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Abstract. Given the vast area to be covered and the random deploy-
ment of the sensors, wireless sensor networks (WSNs) require scalable
architecture and management strategies. In addition, sensors are usually
powered by small batteries which are not always practical to recharge or
replace. Hence, designing an efficient architecture and data management
strategy for the sensor network are important to extend its lifetime. In
this paper, we propose energy efficient two-level data aggregation tech-
nique based on clustering architecture with which data is sent periodi-
cally from nodes to their appropriate Cluster-Heads (CHs). The first level
of data aggregation is applied at the node itself to eliminate redundancy
from the collected raw data while the CH searches, at the second level,
nodes that generate redundant data sets based on the variance study
with three different Anova tests. Our proposed approach is validated via
experiments on real sensor data and comparison with other existing data
aggregation techniques.

Keywords: periodic sensor networks (PSNs), data aggregation, cluster-
ing architecture, identical nodes behaviour, one way Anova model.

1 Introduction

Wireless Sensor Networks (WSNs) have become one of the innovative technolo-
gies that are widely used nowadays. One of the advantages of these networks is
their ability to operate unattended in harsh environments in which contempo-
rary human-in-the-loop monitoring schemes are risky, inefficient and sometimes
infeasible (see Abbasi, A. and Younis, M. [1]). With the capabilities of perva-
sive surveillance, WSN have attracted significant attention in many applications,
such as habitat monitoring (see Rozyyev, A. et al. [2]), environment monitoring
(see Sabri, N. et al. [3] and Aslan, Y.E. et al. [4]) and military surveillance (see
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Qian, H. et al. [5] and Padmavathi, G. et al. [6]). In such networks, sensors are
expected to be remotely deployed, e.g. via helicopter or clustered bombs, in a
wide geographical area to monitor the changes in the environment and send back
the collected data to a specific node called the “sink”. Nevertheless, sensors in
such environment are energy-constrained and their batteries cannot be replaced.
Therefore, it is very important to limit the energy consumption of sensors in
order to extend the network’s lifetime as long as possible.

Due to a random and dense deployment, nodes may have overlapping sensing
ranges, such that events can be detected by multiple sensor nodes providing a
redundancy in sensed data. Moreover, since data transmission is more demanding
than computational operations in terms of energy consumption, the volume of
data transmitted must be minimized. This leads to the requirement of better
data aggregation and data mining techniques. To that effect, data aggregation
has been proved as an effective method to achieve power efficiency by reducing
data redundancy and minimizing bandwidth usage (Di Pietro, R. et al. [7]) while
data mining deals with extracting knowledge from large continuous arriving data
from WSNs (Azhar, M. et al. [8]).

On the other side, clustering is considered as an efficient topology control
method in WSN, which can increase network scalability and lifetime (Mirhadi,
P. et al. [9]). With clustering, data collected by sensor nodes are processed at
intermediate nodes, called Cluster-Heads (CHs), in order to eliminate redun-
dancy and send only the useful information to the sink (Fig. 1). In this paper,
we use the periodic data collection approach, in which each sensor node sends
periodically (at each period p) its data to the appropriate CH. We propose an
energy efficient two-level data aggregation technique which applies at each clus-
ter separately. The first level is applied at the sensor node itself in order to
eliminate redundancy from data collected by the sensor at each period p before
sending them to their proper CH. Then, when the CH receives data from all its
members (nodes) we propose to use the one way Anova model with three differ-
ent tests (Fisher, Tukey and Bartlett) to detect nodes with identical behaviour
which generate redundant data logs or sets. The aim is to reduce data redun-
dancy generated by neighboring nodes based on the variance study in order to
eliminate redundancy before sending final data to the sink.

The rest of this paper is organized as follows; Section 2 presents related work
on data aggregation in the sensor networks. Section 3 describes the first phase of
our technique which we called member node aggregation. In Section 4, we present
the second level, called CH aggregation, which is based on one way Anova model.
Experimental results are exposed in Section 5. Finally, we conclude our paper
and we provide our directions for future work in Section 6.

