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Abstract

Irreversible port-Hamiltonian systems (IPHS) have recently been proposed for the modelling of irreversible thermodynamic sys-
tems. On the other hand, a classical result on the use of the second law of Thermodynamics for the stabilization of irreversible
processes is the celebrated thermodynamic availability function. These frameworks are combined to propose a class of Passiv-
ity Based Controller (PBC) for irreversible processes. An alternative formulation of the availability function in terms of internal
energy is proposed. Using IPHS a matching-condition, which is interpreted in terms of energy-shaping, is derived and a specific
solution that permits to assign a desired closed-loop structure and entropy rate is proposed. The approach can be compared with
Interconnection and Damping Assignment - PBC, this method however leads in general to thermodynamically non-coherent closed-
loop systems. In this paper a system theoretic approach is employed to derive a constructive method for the control design. The
closed-loop system is in IPHS form, hence it can be identified with a thermodynamic system and the control parameters related
with thermodynamic variables, such as the reaction rates in the case of chemical reactions. A generic non-linear non-isothermal
continuous stirred tank reactor is used to illustrate the approach.

Keywords: Passivity based control, port-Hamiltonian systems, irreversible thermodynamics, CSTR.

1. Introduction

The different suggestions for the modelling of irreversible
thermodynamic processes as (dissipative) port-Hamiltonian
systems (PHS) (Maschke & van der Schaft, 1992; van der
Schaft & Maschke, 1995; Duindam et al., 2009) have led to
a class of system called quasi-PHS (Hangos et al., 2001; Otero-
Muras et al., 2008; Eberard et al., 2007; Ramirez. et al., 2009;
Dörfler et al., 2009; Hoang et al., 2011). These systems retain
much of the dissipative port Hamiltonian structure, but differ by
their structure (interconnection and dissipation) matrices and
input vector fields which depend explicitly on the gradient of
the Hamiltonian. This framework has recently been combined
with the framework of the thermodynamic availability function
(Alonso & Ydstie, 1996; Ydstie & Alonso, 1997; Alonso & Yd-
stie, 2001) to derive Lyapunov conditions for the stabilization
of irreversible thermodynamic systems (Ydstie, 2002; Hoang
et al., 2011, 2012). From a control design perspective this im-
plies that when looking for closed-loop potentials, for instance
when passivity based control (PBC) techniques are applied (Or-
tega et al., 2001, 2002), the integrability conditions lead to par-
tial differential equations which are nonlinear instead of linear.
Furthermore, it is well known that for this case a physically
consistent parametrization of the control problem is far from
obvious (Kotyczka, 2013). This implies closed-loop systems
without physical interpretation or very complex matching equa-
tions to solve during the design.

In this paper we shall consider the control of a class of such
extensions of PHS, named Irreversible Port-Hamiltonian Sys-

tems (IPHS) (Ramirez et al., 2013b,c). These systems embed by
construction simultaneously the first (conservation of energy)
and the second principle (irreversible creation of entropy). An
incremental energy function, defined as an energy based avail-
ability function, is used as desired closed-loop Hamiltonian fol-
lowing Ramirez et al. (2013a, 2014). A Lyapunov condition is
then derived and interpreted in terms of energy-shaping passiv-
ity based control (PBC) (Ortega et al., 2001, 2002). The Lya-
punov condition is then further developed and a specific non-
linear solution, which permits to assign a desired closed-loop
interconnection structure and entropy dissipation rate, is pro-
posed.

The proposed design procedure consists in finding appropri-
ate structure matrices and desired thermodynamic control func-
tions to solve algebraically (Nunna et al., 2015; Acosta et al.,
2008) the associated matching equations. The IPHS formula-
tion allows to systematically parametrize the problem to derive
the conditions for a globally stabilizing controller which pre-
serves the IPHS structure in closed-loop. Since the structure of
the closed-loop system is IPHS, it can be interpreted as a ther-
modynamic system and the parameters of the controller related
with thermodynamic variables, such as the reaction rates in the
case of chemical reactions.

