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Singularity of type D4 arising from four qubit systems

Frédéric Holwecka), Jean-Gabriel Luqueb) Michel Planatc)

An intriguing correspondence between four-qubit systems and simple singularity of

type D4 is established. We first consider the algebraic variety X of separable states

within the projective Hilbert space P(H) = P15. Then, cutting X with a specific

hyperplane H , we prove that the X-hypersurface, defined from the section X ∩H ⊂

X, has an isolated singularity of type D4; it is also shown that this is the “worst-

possible” isolated singularity one can obtain by this construction. Moreover, it is

demonstrated that this correspondence admits a dual version by proving that the

equation of the dual variety of X, which is nothing but the Cayley hyperdeterminant

of type 2× 2× 2× 2, can be expressed in terms of the SLOCC invariant polynomials

as the discriminant of the miniversal deformation of the D4-singularity.
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I. INTRODUCTION

Several branches of geometry and algebra tend to play an increasing role in quantum in-

formation theory. We have in mind algebraic geometry for describing entanglement classes

of multiple qubits6,11,12,21, representation theory and Jordan algebras for entanglement and

the black-hole/qubit correspondence3–5, and geometries over finite fields/rings for deriv-

ing point-line configurations of observables relevant to quantum contextuality17,22,23. The

topology of hypersurface singularitites, and the related Coxeter-Dynkin diagrams, represent

another field worthwhile to be investigated in quantum information, as shown in this paper.

Dynkin diagrams are well known for classifying simple Lie algebras, Weyl groups, sub-

groups of SU(2) and simple singularities, i.e. isolated singularities of complex hypersurfaces

that are stable under small perturbations. More precisely, if we consider simple-laced Dynkin

diagrams, i.e. diagrams of type A−D −E, we find objects of different nature classified by

the same diagrams:

Type Lie algebra Subgroup of SU(2) Hypersurface with simple singularity

An sln+1(C) cyclic group xn+1
1 + x2

2 + · · ·+ x2
k = 0

Dn so2n(C) binary dihedral group xn−1
1 + x1x

2
2 + x2

3 + · · ·+ x2
k = 0

E6 e6 binary tetrahedral x4
1 + x3

2 + x2
3 + · · ·+ x2

k = 0

E7 e7 binary octahedral x3
1x2 + x3

2 + x2
3 + · · ·+ x2

k = 0

E8 e8 binary icosahedral x5
1 + x3

2 + x2
3 + · · ·+ x2

k = 0

A challenging question in mathematics is to understand these ADE-correspondences by

establishing a direct construction from one class of objects to the other. For instance, the

construction of surfaces with simple singularities from the corresponding subgroup of SU(2)

is called the McKay correspondence. A construction due to Grothendieck allows us to recover

the simple singularities of a given type from the nullcone (the set of nilpotent elements) of

the corresponding simple Lie algebra. For an overview of such ADE correspondences, see

Ref24,25 and references therein.

Another construction connecting simple Lie algebras and simple singularities is due to

Knop14. In his construction, Knop considers a unique smooth orbit, X, for the adjoint

action of Lie group G on the projectivization of its Lie algebra P(g) and cuts this variety

by a specific hyperplane. The resulting X-hypersurface has a unique singular point of the

same type as g.
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Looking at ADE-correspondences in the context of QIT is a way to understand the

role played by those diagrams in this field. In different classification schemes of four-qubit

systems, the Dynkin diagram D4 has already appeared thanks to the role played by the

Lie algebra so(8) (that is the type D4). For instance, Verstraete et al’s classification26 is

based on the classification of the SO(4)×SO(4) ⊂ SO(8) orbits onM4(C). Chterental and

Djokovic7 use the same group action and refer to (Remark 5.3 of Ref7) the Hilbert space of

four qubits as a subspace of so(8) whose SLOCC orbits arise from the trace of the adjoint

SO(8) orbits. In their study of the four-qubit classification from the string theory point of

view, Borsten et al2 employ a correspondence between nilpotent orbits of so(4, 4) (the real

form of so(8) with signature (4, 4)) and nilpotent orbits of four-qubit systems. Last but not

least, the relation between so(8) and four-qubit systems has been pointed out by Lévay15 in

his paper on the black-hole/qubit correspondence. In this paper Lévay describes the Hilbert

space of four qubits as the tangent space of SO(4, 4)/(SO(4)× SO(4)).

In the present paper, we will establish a correspondence between four-qubit systems and

D4-singularities by using a construction inspired by Knop’s paper. In other words, we will

establish an ADE-type correspondence between SO(4, 4) and singularities of type D4 using

the Hilbert space of four qubits.

Let H = C2 ⊗ C2 ⊗ C2 ⊗ C2 be the Hilbert space of four-qubit systems. Up to scalar

multiplication, a four-qubit |Ψ〉 ∈ H can be considered as a point of the projective space

P15 = P(H). The set of separable states in H corresponds to tensors of rank one, i.e. tensors

which can be factorized as |Ψ〉 = v1 ⊗ v2 ⊗ v3 ⊗ v4 with vi ∈ C2. Adopting the notation

{|0〉, |1〉} for the single-qubit computational basis and |ijkl〉 = |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 for the

four-qubit basis, a general four-qubit state can be expressed as

|Ψ〉 =
∑

0≤i,j,k,l≤1

aijkl|ijkl〉 with aijkl ∈ C.

