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Abstract—This work is motivated by the wish to have the most
precise measurement of a frequency ν and of the variance σ2

y

of its fractional fluctuations in a given time τ , out of high-end
general-purpose instruments.

Thanks to the progress of digital electronics, new time-interval
analyzers have been made available in the last few years. Such
instruments measure the time stamp of the input events at high
sampling speed (MS/s), and with high resolution (10–100 ps).

We propose the linear regression as a means to estimate the
frequency from time stamps of the input signal. The frequency
counter based on the linear regression is called Ω counter. The
linear regression is interpreted as a finite impulse response filter
which takes the frequency samples as the input, and delivers
the estimated frequency at the output. We derive the transfer
function of such filter, which turns out to be parabolic shaped.
As compared to the Π and Λ counters, the Ω counter features
better rejection of the background noise.

We define the quadratic variance (QVAR), a wavelet variance
similar to the Allan variance, and we derive its statistical
properties. The QVAR is superior to the AVAR and MVAR in
the rejection of the background noise.

I. THE Ω COUNTER

For our purposes, the time analyzer takes the input signal as
the ‘start,’ and the reference as the ‘stop,’ and also as the time
stamp. Let us assume that reference signal (stop) has frequency
1/τ0, that input signal (start) has the nominal frequency ν0,
and that ν0 is greater or equal than the sampling frequency
1/τ0. In this conditions, at each ‘stop’ event the instrument
measures the time interval tstop− tstart. The time tag associated
to the measure is tstop. Broadly speaking, this is equivalent to
the ‘Picket Fence’ scheme introduced by Greenhall [1], [2].

We define the phase time, denoted with x, as either tstop −
tstart or its fluctuation. Similarly, we define the fractional
frequency y either as ν/ν0 or its fluctuation (ν − ν0)/ν0. Of
course, the use of ‘value’ and ‘fluctuation’ must be consistent.

We introduce the Ω counter as a new type of frequency
counter that uses the linear regression on the time series {xk}
as the means to estimate the input frequency. Presently, the
Ω counter is a proposed implementation using time-tag time
interval counters. The game of the name Ω will be explained
later.

General purpose time-tag instruments have wide input band-
width (usually 0.2. . . 2 GHz, or more), thus the instrument
background is chiefly white noise, with negligible contribution

Figure 1. The linear regression estimator

of flicker and other coloured noise types. In this conditions,
the linear regression is an obvious choice as it gives the best
rejection of the background.

Let us denote with A = ν/ν0 either the fractional frequency
or its fluctuation, and with Ã its estimate. Using the linear
regression in the time interval τ = Nτ0 centered at t = 0, Ã
reads

Ã =
12

N3τ2
0

(N−1)/2∑
−(N−1)/2

k xk. (1)

Equation (1) gives the fractional frequency when we take x =
tstop−tstart; and its fluctuation when we take x as the fluctuation
or the background noise.

A. Phase-time filter interpretation

We rewrite Equation (1) as

Ã =
∑
k

hΩx(tk)xk, (2)

where

hΩx(t) =
12t

τ3
=

12t

N3τ3
0

(Fig. 1) (3)
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Figure 2. Weight function of the Π, Λ and Ω counters.

Equation (2) states that the linear regression can be inter-
preted as a filter applied to the phase-time data. Alternatively,
the linear regression can be seen as a weighted measure. This
alternate interpretation is made easy by the symmetry of hΩx.

B. Frequency filter interpretation

We rewrite Equation (1) as

Ã =
∑
k

hΩy(tk) yk (4)

where hΩy(t) is given by

hΩx(t) =
d

dt
hΩy(t), (5)

thus

hΩy(t) =
6

τ3

(
τ2

4
− t2

)
. (Fig. 2 C) (6)

Equations (4)–(6) rely on the property of the convolution
integral, that f ′ ∗ g = f ∗ g′.

As before, the linear regression can be interpreted as a filter.
However, the filter now processes the fractional frequency
{yk} associated to {xk}, and delivers the estimated frequency.
The impulse response of such filter is hΩy. Alternatively, the
linear regression is seen as a weighted measure applied to
{yk}. The relation between these two interpretations is made
easy by the symmetry of hΩy.