The paper is organized as follows: Section 2 recalls the def-
inition and physical interpretation of IPHS. In Section 3 the
framework of the thermodynamic availability function is pre-
sented and a general Lyapunov condition is derived. Section
4 presents the main results of this paper. In Section 5 the ap-
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proach is applied to the example of a generic non-linear non-
isothermal CSTR model. Finally Section 6 gives some closing
remarks and comments on future work.

2. Irreversible Port-Hamiltonian Systems

Irreversible Port Hamiltonian Systems (IPHS) have been de-
fined in Ramirez et al. (2013b) as an extension of Port Hamil-
tonian systems for the purpose of representing not only the en-
ergy balance but also the entropy balance, essential in thermo-
dynamic systems.

Definition 1. (Ramirez et al., 2013b) An input affine IPHS is
defined by the dynamic equation and output relation

ẋ = R
(
x, ∂U

∂x ,
∂S
∂x

)
J
∂U
∂x

(x) + g
(
x, ∂U

∂x

)
u,

y = g>
(
x, ∂U

∂x

) ∂U
∂x

(x)
(1)

where x(t) ∈ Rn is the state vector, the smooth functions
U(x) : Rn → R and S (x) : Rn → R represent, respectively, the
internal energy (the Hamiltonian) and the entropy functions,
J ∈ Rn×n is a constant skew-symmetric structure (interconnec-
tion) matrix of the Poisson bracket (Maschke et al., 1992) acting
on any two smooth functions Z and G as:

{Z,G}J =
∂Z
∂x

>

(x)J
∂G
∂x

(x). (2)

The real function R = R
(
x, ∂U

∂x ,
∂S
∂x

)
is composed by the product

of a positive definite function γ and the Poisson bracket between
the entropy and the energy functions:

R
(
x, ∂U

∂x ,
∂S
∂x

)
= γ

(
x, ∂U

∂x

)
{S ,U}J ,

with γ
(
x, ∂U

∂x

)
: Rn → R, γ ≥ 0, a non-linear positive function.

The input map is defined by g
(
x, ∂U

∂x

)
∈ Rn×m with the input

u(t) ∈ Rm a time dependent function.

The drift dynamic in (1) is defined by a non-linear relation
between the time derivative ẋ of the state variables and ∂U

∂x ,
characterized by the modulating function R

(
x, ∂U

∂x ,
∂S
∂x

)
, which

explicitly depends on the differential of the energy ∂U
∂x . The

balance equations of the total energy and entropy functions
of IPHS express the first and second principles of irreversible
Thermodynamics: the conservation of energy and the irre-
versible creation of entropy due to irreversible phenomena. By
skew-symmetry of J, the balance equation of the internal en-
ergy,

dU
dt

= y>u, (3)

expresses that the system (1) is a lossless dissipative systems
with (energy) supply rate y>u (Willems, 1972). The balance
equation of the entropy function is given by

dS
dt

= R
(
x, ∂U

∂x ,
∂S
∂x

) ∂S
∂x

>

J(x)
∂U
∂x

+
∂S
∂x

>

g
(
x, ∂U

∂x

)
u

= γ
(
x, ∂U

∂x

)
{S ,U}2J +

(
g>

(
x, ∂U

∂x

) ∂S
∂x

)>
u.

(4)

By Definition 1 the first term is positive: γ
(
x, ∂U

∂x

)
{S ,U}2J =

σ
(
x, ∂U

∂x

)
≥ 0. For irreversible thermodynamic systems, this

term represents the internal entropy production and its positiv-
ity expresses the second principle of Thermodynamics. The
second term in (4) corresponds to the definition of an entropy
supply rate. For further details on IPHS and its thermodynamic
interpretation we refer the reader to Ramirez et al. (2013b).

3. Energy shaping of IPHS

In Ramirez et al. (2013a) the framework of the thermody-
namic availability function, formalized for the control of ther-
modynamic systems by Alonso & Ydstie (2001) and with roots
in the works of Keenan (1951) and Willems (1972), has been
used to derive a Lyapunov condition for the stability analysis
of IPHS. Using the convexity of the internal energy function,
a convex extension named energy based availability function
has been defined and shown to be a Lyapunov function can-
didate for the closed-loop system. This has been done fol-
lowing Alonso & Ydstie (2001); Ydstie (2002); Hoang et al.
(2011, 2012), where an entropy based availability function is
constructed for irreversible thermodynamic systems.