2 Related Work

In WSN, many data aggregation studies have been made based on clustering
schemes, such as DDCD proposed by Yuan, F. et al. [10] and DUCA proposed
by Enam, R.N. et al. [11]. The main objective of these works is balancing and
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Fig. 1. Wireless sensor network based on two-tier single-hop clustering architecture.

reducing energy consumption over the whole network. In each cluster, the sensors
communicate data to their CH that aggregates data and thus reduces the size
of data to be transmitted to the sink. Recently, Tripathi, A. et al. [12] and
Nokhanji, N. and Hanapi, Z.M. [13] present a comprehensive overview about
different data aggregation techniques and clustering routing protocols proposed
in the literature for WSNs.

Zou, P. and Liu, Y. [14] propose a Distributed K-mean Clustering (DKC)
method for WSN. On the basis of DKC, the authors build a network data ag-
gregation processing mechanism based on adaptive weighted allocation of WSN.
DKC algorithm is mainly used to process the testing data of bottom nodes in
order to reduce the data redundancy. Tran, K.T-M. and Oh, S.-H. [15] propose
a data aggregation based clustering scheme for underwater wireless sensor net-
works (UWSNs) which involves four phases. The goals of these phases are to
reduce the energy consumed in the overall network, increasing the throughput,
and minimizing data redundancy. Kumar, S. et al. [16] propose a M-EECDA
(Multihop Energy Efficient Clustering & Data Aggregation Protocol for Hetero-
geneous WSN). The protocol combines the idea of multihop communications and
clustering for achieving the best performance in terms of network life and energy
consumption. M-EECDA introduces a sleep state and three tier architecture for
some cluster heads to save energy in the network.

Some other works in data aggregation are not based on clustering scheme:
Chao, C.-M. and Hsiao, T.-Y. [17] propose a structure-free and energy-balanced
data aggregation protocol, SFEB. SFEB features both efficient data gathering
and balanced energy consumption, which result from its two-phase aggregation
process and the dynamic aggregator selection mechanism. Li, G. and Wang, Y.
[18] propose an automatic auto regressive-integrated moving average modeling-
based data aggregation scheme in WSNs. The main idea behind this scheme is
to decrease the number of transmitted data values between sensor nodes and
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aggregators by using time series prediction model. Shan, M. et al. [19] study the
problem of building maximum lifetime shortest path aggregation trees in WSNs.
When the shortest path trees are built, the authors transformed the problem
into a load balancing scheme at each level of the fat tree and solved it by a
centralized approach in polynomial time. Shim, Y. and Kim, Y. [20] propose a
data aggregation with multiple sinks in an Information-Centric Wireless Sensor
Network with an ID-based information-centric network, in order to reduce the
energy-transmission cost.

Bahi, J. et al. [21] study a new area within filtering aggregation problem,
the Prefix-Frequency Filtering (PFF) technique. Further to a local processing at
sensor node level, PFF uses Jaccard similarity function at aggregators level to
identify similarities between near sensor nodes and integrate their sensed data
into one record. Aiming to decrease data latency, Harb, H. et al. in [22] and [23]
propose two optimizations of the PFF technique based on suffix filtering and
k-means algorithm. Among all optimizations, PFF stays a hard technique for
the aggregator in terms of data latency and energy consumption. In this paper,
we adapt the same scenario as proposed by Bahi, J. et al. [21] while we propose
a new technique. In the new technique, we propose a two-level data aggregation,
the first one, at the node level, which we call member node aggregation in which
each member node sends, at each period p, its aggregated set of data to the
appropriate CH. At the second level, CH aggregates all the sets of data coming
from its member nodes based on the variance between their measurements, before
sending them to the sink.

3 First Level: Member Node Aggregation

In periodic sensor networks (PSNs), each sensor node i takes a new measurement
yis at each time slot s. Then node i forms a new vector of captured measurements
Mi = [yi1 , yi2 , . . . yiT ] at each period p, where T is the total number of measures
taken at the period p, and sends it to the appropriate CH (see Bahi, J. et
al. [21]). Fig. 2 shows an example of PSN where each sensor node takes one data
measurement each ten minutes, e.g. s = 10 minutes, and send its set of collected
data which contains six measures, e.g. T=6, to the CH at the end of each hour.