C. The game of the name

In a previous paper [3] we introduced terms ‘Π counter’ and
‘Λ counter’ for the instruments with rectangular and triangular
weight function, respectively. In the same way we use the
term ‘Ω counter’ for the linear-regression counter, because the
impulse response has parabolic shape, which is broadly similar
to the Greek letter Ω (Fig. 2 C).

II. COMPARISON OF THE Π, Λ AND Ω COUNTERS

We introduce two classical operators, the mathematical
expectation E{x}, and the mathematical expectation of the
variance V{x} = E{[x− E{x}]2} of a random variable x.

Figure 2 shows the weight functions of the Π counter, the Λ
counter, and the new Ω counter. We compare the performance

Table I
Π, Λ AND Ω COUNTERS IN THE PRESENCE OF WHITE PM NOISE

Π counter Λ counter Ω counter
Support τ Support 2τ Support τ

E{ÃΠ} = ν/ν0 E{ÃΛ} = ν/ν0 E{ÃΩ} = ν/ν0

unbiased estimate unbiased estimate unbiased estimate

V
{
ÃΠ

}
=

2σ2
x

τ2
V
{
ÃΛ

}
=

2τ0σ2
x

τ3
V
{
ÃΩ

}
=

12τ0σ2
x

τ3

of these counters in the presence of white PM noise with zero
mean and variance σ2

x . Basic statistics (details are omitted)
gives the results summarized in Table I.

The Π counter is clearly inferior to the other two because
the white PM noise is rejected as 1/τ2 instead of 1/τ3.
The Λ looks superior to the Ω counter only because the
measurement is allowed to take twice the time. If we constrain
the measurement time to τ for both, we get

V
{
ÃΛ

}
=

16τ0σ
2
x

τ3
=

4

3
V
{
ÃΩ

}
. (7)

The supports are chosen for the two-sample variance (defined
later) to be the same for the three counters.

III. THE TWO SAMPLE VARIANCE

The two-sample variance is defined as

σ2
y =

1

2
E
{

(y2 − y1)
2
}
, (8)

where y results from the appropriate estimator. We get the
Allan variance AVAR with y = AΠ (Π estimator), the modified
Allan variance MVAR with y = AΛ (Λ estimator), and the new
quadratic variance QVAR with y = AΩ (Ω estimator).

IV. THE QUADRATIC VARIANCE QVAR

A. Time domain

Using phase measurements as the input data, the QVAR is
given by

σ2
Q(τ) =

〈
[x(t) ∗ hQx(t)]

2
〉

(9)



A: Phase-time data

B: Frequency data

Figure 3. Time domain computation weight of QVAR for phase data (above)
or frequency deviations (below).

with (Fig. 3-A)

hQx(t) =
6
√

2

τ3

(
t+

τ

2

)
t ∈ [−τ, 0[

=
6
√

2

τ3

(
−t+

τ

2

)
t ∈ [0, τ [.

B. Frequency domain

Using frequency measurements as the input data, the QVAR
is given by

σ2
Q(τ) =

〈
[y(t) ∗ hQy(t)]

2
〉

(10)

with (Fig. 3-B)

hQy(t) =
3
√

2t

τ3
(−t− τ) t ∈ [−τ, 0[

=
3
√

2t

τ3
(t− τ) t ∈ [0, τ [.

In the frequency domain, the QVAR is given by

σ2
Q(τ) =

∫ ∞
0

Sy(f) |HQy(f)|2 df (11)

Figure 4. Transfer function of QVAR for 3 values of τ .