In the sequel the stability condition presented in Ramirez
et al. (2013a) is developed and it is shown that it defines an en-
ergy shaping controller (Ortega et al., 2001, 2002) with respect
to a new closed-loop Hamiltonian and supply rate.

Definition 2. The energy based availability function is defined
as

A(x, x∗) = U(x) + Ua(x, x∗) (5)

with
Ua(x, x∗) = −U(x∗) −

∂U
∂x

(x∗)>(x − x∗) (6)

and x∗ an equilibrium point.

Assumption 3. The availability function A(x, x∗) is strictly
positive with minimum A(x = x∗) = 0 where x∗ is an equi-
librium point.

This assumption is fulfilled for any equilibrium point of a
monophasic thermodynamic systems if one of the extensive
variables is fixed since then the internal energy is a strictly con-
vex function (Jillson and Ydstie, 2007).

It is clear from Definition 2 that the energy based availability
function qualifies as a Lyapunov function candidate for con-
trolled IPHS. Define an availability-conjugated output defining
an availability supply rate of the availability function,

ỹ = g>
(
∂U
∂x (x) − ∂U

∂x (x∗)
)

= g> ∂A
∂x (x, x∗). (7)

Proposition 4. Let x∗ be an equilibrium point for (1) and
A(x, x∗) satisfy Assumption 3 with u = β (x, x∗) satisfying

γ {S ,U}J {A,U}J + ỹ>β = −s, (8)

with s(x, x∗) > 0, ∀x , x∗ and s(x, x∗) = 0 for x = x∗. Then x∗

is globally asymptotically stable.
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Proof. A is by Definition 2 a Lyapunov function candidate
for (1). The time derivative of A along the trajectories of (1) is
given by

dA
dt

=

(
∂U
∂x

(x) −
∂U
∂x

(x∗)
)> dx

dt

= R
(
∂U
∂x

(x) −
∂U
∂x

(x∗)
)>

J
∂U
∂x

(x)+(
∂U
∂x

(x) −
∂U
∂x

(x∗)
)>

gβ,

(9)

and using (8) we finally obtain

dA
dt

= −s. (10)

Since A is strictly positive x∗ is an isolated minimum, and since
s only vanishes at x∗ asymptotic stability follows invoking La
Salle’s invariance Theorem on a region around x∗.

Proposition 4 defines an energy shaping controller (Ortega
et al., 1998). Indeed, assume there exists a function Ua(x, x∗),
which represents the added/removed energy by the controller,
such that the closed-loop energy function (availability function)
can be written as A = U(x) + Ua(x, x∗). Then from (3), the
existence of Ua such that (10) is satisfied implies the existence
of a state feedback u = β(x, x∗) such that

β(x, x∗)>y(x) = −U̇a(x, x∗) − s(x). (11)

The closed-loop energy function A is defined by construction,
hence by combining (6) and (11) we obtain

β(x, x∗)>y(x) =
∂U
∂x

(x∗)> ẋ − s(x),

and using (1) gives the matching equation (8). Hence, Proposi-
tion 4 defines an energy shaping controller with added/removed
energy Ua.

4. Interconnection and entropy rate assignment

In this section we shall further elaborate on a class of con-
trol which not only assigns the energy based availability func-
tion as closed-loop Hamiltonian but also shapes the structure of
the system by assigning a desired interconnection matrix and
closed-loop entropy rate. Consider the following target system

ẋ = −M
(
x, ∂S

∂x ,
∂A
∂x

) ∂A
∂x

(x), (12)

withM
(
x, ∂S

∂x ,
∂A
∂x

)
≥ 0. The time variation of A is

Ȧ = −
∂A>

∂x
(x)M

(
x, ∂S

∂x ,
∂A
∂x

) ∂A
∂x

(x) ≤ 0

which implies that under some additional properness conditions
(12) is asymptotically stable.