Consequently, one of the important design considerations associated with the
periodic sampling data model is that the dynamics of the monitored conditions
can slow down or speed up (Laiymani, D. and Makhoul, A. [24]). Thus, it is
likely that a sensor node takes the same (or very similar) measurements several
times, especially when s is too short, which make the sensor node forwards more
redundant data to the CH during each period. In this phase of aggregation,
which called member node aggregation, we allow each sensor node to identify
and remove duplicate data measurements among data collected in each period
in order to reduce the size of the set Mi before sending it to the CH. In order
to identify the similarity between two measures, we provide the two following
definitions:
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Fig. 2. Illustrative example of periodic sensor network (PSN).

Definition 1 (Similar function). We define the Similar function between
two measurements as:

Similar(yi, yj) =

{
1 if ‖yi, yj‖ ≤ δ,
0 otherwise.

where δ is a threshold determined by the application. Furthermore, two mea-
sures are similar if and only if their Similar function is equal to 1.

Definition 2 (Measure’s weight, wgt(yi)). The weight of a measurement yi
is defined as the frequency of the same or similar (according to the Similar
function) measurements in the same set.

For each new sensed measurement (at each slot s), a sensor node i searches
for the similar measure already captured in the same period p. If a similar
measurement is found, the sensor deletes the new measure while incrementing
the weight of the existing measure by one, else, the sensor adds the new measure
to the set and initializes its weight to 1. For more details about this algorithm
see Bahi, J. et al. [21].

Based on the above definitions, we provide two other definitions:

Definition 3 (Cardinality of the set Mi, |Mi|). The cardinality of the set
Mi is equal to the number of elements in Mi.

Definition 4 (Weighted Cardinality of the set Mi, Cardw(Mi)). The
weighted cardinality of the set Mi is equal to the sum of all measures’ weights in

Mi as follow: Cardw(Mi) =
∑|Mi|
k=1 wgt(mk), where mk ∈Mi.

In this paper, we consider that all sensor nodes operate at the same sampling
rate, and every node captures T measures in each period p. Thus we can deduce
that for every received set Mi from node i we have: Cardw(Mi) = T .

At the end of each period p, each member node i will possess a set of reduced
measures associated to their corresponding weight. The second step is to send it
to the appropriate CH which in its turn aggregates the data sets coming from
different member nodes.
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4 Second Level: CH Aggregation

At this level of aggregation, each CH receives all the sets of measurements with
their weights sent from its member nodes, at the end of each period. The idea
is to identify all pairs of member nodes that generate redundant sets in order
to eliminate duplication before sending them to the sink. Therefore, one way
Anova model is an effective technique that can determine duplicated sets based
on the variance between their measures. The Anova produces an F -statistic, the
ratio of the variance calculated based on the measurements in the sets. F can be
calculated in different manners depending on the statistic tests proposed in the
Anova model. The sets are considered duplicated if the calculated F is less than
the critical value of the F -distribution (or Fs) for some desired false-rejection
probability (risk α). Laiymani, D. and Makhoul, A. [24] used one way Anova
model and Fisher test in PSN at the level of node member to adapt its sampling
rate. In this paper, we use the one way Anova model at the CH level, while
comparing three different tests (Fisher, Tukey and Bartlett) in order to identify
identical nodes behaviour.

4.1 One-Way ANalysis Of VAriance: ANOVA

In this part, we present a statistical model to study the variance between mea-
surements in the data sets in order to find all pairs of member node that generate
redundant data. Therefore, one-way Anova is used to find out if the means of
data sets are significantly different or if they are relatively the same. In PSN,
we assume that each sensor node takes T measures of temperature or humidity
within a period p.

When receiving data sets coming from its member nodes at each period, CH
computes the variation between every pair of sets. Therefore, it uses the one way
Anova to test whether or not the means of every pair are equal. In case that a
pair of sets notices low differences variance, CH considers that the two member
nodes generate redundant data. After identifying all pairs of redundant sets, CH
uses selecting sets algorithm proposed in the later subsection to select final sets
to be sent to the sink, while conserving the integrity of information.