Table II
RESPONSES OF QVAR FOR THE DIFFERENT TYPES OF NOISE

Sy(f) MVAR(τ) QVAR(τ)

h−2f−2 11π2h−2τ

20

26π2h−2τ

35

h−1f−1 [27 ln(3)− 32 ln(2)]h−1

8

2 [7− ln(16)]h−1

5

h0f0 h0

4τ

3h0

5τ

h+1f+1 [24 ln(2)− 9 ln(3)]h+1

8π2τ2

3 [ln(16)− 1]h+1

2π2τ2

h+2f+2 3h+2

8π2τ3

3h+2

2π2τ3

For a linear frequency drift:

y(t) = D1 · t
1

2
D2

1τ
2 1

2
D2

1τ
2

HQy(f) being the QVAR transfer function, i.e., the Fourier
transform of hQy(t)

|HQy(f)|2 =
9
[
2 sin2(πτf)− πτf sin(2πτf)

]2
2(πτf)6

. (12)

The transfer function |HQy(f)|2, shown in Figure 4, is an
octave band pass filter similar to that of the AVAR, but with
significantly smaller side lobes. Table II shows the responses
to the different types of noise. The same information is shown
in Fig. 5.

C. Convergence

For small f , it holds that

|HQy(f)|2 ≈ 3

(πτf)2
. (13)

Thus, σ2
Q(τ) defined in Eq. (11) converges for f−2 FM.

At large f , |HQy(f)|2 decreases as f−4, and σ2
Q(τ) con-

verges for f+2 FM.



Figure 5. Responses of QVAR for the different types of noise

Figure 6. Histogram of 104 estimates of the variance

V. EQUIVALENT DEGREES OF FREEDOM

For a general introduction to the problem of the degrees of
freedom in the two-sample variance, the reader can refer to
[4].

As done with the other variances, we assume that the QVAR
estimates are approximately χ2 distributed

σ̃2
Q(τ) = αχ2

n (14)

where α is a scale coefficient, and n is the Equivalent Degrees
of Freedom (EDF). The mathematical expectation and the
variance of a χ2 distribution are proportional,

E{χ2
n} = n (15)

V{χ2
n} = 2n. (16)

Figure 7. EDF of AVAR, MVAR and QVAR for different types of noise and
N = 2048, τ0 = 1 s

The fractional dispersion of the QVAR estimates is given by

∆σ̃2
Q(τ)

σ̃2
Q(τ)

=

√
V{σ̃2

Q(τ)}

E{σ̃2
Q(τ)}

=

√
2α2ν

αν
=

√
2

n
. (17)

Figure 6 shows the histogram distribution in the case of 104

realizations.



A: White FM noise

B: Frequency drift

Figure 8. Detection of white FM noise and drift in presence of white PM
noise

Figure 7 shows the EDF in a typical representative case,
where N = 2048. For f2 and f FM noise (white and flicker
PM noise), the AVAR is of little interest because it rejects the
background proportionally to 1/τ2 and 1/τ2 ln τ , instead of
1/τ3. For all the noise types shown, the QVAR has higher EDF
than the MVAR, which is desirable. For the f and f2 noise
types, the QVAR is substantially equivalent to the AVAR.

VI. DETECTION OF WHITE FM NOISE AND DRIFT

Comparing the variances, the capability to detect white FM
noise and drift in the shortest time τ , for a given white PM
noise (instrument background) is a relevant criterion. The latter
can also be expressed as the lowest white FM noise and drift
that can be detected in a given τ .

The white FM noise is present in all atomic standards, and
the drift is ubiquitous.

Figure 8 A shows a variance plot with PM noise (instrument
background), the error bars at 95% confidence level, and
a white FM noise (black line). Figure 8 B shows the same
variance plot, with a drift (black line) The FM noise (or the
drift) is detected with a probability of 95% when the upper
point of the error bar hits the FM noise (drift) line. In both
cases the MVAR wins.

VII. EXAMPLE OF APPLICATION

Let us consider a time interval analyzer that receives a
perfect reference at 1 MHz at the ‘stop’ (time stamp) input,
and the 10 MHz output from a H maser at the ‘start’ input.
In this condition, the maser phase time is sampled at a
rate equal to 1/τ0 = 1 MHz. We assume that each time-
interval measurement is affected by white noise (instrument
background) with σx = 10 ps. From Table I, the background
translates into σy = 3.5×10−14 at τ = 1s, decreasing as τ

√
τ .

For comparison, the typical noise f a H maser is σy = 10−13 at
τ = 1s, decreasing as 1/

√
τ . Thus, the Ω counter implemented

with such time interval analyzer is in principle sufficient to
monitor the maser, out of the box, with no dedicated down-
conversion hardware.
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