The target system (12) can be interpreted within the frame-
work of IDA-PBC (Ortega et al., 2001, 2002) if M =

Jd(x) − M(x), with M(x) a symmetric positive semi-definite
matrix defining a pseudo-Riemannian metric expressed by the
so called Ginzburg-Landau (dissipative) bracket (Grmela &
Öttinger, 1997), defined in some local coordinates for two
smooth functions Z and G as,

[Z,G]M =
∂Z
∂x

>

(x)M(x)
∂G
∂x

(x). (13)

In this case (12) is a PHS. The drawback of selecting a PHS
as target system for the control of IPHS is that it leads to
non-linear matching (partial differential) equations. This moti-
vates the algebraic approach employed in this paper, where the
closed-loop Lyapunov function is fixed a priori as the availabil-
ity function using the thermodynamic properties of IPHS. Some
example of use of algebraic approaches for solving matching
equations in PBC design can be found for instance in Acosta
et al. (2008); Nunna et al. (2015).

4.1. A locally asymptotically stabilizing controller

We shall now elaborate on the matching equation presented
in the previous section and derive the conditions for shaping the
Hamiltonian and the structure of the system. Define the control
input as u = γ {S ,U}J ũ, with ũ an auxiliary input, then the
matching equation (8) becomes

γ {S ,U}J
(
{A,U}J + ỹ>ũ

)
= −s. (14)

where s is the rate of decrease of the availability function de-
fined in (10). Notice that (14) may be compared to the stabiliza-
tion condition for reversible Hamiltonian systems. In that case
γ {S ,U}J = 1 and the condition {A,U}J + ỹ>ũ = −s expresses
the decrease of the shaped closed-loop Hamiltonian function.
For IPHS, from (14), we see that this condition is modulated by
the nonlinear term R = γ {S ,U}J , which is not signed defined
since the bracket {S ,U}J may take positive or negative values.
Let us consider a particular solution to (14) in the following
form

ỹ>ũ = −{A,U}J − {S ,U}J[A, A]M + {A, A}Jd (15)

where Jd(x) = −J>d (x) is a desired closed-loop interconnec-
tion matrix defining a Poisson bracket. Notice that the bracket
{A, A}Jd = 0, expressing the conservation of the closed-loop en-
ergy with respect to Jd. This is referred to as interconnection
assignment. Substituting (15) in (14), we have that the dissipa-
tion function is given by

s = γ{S ,U}2J[A, A]M (16)

Using the definition of ỹ (Eq. (7)) and noting that (15) is
multiplied from the left by ∂A

∂x
>

, the control law ũ satisfying
(15) and being independent of the co-energy variables has to
satisfy

gũ =

(
−J

∂U
∂x
− {S ,U}J M

∂A
∂x

+ Jd
∂A
∂x

)
.
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The linear least square solution with respect to the Euclidean
norm of this equation considering ũ = β(x) is given by,

β(x) =

g†(x)
(
− {S ,U}J M(x) + Jd(x)

) (∂U
∂x

(x) −
∂U
∂x

(x∗)
)

− g†(x)J
∂U
∂x

(x), (17)

which exists if and only if the following matching equation is
satisfied (Campbell & Meyer, 2009):

− g⊥(x){S ,U}J M(x)
(
∂U
∂x

(x) −
∂U
∂x

(x∗)
)

+ g⊥(x)
((

Jd − J
)∂U
∂x

(x) − Jd
∂U
∂x

(x∗)
)

= 0 (18)

where g†(x) = [g>(x)g(x)]−1g>(x) is the Moore-Penrose pseudo
inverse and g⊥(x) a left full rank annihilator of g(x), i.e.,
g⊥(x)g(x) = 0. Equations (17) and (18) may be interpreted in
terms of IDA-PBC. Indeed, take again the case reversible case,
γ {S ,U}J = 1, then u = ũ and it is observed that the solution
corresponds to the IDA-PBC solution for the PHS

ẋ = J
∂U
∂x

+ gũ (19)

with target system given by

ẋ =
(
− M(x) + Jd(x)

)∂A
∂x
.