We suppose that measures generated by each member node i at each period
p are independent, then we denote by Yi and σ2

i the mean and the variance of
the set Mi generated by the member node i, and by Y the mean of the pair of
sets (Mi,Mj) generated by the member node i and j respectively as follows:

Yi =
1

Cardw(Mi)

|Mi|∑
k=1

(
yik × wgt(yik)

)
, σ2

i =
1

Cardw(Mi)

|Mi|∑
k=1

(
wgt(yik)× (yik − Yi)2

)
,

Y =
1

Cardw(Mi)

|Mi|∑
k=1

(
yik × wgt(yik)

)
+

1

Cardw(Mj)

|Mj |∑
k=1

(
yjk × wgt(yjk)

)
,

where yik ∈Mi and yjk ∈Mj .
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Since Cardw(Mi) = Cardw(Mj) = T :

Yi =
1

T

|Mi|∑
k=1

(
yik × wgt(yik)

)
, σ2

i =
1

T

|Mi|∑
k=1

(
wgt(yik)× (yik − Yi)2

)
,

Y =
1

2× T

( |Mi|∑
k=1

(
yik × wgt(yik)

)
+

|Mj |∑
k=1

(
yjk × wgt(yjk)

))
,

where yik ∈Mi and yjk ∈Mj .

The total variation (ST ), in a pair of sets, is the sum of the variation (SR)
within each set and the variation (SF ) between the sets. SF represents what is
often called “explained variance” or “systematic variance”. We can think of this
as the variance that is due to the independent variable, the difference among the
two sets. For example the difference between measures in two or more different
sets. SR represents what is often called “error variance”. This is the variance
within sets, variance that is not due to the independent variable. For example,
the difference between measures in the same set. The whole idea behind the
analysis of variance, in a pair of sets, is to compare the ratio of the variance
between the sets to the variance within each set in this pair. If the variance
caused by the interaction between the measures, in a pair of sets, is much larger
than the variance that appears within the sets, then it is because the means
arent the same. Let us consider:

ST = SR+ SF ⇒

{i,j}∑
l

|Ml|∑
k=1

(
wgt(ylk)×(ylk−Y )2

)
=

{i,j}∑
l

|Ml|∑
k=1

(
wgt(ylk)×(ylk−Yl)

)2
+T

{i,j}∑
l

(Yl−Y )2

(1)

4.2 Mean’s Period Verification

In this section, we use three tests in the Anova model (Fisher, Tukey and
Bartlett), to compute the means and the variances for every pair of sets, then
to decide if the sets in this pair are redundant or not.

4.2.1 Fisher Test

The Fisher’s test or F -test is a statistical hypothesis test for testing the equality
of two variances by taking the ratio of the two variances and ensuring that this
ratio does not exceed a certain theoretical value (find in Fisher’s table). In the
case of PSN, we compare, in a pair of sets, the ratio of the variance between the
sets (SF) to that within each set in this pair (SR).
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The general formula for the F -test is:

F =
SF/(J − 1)

SR/(N − J)

where J is the number of compared sets and N is the number of total mea-
sures in the compared sets. Therefore, J is equal to 2 in our case while N is
equal to 2× T (because Cardw(Mi) = Cardw(Mj) = T ).

Then, we deduce:

F = 2× (T − 1)× SF

SR
(2)

For each pair of sets, the CH will test the hypothesis that means of sets
are the same or not. If the hypothesis is correct then, F will have a Fisher
distribution, with F (1, 2×(T −1)) degrees of freedom. The hypothesis is rejected
if the F calculated from the measures is greater than the critical value of the
F distribution for some desired false-rejection probability (risk α). Let Ft =
F1−α(1, 2× (T − 1)).

The decision is based on F and Ft :

– if F > Ft the hypothesis is rejected with false-rejection probability α, and
the variance between the sets are significative.

– if F ≤ Ft the hypothesis is accepted.

