subfigs. a, b and c).
• The energy consumption at the CHs is more minimized

when α decreases (subfigs. b and f).

D. K-means study

In this section, we show first how many times each CH
will apply the K-means algorithm on the received sets at each
period, in order to obtain final clusters that contain redundant
sets. Then we will show the total number of iterations gen-
erated when applying K-means at each period. The obtained
results are dependent on the number of member nodes N of
a CH. They are also dependent on how many sub clusters
the CH divides each time an intermediate cluster that contains
sets with high variance, e.g. K1 or K2, and from the risk α
used in ANOVA model. We show, in this section, the obtained
results when T is fixed to 500 measures. First, Fig. 8 (a, b
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(a) N = N1, T = 500, α = 0.01
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(b) N = N2, T = 500, α = 0.01
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(c) N = N3, T = 500, α = 0.01
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(d) N = N2, T = 200, α = 0.01
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(e) N = N2, T = 1000, α = 0.01
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(f) N = N2, T = 500, α = 0.05

Fig. 7. Energy consumption at the CHs.

and c) shows the number of applying K-means by the CHs
at each period with the three ANOVA tests when fixing α
to 0.01 and varying K to K1 and K2. Contrarily, we fixed
in Fig. 8 (d) N and δ and we varied α to 0.01 and 0.05.
The obtained results show that the CH applies K-means few
times. Applying K-means in such a way is very effective since
it finds, dynamically, the optimal number of clusters without
any initialization at the beginning. Also, several observations
can be made based on the results of Fig. 8:

• Bartlett is the best test in terms of applying K-means.
It quickly finds the final clusters compared to applying
it with other tests because of its flexibility regarding the
variance between measures (see observations for Fig. 5).

• The number of applying K-means increases when N
increases (Fig. 8 (a or b or c)). Obviously, when a CH
has more member nodes it must apply more K-means to
find the final clusters.

• Dividing an intermediate cluster into K2 sub clusters
when applying K-means is a more flexible way to find
final clusters comparing to apply it with K1, for the same
value of α.

• CHs apply less number of K-means when α decreases.
This is because when α decreases the number of redun-
dant sets at each final cluster increases (see Fig. 5).
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(a) Fisher test, α = 0.01
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(b) Tukey test, α = 0.01
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(c) Bartlett test, α = 0.01
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Fig. 8. Number of applying K-means by the CHs at each period, T = 500.

Fig. 9 shows the total number of iterative loops when
each CH applies K-means at each period. This factor is
very important since it can prove, on the one hand, that the
procedure always terminates and on other hand it can affect
the latency of the aggregation phase at the CH. The number
of iterative loops in K-means is significantly related to the
initial selected cluster centroids which we tacked randomly in
our case. We varied the parameters similarly to Fig. 8 with
the three tests of ANOVA. The obtained results show the CH
needs a small number of loops at each period to apply K-
means, with the different used parameters. For instance, in
the worst case scenario, when N = N3 with K = K1 and
δ = 0.01 with α = 0.01 in Fisher test the CH needs 91 loops
to apply 24 times K-means (see Fig. 8 (a)) consequently in
each time it needs only 4 loops. Therefore, K-means algorithm
seems very suitable for the computation resources in the CH.
Therefore, similar observations to the results of Fig. 8 can
be made regarding the number of iterative loops in K-means
with the different values of parameters. This is because, the
number of loops is highly dependent on the number of applied
K-means and the random selection of the cluster centroids.

VII. CONCLUSION AND FUTURE WORK

Although the research on acoustic underwater sensor
networks has significantly advanced in the last decades, energy
consumption still remains the major challenge to be optimized.
We propose in this paper a two-tier data aggregation based
transmission-efficient technique for periodic UASN which
applies at each cluster separately in a clustering network.
The node member aims to eliminate redundancy from data
collected at each period at the first tier. Then, CH applies K-
means algorithm adopted to the one-way ANOVA model with
three statistics tests in order to eliminate redundancy from
members that generate redundant data sets. The experiment
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(a) Fisher test, α = 0.01
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(b) Tukey test, α = 0.01
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(c) Bartlett test, α = 0.01
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Fig. 9. Number of iterative loops in K-means at each period, T = 500.

results show that our technique has largely reduced the data
redundancy in the whole network and has also extended the
network lifetime.

As a future work, we plan to schedule the sensor nodes in
the network in a manner that nodes generating redundant data
will not be active at the same time. Thus, sensor nodes will
conserve more energy and network lifetime will be extended.
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