In the present case, since γ {S ,U}J , 1, the target system of the
equivalent IDA-PBC problem is given by

ẋ =
(
− {S ,U}J M(x) + Jd(x)

)∂A
∂x
, (20)

where the matrix {S ,U}J M(x) is not a positive (semi) definite
since {S ,U}J is of arbitrary sign. This “contradiction” comes
of course from the fact that the previous interpretation has been
performed with respect to the auxiliary input ũ and not the ac-
tual control input u = γ {S ,U}J ũ. Nevertheless, it also ex-
presses the irreversible nature of the controlled system: The
bracket {S ,U}J , which for irreversible thermodynamic systems
corresponds to the physical driving force, appears explicitly in
the structure matrix of IPHS making the control design non-
linear with respect to the states and co-states

(
∂U
∂x

)
.

The result is summarized in the following Proposition.

Proposition 5. Let x∗ be an equilibrium point for (1). Assume
there exist matrices M(x) ≥ 0 and Jd(x) = −J>d (x), and a full-
rank left annihilator g⊥(x) of g(x) satisfying (18). Then u =

γ {S ,U}J β with β as in (17) locally asymptotically stabilizes
x∗. Furthermore, the closed-loop dynamic is

ẋ =
(
− σM + RJd

)∂A
∂x
. (21)

with σ = γ{S ,U}2J ≥ 0.

Proof. Equation (21) is obtained by replacing the control law
u = γ {S ,U}J β in (1) under the assumption that (18) is satisfied.
Since M(x) is positive semi-definite, the asymptotic stability
follows by applying La Salle’s invariance principle in a region
around the equilibrium. The region of attraction is given by
the largest subset that excludes {S ,U}J = 0, which corresponds
to the thermodynamic equilibrium, and which is normally ex-
cluded from the region of operation of the system.

The closed-loop system resembles an IPHS with respect to
the energy based availability function, but the modulating func-
tion R = γ {S ,U}J is defined with respect to the open-loop
structure matrix J and Hamiltonian U(x). The dissipation of
the closed-loop system is given by (16), and may be equiva-
lently written in term of the internal entropy production or en-
tropy rate σ as s = σ[A, A]M , hence it is directly related with
the irreversible thermodynamic dissipation of the system.

The matching equation (18) is an algebraic condition since
the closed-Hamiltonian (and hence also Ua) has been fixed. The
design parameters are the dissipation matrix M, the desired in-
terconnection matrix Jd and up to some degree g⊥. These matri-
ces should be chosen such that (18) is satisfied and can be used
to assign the desired closed-loop dynamic. For some cases, it
is possible to use relations arising from the physical properties
of the system to solve (18). A particular case is when the inter-
connection matrix is not changed, i.e., Jd = J, and only some
closed-loop dissipation is added.

Corollary 6. Assume Jd = J, then x∗ is locally asymptotically
stable if

g⊥J
∂U
∂x

(x∗) = 0, and (22)

g⊥M = 0. (23)

Furthermore, the control defines a purely energy-balancing +

entropy injecting controller.

The thermodynamic equilibrium is normally excluded from the
region of operation of the system, however it should be no-
ticed that {S ,U}J = 0 implies dA

dt = 0. The equilibrium is
hence only locally asymptotically stable, and any equilibrium
too-close to the thermodynamic equilibrium could present con-
vergence problems.

4.2. A globally asymptotically stabilizing controller

In order to overcome the limitations of the previous design
we now fix as control objective to render the closed-loop sys-
tem IPHS and assign a desired closed-loop entropy rate. This,
from a physical point of view, is equivalent to change the ther-
modynamic equilibrium in closed-loop. Consider the following
solution to (8)

ỹ>u = −R{A,U}J − σd[A, A]M + Rd{A, A}Jd (24)

where Rd = γd {S , A}Jd
and σd = γd {S , A}2Jd

with γd > 0 a
non-vanishing positive function. These two functions which
are defined by the controllers design parameters A, Jd and
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γd, are respectively, a designed non-linear modulating func-
tion and a closed-loop entropy rate. Rd and σd only vanish
at ∂A

∂x (x∗) = 0, which corresponds to the desired closed-loop
equilibrium. The difference with (15), where an auxiliary input
is used to factor-out the bracket {S , A}J , in (24) new modulat-
ing functions, σd and Rd, are introduced as design parameter to
introduce a closed-loop thermodynamic equilibrium that coin-
cides with the desired equilibrium x∗.