4.2.2 Tukey Test

The Tukey’s post-hoc test, proposed by Hall, R. [25], is a single-step multiple
comparison procedure and statistical test. It can be used to calculate the dif-
ference between the means of two or multiple sets. Tukey’s test works by defin-
ing a value known as Honest Significant Difference (HSD). HSD represents the
minimum distance between the means of two sets to be considered statistically
significant.

Tukey’s test can be applied to a pair of sets (Mi,Mj) based on the following
equations:

SStotal =

{i,j}∑
l

|Ml|∑
k=1

(
wgt(ylk)× y2lk

)
−

(∑{i,j}
l

∑|Ml|
k=1

(
wgt(ylk)× ylk

))2
2× T

(3)

SSamong =

(∑|Mi|
k=1

(
wgt(yik)× yik

))2
+
(∑|Mj |

k=1

(
wgt(yjk)× yjk

))2
T

−

(∑{i,j}
l

∑|Ml|
k=1

(
wgt(ylk)× ylk

))2
2× T

(4)
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SSwithin = SStotal − SSamong; dfamong = 1; dfwithin = 2× T − 2

MSamong =
SSamong
dfamong

; MSwithin =
SSwithin
dfwithin

; F =
MSamong
MSwithin

Where:

– SSwithin : Sum of squares within the pair of sets (Mi,Mj),
– SSamong : Sum of squares between the sets in the pair (Mi,Mj),
– MSwithin : Mean squares within the pair of sets (Mi,Mj),
– SSamong : Sum of squares between the sets in the pair (Mi,Mj).

Therefore, when we calculate F we check to see if it is statistically signifi-
cant based on studentized range distribution table with appropriate degrees of
freedom Ft = df(dfamong, dfwithin). The decision is based on F and Ft:

– if F > Ft the hypothesis is rejected with false-rejection probability α, and
the variance between the sets Mi and Mj are significative.

– if F ≤ Ft the hypothesis is accepted.

4.2.3 Bartlett Test

The Bartlett’s test [26] is used to test if two or multiple data sets are from popula-
tions with equal variances. Equal variances across data sets is called homogeneity
of variances. Some statistical tests, for example the analysis of variance, assume
that variances are equal across data sets. The Bartlett test can be used to ver-
ify that assumption. Bartlett’s test is used to test the null hypothesis, H0 that
variances of all data sets are equal against the alternative that at least two are
different. In our case, we test the hypothesis H0 for every pair of sets (Mi,Mj)
each having a size T and with variances σ2

i and σ2
j respectively. Bartlett’s test

statistic is:

F =
2× (T − 1) ln(σ2

p)− (T − 1)(lnσ2
i + lnσ2

j )

λ
(5)

where :

λ = 1 +
1

2× (T − 1)
(6)

and σ2
p is the pooled variance, which is a weighted average of the period

variances and it is defined as:

σ2
p =

1

2× (T − 1)
× (σ2

i + σ2
j )
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Bartlett’s test has approximately a (J − 1) degrees of freedom where J is
equal to 2 in our case. Thus the null hypothesis is rejected if F > TJ−1,α (where
TJ−1,α is the upper tail critical value for the TJ−1 distribution). We suppose
that Ft = TJ−1,α, thus the decision is based on the following rule:

– if T > Ft the hypothesis is rejected with false-rejection probability α, and
the variance between the sets Mi and Mj are significative.

– if T ≤ Ft the hypothesis is accepted.

4.3 Aggregation at the CH level

In this section, we present the algorithms that follow each CH to find redundant
data sets based on Anova model, then to remove redundancy before sending
them to the sink.

4.3.1 Sets redundancy searching

In our technique, one way Anova model is used to find all pairs of sets that have
low variance between their measures. Algorithm 1 describes how these pairs are
found in our technique. For every pair of sets (Mi,Mj), we calculate the corre-
sponding F score as described in each test presented before (line 4). Then, we
search the corresponding threshold Ft based on the probability table for each
test with the appropriate degrees of freedom (line 5). Finally, we conclude that
Mi and Mj are redundant sets in the case where the variance between their
measures (F ) is less than the threshold Ft (line 6).

Algorithm 1 CH aggregation algorithm.

Require: Set of measures’ sets M = {M1,M2...Mn}.
Ensure: All pairs of sets (Mi,Mj), such that F ≤ Ft.
1: S ← ∅
2: for each set Mi ∈M do
3: for each set Mj ∈M such that Mj 6= Mi do
4: compute F for (Mi,Mj)
5: find Ft
6: if F ≤ Ft then
7: S ← S ∪ {(Mi,Mj)}
8: end if
9: end for

10: end for
11: return S
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4.3.2 Redundant sets reduction

After identifying all pairs of redundant sets, the CH deletes redundant data sets
sent from neighboring sensors in order to reduce the amount of data transmitted
to the sink while conserving the integrity of information. Algorithm 2 shows how
the CH selects the data sets to be sent to the sink among the pairs of redundant
received sets. For each similar pair of set, the CH chooses the one having the
highest cardinality (line 3), then it sorts it in increasing order of the measures to
accelerate a measure search4. After that, for each measure in the other set, CH
searches for its similar in the highest set and merges its weight to the similar one
found (line 9). Otherwise, CH adds the measure with its weight to the highest
set (line 11). The objective of merging the weights of similar measures is to save
the information without any loss. Finally, the CH removes all pairs of redundant
sets that contain Mi or Mj from the set of pairs (which means it will not check
them again) (line 15).

Algorithm 2 selecting sets algorithm.

Require: All pairs of sets (Mi,Mj), such that F ≤ Ft.
Ensure: List of selected sets, L.
1: L← ∅
2: for each pair of sets (Mi,Mj) do
3: Consider|Mi| ≥ |Mj |
4: Mi ← sort(Mi, |Mi|), Mi is sorted in increasing order of the measures
5: for k = 1→ |Mj | do
6: Search similar of Mj [k] in Mi

7: find Mi[l]/ Similar(Mj [k],Mi[l]) = 1
8: if Mi[l] exists then
9: wgt(Mi[l])← wgt(Mi[l]) + wgt(Mj [k])

10: else
11: Mi ←Mi ∪ {(Mj [k], wgt(Mj [k]))}
12: end if
13: end for
14: L← L ∪ {Mi}
15: Remove all pairs of sets containing one of the two sets Mi and Mj

16: end for

5 Performance Evaluation

In this section, we present the experimental results which evaluate the per-
formance of our proposed technique. The objective of these experiments is to
confirm that our technique can successfully achieve desirable results for energy
conservation in PSNs. Therefore, we used the publicly available Intel Lab dataset
which contains data collected from 46 sensors deployed in the Intel Berkeley

4 in our experiments we used the binary search.
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Research Lab [27]. Mica2Dot sensors with weather boards collect timestamped
topology information, along with humidity, temperature, light and voltage values
once every 31 seconds. The data was collected using TinyDB in-network query
processing system built on the TinyOS platform. In our experiments, we used a
file that includes a log of about 2.3 million readings collected from these sensors.
For the sake of simplicity, in this paper we are interested in one field of sensor
measurements: the temperature. We assume that all nodes send their data to a
common CH placed at the center of the Lab. First, each node reads periodically
real measures while applying the member node aggregation. At the end of this
step, each node sends its set of measures/weights to the CH which in turn applies
CH aggregation to theses sets. Furthermore, we compare our technique to the
PFF technique proposed by Bahi, J. et al. [21] with two values of the Jaccard
similarity threshold t (0.75 and 0.8). We have implemented both techniques on a
java simulator and we compared the results of 15 periods in all the experiments.

We evaluated the performance using the following parameters:

– δ, which defines the Similar function between two measurements. We varied
δ to : 0.03, 0.05, 0.07 and 0.1.

– T , the number of sensor measurements taken by each sensor node during a
period. We varied T to: 200, 500, 1000 and 2000.

– α, the false-rejection probability in the Anova model which we varied to 0.01
and 0.05.