The control law u has to satisfy

gu =

(
−RJ

∂U
∂x
− σd M

∂A
∂x

+ Rd Jd
∂A
∂x

)
,

And the linear least square solution with respect to the Eu-
clidean norm is given by

β(x) = g†(x)
(
Rd Jd − σd M

) (∂U
∂x

(x) −
∂U
∂x

(x∗)
)

− g†(x)RJ
∂U
∂x

(x), (25)

which exists if and only if

g⊥(x)
(
Rd Jd − σd M

) (∂U
∂x

(x) −
∂U
∂x

(x∗)
)

− g⊥(x)RJ
∂U
∂x

(x) = 0 (26)

The result is summarized in the following proposition.

Proposition 7. Let x∗ be an equilibrium point for (1). As-
sume there exist matrices M(x) ≥ 0 and Jd(x) = −J>d (x),
a scalar functions γd > 0 such that σd = γd {S , A}2Jd

and
Rd = γd {S , A}Jd

, and a full-rank left annihilator g⊥(x) of g(x)
satisfying (26). Then u = β with β as in (25) globally asymp-
totically stabilizes x∗. Furthermore, the closed-loop dynamic
is

ẋ =
(
− σd M + Rd Jd

)∂A
∂x
. (27)

Proof. The proof is analogous to the proof of Proposition 5.
The global asymptotic stability follows by applying La Salle’s
invariance principle in a region around x∗ noting that dA

dt only
vanishes at x∗.

The closed-loop system is an IPHS with dissipation function
s = σd

∂A
∂x
>

M ∂A
∂x . . Indeed, we see from (27) that if M = 0, then

(27) is an IPHS with respect to A according to Definition 1.
It’s important to remark that (27) can be derived using

IDA-PBC, however finding an appropriate physically consis-
tent parametrization is far from obvious when dealing with non-
mechanical or electro-mechanical systems (Kotyczka, 2013).
The systematic control design approach employed in the deriva-
tion of Proposition 5 led to a thermodynamic consistent
parametrization of the control parameters A, Jd, M, and σd

in Proposition 7. This result can be regarded as a thermody-
namic equivalent of IDA-PBC. Indeed (27) is again an IPHS
with structure matrix Rd Jd and energy function A (interconnec-
tion assignment and energy shaping), and the dissipation as-
signment given by matrix σd M assures the convergence to the
minimum of the closed-loop energy function.

Corollary 6 can be generalised for this case as follows.

Corollary 8. x∗ is globally asymptotically stable if

g⊥J = 0, and (28)
g⊥Jd = 0, and (29)
g⊥M = 0. (30)

Condition (30) is in general easy to fulfil since the only re-
strictions on M are that it should be positive semi-definite and
symmetric. Condition (29) is only required if Jd is chosen dif-
ferent to the null matrix. On the other hand, condition (28) is
more restrictive, since J and g (and up to an important degree
also g⊥) are defined by the structure of the system. Neverthe-
less, since J expresses the conserved quantities of the system
we may find this condition automatically fulfilled for systems
whose input maps are related with the physical invariants. In
that case selecting J = Jd reduces (28) and (29) to one equiva-
lent condition. This point will be illustrated on the example of
the CSTR.

Remark 9. No assumption has been made on the stability of
the open-loop equilibrium. The control is designed using a state
feedback derived from Lyapunov arguments, allowing to deal
with multiple or/and unstable open-loop equilibria like in the
case of exothermic chemical reaction systems.

5. Example: the CSTR

Let us consider for simplicity and without restricting to a sin-
gle reaction in a continuous stirred tank reactor (CSTR) with the
following reversible reaction scheme

m∑
i=1

ζiBi
r
−⇀↽−

m∑
i=1

ηiBi

with ζi, ηi being the constant stoichiometric coefficients for
species Bi in the reaction. We shall consider that the CSTR sat-
isfies the following standard operation assumptions (Aris, 1989;
Favache & Dochain, 2009)

Assumption 10. 1) The reactor operates in liquid phase, 2)
The molar volumes of each species are identical and the total
volume, denoted by V, in the reactor is maintained constant, 3)
The initial number of moles of a species in the reactor is equal
to the number of moles of the inlet of the same species, 4) For a
given steady state temperature T and steady state input there is
only one possible steady state for the mass (numbers of moles)
balance.