5.1 Percentage of data sent to the CH

In the first aggregation level, each member node searches the similarity between
measures captured at each period, using the Similar function, and assigns for
each measure its weight. Therefore, the result of the aggregation in this level
depends on the chosen threshold δ, and the number of the collected measures in
period T . Fig. 3 shows the percentage of data sent by each node to the CH at
each period with and without applying the first aggregation level. The obtained
results show that, at each period, each node reduces more than 68% the amount
of collected data after the first aggregation level while it sends all the collected
data, e.g. 100%, without applying this aggregation level. Therefore, our technique
can successfully eliminate redundant measures at each period and reduce the
amount of data sent to the CH. We can observe also that at the first aggregation
level, data redundancy increases when T or δ increases. This is because, Similar
function will find more similar measures to be eliminated at each period.

5.2 Number of pairs of redundant sets generated at the CH

When receiving all the sets from its member nodes at the end of each period, CH
applies the second aggregation level to find pairs of redundant sets. Fig. 4 shows
the obtained number of pairs of redundant sets when applying one way Anova
model with the three tests presented above, compared to the number of similar
sets obtained when applying PFF. In Fig. 4(a and b), we fixed α to 0.01 and we
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Fig. 3. Percentage of data sent to the CH.

varied T to 200 and 1000 respectively, while in Fig. 4(c and d) we fixed T to 500
and we varied α to 0.01 and 0.05 respectively. The obtained results show that,
CH finds more redundant sets when applying our technique in all the cases. This
is because, the variance condition in the one way Anova model is more flexible
compared to the similarity condition used in PFF.

Based on the obtained results, we can also deduce:

• Bartlett test finds more pairs of redundant sets compared to Tukey and
Fisher tests. This is because Bartlett test is more flexible regarding the vari-
ance between measures (Equation (5)) compared to the variance calculated
in Fisher (Equation (2)) and Tukey (Equations (3) and (4)).

• The obtained number of pairs of redundant sets decreases in the three tests
when α increases. This is because, when the risk α increases the null hy-
pothesis will have higher probability of being rejected.
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(b) α = 0.01, T = 1000
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(c) T = 500, α = 0.01
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Fig. 4. Number of pairs of redundant sets.

5.3 Percentage of sets sent to the sink

In this section, our objective is to show how the CH is able to eliminate redundant
sets at each period using redundant data reduction algorithm. Fig. 5 shows the
percentage of the remained sets that will be sent to the sink after eliminating
the redundancy. Fig. 5(a and b) show the results when we fixed α to 0.01 and
varied T to 200 and 1000 respectively, while Fig. 5(c and d) show the results
when we varied α to 0.01 and 0.05 and fixed T to 500. We can show clearly that,
our technique sends much less sets at each period to the sink with the different
parameters. This is because, CH found more redundant sets using the variance
condition (Fig. 4).

Based on the obtained results, we can also deduce:

• Bartlett test sends the less percentage of sets to the sink since it found more
redundant sets compared to Fisher and Tukey tests (see Fig. 4).
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• The percentage of sets sent to the sink for the three tests is almost fix
when fixing T and increasing δ. This is because, the data set saves the same
variance when changing δ.

• CH eliminates more redundant sets in the three tests when decreasing α.
This is because when α decreases, the number of pairs of redundant sets
increases (see Fig. 4(c and d)).
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(a) α = 0.01, T = 200
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(b) α = 0.01, T = 1000
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(c) T = 500, α = 0.01
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Fig. 5. Percentage of sets sent to the sink.

5.4 Data accuracy

Eliminating redundant data without losing accuracy is an important challenge
for the WSN. Data accuracy represents the measure “loss rate” taken by sen-
sor nodes and not received by the sink [21]. Since CH merges the weights of
similar measures in the redundant sets in one record compared to PFF which
removes one between them, the integrity of the information is totally saved in
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our technique. This fact is obtained independently from the values of T , δ and α,
whereas the percentage of loss measures in PFF can up to 5.4 for some values of
the parameters [21]. Therefore, we can consider that our technique decreases the
amount of redundant data forwarded to the sink without any loss of information
integrity.