Remark 11. The last point of Assumption 10 is standard and
doesn’t imply that the chemical reaction system doesn’t ad-
mit multiple stable or unstable equilibrium points. It refers to
that each steady state temperature is associated to one unique
steady state temperature.

5



5.1. IPHS model (Ramirez et al., 2013b)
The CSTR has been extensively studied using IPHS and con-

tact geometry in Ramirez et al. (2013b) and the reader is re-
ferred to that work for a detailed deduction of the IPHS model.
The dynamic equation of the CSTR may be expressed as

ẋ = RJ
∂U
∂x

(x) + g
(
x, ∂U

∂x

)
u (31)

with state vector x = [n>, S ]>, where n = (n1, . . . , nm)> with
ni the number of moles of the species i inside the reactor, S the
total entropy, the internal energy U(x) as Hamiltonian function,

J =


0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m

−ν̄1 . . . −ν̄m 0

 ,
∂U
∂x

=


µ1
...
µm

T

 ,
where the structure matrix J is a constant skew-symmetric ma-
trix whose elements are the signed stoichiometric coefficients of
the chemical reaction ν̄i = ζi − ηi, which is positive or negative
depending on whether the species i is a product or a reactant,
the differential ∂U

∂x is the vector of intensive variables, where T
and µi are respectively the temperature in the reactor and the
chemical potential of the species i. The modulating function R
is given by

R = γ
(
x, ∂U

∂x

)
{S ,U}J =

( rV
TA

)
A

with γ = rV
TA and {S ,U}J = A, where r (n,T ) is the reaction

rate which depends on the temperature T and on the reactant
mole number vector n (Horn & Jackson, 1972; Feinberg, 1987),
A = −

∑m
i=1 ν̄iµi is the chemical affinity of the reaction and cor-

responds to the thermodynamic driving force of the chemical
reaction. The input vector is u = [u1, u2]> with u1 = F/V the
dilution rate, where F is the volumetric flow rate, and u2 = Q
the heat flux from the cooling jacket. The input map is given by

g =

[
ñ 0
φ(x) 1

T

]
with ñ = ne − n, where ne = (ne1, . . . , nem)> is the vector
containing the number of moles of species i at the inlet and
φ(x) =

∑m
i=1(neisei − nisi) + nei

T (hei − T sei − µi), where sei, si and
hei are respectively the inlet molar entropy, the molar entropy
and the inlet specific molar enthalpy of species i.

The assumption of constant total volume imposes a con-
straint over the total outlet flow (Couenne et al., 2006, 2008),
i.e. in the present case the total outlet flow is chosen equal to
the total inlet flow. We underline that the assumption of con-
stant volume guarantees that the energy based availability func-
tion A is strictly convex.

5.2. Stabilization of the CSTR
A constructive method to compute globally asymptotically

stabilizing solutions to the stability condition is provided by
Proposition 7. Let us select Jd = J such that Corollary 8 can

be used. First we shall verify that (28) is satisfied and then we
shall look for a matrix M such that (30) holds. The first step is
to find a full-rank left annihilator for the input map. A possible
choice is the (m − 1) × n matrix

g⊥ =


ñ2 −ñ1 0 . . . 0 0 0
0 ñ3 −ñ2 . . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 . . . 0 ñm −ñm−1 0

 .
Using this annihilator we compute from (22)

g⊥J =


0 . . . 0 ν̄1ñ2 − ν̄2ñ1
0 . . . 0 ν̄2ñ3 − ν̄3ñ2
...

...
...

...
0 . . . 0 ν̄m−1ñm − ν̄mñm−1

 ,
and it remains to verify that g⊥J = 0, which is true if

ñ1

ν̄1
=

ñ2

ν̄2
= · · · =

ñm−1

ν̄m−1
=

ñm

ν̄m
. (32)

It has been shown (Prigogine & Defay, 1954) for batch reactors
that (32) is actually the expression of De Donder’s extent of
reaction

n0i − ni

ν̄i
= ξ.

This property can easily be extended to the CSTR case as soon
as Assumption 10 is satisfied, i.e., when the initial number of
moles of each species equals the number of moles at the inlet:
n(t = 0) = n0 = ne (see also Aris (1989)). Hence (28) is au-
tomatically fulfilled. This comes from the fact that J expresses
the stoichiometry of the reaction and g the mole (mass) balance
relation. Since the reactor operates at constant volume, the to-
tal mass becomes an invariant for the reaction, and g⊥J = 0 is
simply the mathematical expression of this invariant.

Condition (30) can be solved by noting that the last column
of g⊥ is zero. This implies that any matrix M(x) = M>(x) ≥ 0
for which the first m rows and columns forms a null subma-
trix is solution to (30). A (simple) possible choice is M =

diag(0, . . . , 0, 1), which corresponds to a diagonal matrix with
all elements equal to zero except the last element of its diagonal
which is 1. The closed-loop system then takes the form

ẋ =
(
− σd M + Rd J

)∂A
∂x
.

The closed-loop system is an IPHS with dissipation, with the
availability function as closed-loop Hamiltonian. Moreover, if
no damping injection is considered (M = 0), then the controller
corresponds to an energy-shaping controller. The dissipation
is given by −σd M ∂A

∂x , it is modulated by the desired entropy
production σd and acts only on the entropy balance. This is
consistent with the thermodynamic interpretation of the closed-
loop system. The closed-loop entropy balance is given by

Ṡ = −γd

m∑
i=1

νi (µi(x) − µi(x∗)) − σd(T − T ∗).
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From this balance equation we see how the first term contributes
to the energy-balancing and the second term to the entropy in-
jection. The time derivative of A is

dA
dt

= −σd(T − T ∗)2,= −γd(A−A∗)2(T − T ∗)2. (33)

The decrease of the energy based availability function is related
to the desired irreversible entropy rate, which is positive defi-
nite and only zero at the desired equilibrium. In order to com-
plete the stability proof, we apply La Salle’s invariance The-
orem in a sufficiently small region around T = T ∗. From As-
sumption 10 we have that there is only one equilibrium for each
temperature and that T = T ∗ ⇔ A = A∗, hence we can con-
clude that the closed-loop systems is globally asymptotically
stable.

The tuning parameter in the proposed controller is the scalar
function γd > 0. From (33) and (27) we observe that this func-
tion can be used to increase/decrease and shape the closed-loop
dissipation and the closed-loop interconnection matrix. Recall
that in open-loop γ = rV

TA , where the the most important func-
tion is the reaction rate r, which characterises the chemical re-
action. Hence a thermodynamically consistent choice for the
controller is γd = rd(x) V

T ∗A∗ , with rd(x) a desired reaction pro-
file. A simple choice that guarantees σd > 0 is rd = r∗ which is
the open-loop reaction rate evaluated at the desired equilibrium.

6. Conclusion

This paper presents a constructive PBC method based on
IPHS formulation and the thermodynamic availability function.
The controller has been interpreted in terms of energy-shaping
PBC and further developed to derive a specific non-linear so-
lution, which permits to assign a desired closed-loop intercon-
nection structure and entropy rate. The matching condition is an
algebraic condition whose solution is parametrized by the de-
sired closed-loop interconnection and damping matrices. It is
shown that a physically (thermodynamically) coherent closed-
loop system can not be in PHS form, and hence standard PBC
techniques such as IDA-PBC fail in the choice of the ideal
target system. The proposed controller globally stabilizes the
closed-loop system an renders it IPHS with dissipation. This
allows to interpret the closed-loop system as a thermodynamic
system and relate the control parameters with thermodynamic
variables, such as the reaction rates in the case of chemical re-
actions.

The example of a generic non-linear non-isothermal CSTR
has been used to illustrate the approach. For this case the so-
lution to the matching equation follows directly from the IPHS
model. Future work will deal with numerical implementations
of the controller under realistic operation conditions.
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