5.5 Energy consumption at the CH

In this section, our objective is to study the energy cost at the CH level. There-
fore, we used the same radio model as discussed in [27]. In this model, a radio
dissipates Eelec = 50nJ/bit to run the transmitter or receiver circuitry and
βamp = 100 pJ/bit/m2 for the transmitter amplifier. Radios have power control
and can expend the minimum required energy to reach the intended recipients
as well as they can be turned off to avoid receiving unintended transmissions.
Equations used to calculate transmission costs and receiving costs for a k-bit
messages and a distance d are respectively shown in Equations (7) and (8):

ETX(k, d) = Eelec × k + βamp × k × d2 (7)

ERX(k) = Eelec × k (8)

Recall that the CH will receive n data sets coming from its member nodes
at each period. The size of each set is equal to the number of measures sent
in addition to the number of weights sent. We consider that each measure or
weight is equal to 64 bits. Therefore, the energy consumption at the second level
will be equal to the energy consumed when the CH receives the data sets from
its member in addition to the energy consumed when it sends them after the
aggregation. Consequently, after 15 periods as we calculated in our experiments,
the total energy consumption at the CH is calculated as shown in Equation (9)

ECH(m, d) = ERXtotal
+ ETX(m, d) =

(
2× 64× Eelec ×

n∑
i=1

|Mi|
)

+(
64× Eelec ×m+ 64× βamp ×m× d2

)
(9)

where m is the total number of the measures with their weights after the
aggregation in all the sets and d is the distance between the CH and the sink.

Fig. 6 shows the energy consumption comparison between our technique and
the PFF at the CH level when fixing α and varying T (Figs. a and b) and when
fixing T and varying α (Figs. c and d). The obtained results show that our tech-
nique minimizes the energy consumption of the CH up to 45% when compared
to the PFF. These results are obtained due to the fact that our technique elim-
inates more redundant sets compared to PFF (see Fig. 5). Therefore, we can
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consider that our technique decreases the amount of redundant data forwarded
to the sink and performs an overall lossless process in terms of information and
integrity by conserving the weight of each measure.

Based on the obtained results, we can also deduce:

• Bartlett test decreases energy consumption of the CH more than the other
tests.

• The energy consumption at the CH is more minimized when α decreases.
This is because, when α decreases the percentage of sets sent to the sink
decreases (see Fig. 5(c and d)).
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Fig. 6. Energy consumption at the CH.

5.6 Discussion

In this section, we discuss the results for the three tests used with ANOVA model
in terms of conserving energy of the sensors. First, by fixing α and varying T as
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shown in Fig. 6(a, b and c), we can deduce that Bartlett test allows more energy
saving than Fisher and Tukey tests when the period is small (e.g. T equals to
200 and 500 in Figs. a and c). Contrarily, Fisher test gives better results for
large periods, e.g. T is greater than 1000 in Fig. c. This is because, Bartlett
test is more flexible regarding the variance between measures in small periods
(Equation (5)) while Fisher test is more flexible in large periods (Equation (2)).

On the other hand, by fixing T and varying α as shown in Fig. 6(c and
d), the energy consumption is more minimized in the three tests when α is
small, e.g. α = 0.01 in Fig. c. This is because, the energy consumption highly
depends on the number of pairs of redundant sets eliminated which increases
when α decreases. Consequently, the null hypothesis will have higher probability
of being rejected when α decreases. Furthermore, the general trend observed
that is Bartlett test gives better results, in terms of energy consumption, when
T is small while Fisher test gives better results when T is large.

6 Conclusion and Future Work

In this paper, we proposed a new technique for data aggregation in PSN that
enforces both energy consumption and integrity of the aggregated data. Our
proposed technique consists of two-level of data aggregation which applies at each
cluster in a clustering network architecture. The first level is applied at the node
itself to eliminate redundancy from the collected raw data before sending them
to the CH. At the second level, CH searches nodes that generate redundant data
sets based on the dependence of conditional variance with three different Anova
tests. Comparing to other existing data aggregation techniques, experimental
results on real sensor data show the effectiveness of our technique in terms of
energy consumption and information integrity.

A direction for future work is to adapt our proposed technique to take into
consideration reactive periodic sensor networks, where sensor nodes operate with
different sampling rate. In periodic applications the dynamics of the monitored
condition or process can slow down or speed up; and to save more energy the sen-
sor node can adapt its sampling rates to the changing dynamics of the condition
or process.
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