Let G be the group of Stochastic Local Operation and Classical Communication (SLOCC)

of four qubits [acting on P(H)], i.e. G = SL2(C)× SL2(C) × SL2(C) × SL2(C). It is well

known that G acts transitively on the set of separable states. The projectivization of the

corresponding orbit – also called the highest weight orbit – is the unique smooth orbit X

for the action of G on P(H), that is

X = P(G.|0000〉) = {The set of separable states} ⊂ P15.
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A parametrization of X is given by the Segre embedding of four projective lines11,12

φ :





P1 × P1 × P1 × P1 → P15

([w0 : w1], [x0 : x1], [y0 : y1], [z0 : z1]) 7→ [w0x0y0z0 : · · · : WJ : · · · : w1x1y1z1]

where WJ = wixjykzl for J = {i, j, k, l} ∈ {0, 1}4 and the monomial order is such that

WJ1 ≺WJ2 if 8i1 + 4j1 + 2k1 + l1 ≤ 8i2 + 4j2 + 2k2 + l2.

A hyperplane H ⊂ P(H) is the set of states |Φ〉 ∈ P(H) on which a linear form LH ∈ H∗

vanishes. Given H ⊂ P(H), the hyperplane section X ∩ H ⊂ X is the hypersurface of

X defined by the restriction of LH to X. Due to the duality of Hilbert spaces, for any

H ⊂ P(H) there exists a state |Ψ〉 ∈ P(H) such that H is defined by the linear form 〈Ψ|. In

what follows, we will often identify the hyperplane H and the linear form defining it, and

write H = 〈Ψ| =
∑

0≤i,j,k,l≤1 hijkl〈ijkl| with hijkl ∈ C. The hyperplane section X ∩H , or,

equivalently, X ∩ 〈Ψ|, will be the hypersurface of X given by

〈Ψ|φ(P1 × P1 × P1 × P1)〉 =
∑

0≤i,j,k≤1

hijklwixjykzl = 0. (1)

To state our main Theorem, let us recall that the ring of polynomials invariant under G

is generated by 4 invariants18. Let us denote by Ĩ1, Ĩ2, Ĩ3, Ĩ4 a choice of four generators of the

ring of invariants (that choice will be explained in Section IIIB), i.e. C[H]G = C[Ĩ1, Ĩ2, Ĩ3, Ĩ4].

The quotient map Φ : H → C4 is defined by Φ(x) = (Ĩ1(x), Ĩ2(x), Ĩ3(x), Ĩ4(x)). The main

result of this article is the following theorem:

Theorem 1. Let H = 〈Ψ| be a hyperplane of P(H) tangent to X and such that X ∩ H

has only isolated singular points. Then the singularities are either of types A1, A2, A3, A4,

or of type D4, and there exist hyperplanes realizing each type of singularity. Moreover, if

we denote by X̂∗ ⊂ H the cone over the dual variety of X, i.e. the zero locus of the Cayley

hyperdeterminant of format 2 × 2 × 2 × 2, then the quotient map Φ : H → C4 is such

that Φ(X̂∗) = ΣD4
, where ΣD4

is the discriminant of the miniversal deformation of the

D4-singularity.

The paper is organized as follows. In Section II, we will give the definition of a simple

singularity and the invariants that follow from the Arnol’d classification1 (Section IIA).

Then we will compute the singularity type of any hyperplane section of the set of separable

states featuring only isolated singularities (see Section IIB Proposition II.1). In Section
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III, we will establish a dual version of Proposition II.1. We will first define the notion of

discriminant of a singularity (see Section IIIA) and then show how it allows us to give a

new expression for the Cayley hyperdeterminant ∆4 (Section IIIB) and prove Proposition

III.1 about the relation between ∆4 and ΣD4
. Propositions II.1 and III.1 lead to the proof

of Theorem 1.

II. SIMPLE SINGULARITIES AND HYPERPLANE SECTIONS OF

SEPARABLE STATES

A. Simple singularities following Arnol’d classification

Simple singularities have been studied from an algebraic geometrical viewpoint as ratio-

nal double points of algebraic surfaces, Du Val singularities, and from a complex analytic

perspective as critical points of holomorphic functions in several variables. These approaches

lead to many equivalent characterizations of what a simple singularity is9. Here, we select the

complex analytic approach introduced by Vladimir Arnol’d. We first recall the ingredients

of Arnol’d classification of simple singularities1.

Let us denote by (f, 0) the germ of a holomorphic function, f : (Ck, 0) → (C, 0) at 0,

and by Ok the set of all those germs. We consider the group Dk of biholomorphic maps

g : (Ck, 0) → (Ck, 0) acting of Ok such that g.f = f ◦ g−1. A singularity is an equivalence

class of a germ (f, 0) such that
∂f

∂xi

(0) = 0 for i = 1, . . . , k. In other words, a singularity is

an orbit in Ok and we will write [(f, 0)] for the orbit of the representative (f, 0). We denote

by Sk ⊂ Ok the set of all singular germs. Let f be a representative of a singularity and

let us denote by A =

(
∂2f

∂xi∂xj

(0)

)

i,j

the corresponding Hessian matrix. The corank of the

germ (f, 0) is the dimension of the kernel of A. From the definition of the action of Dk it

follows that equivalent germs will have the same corank, which means that the corank is an

invariant of a singularity.

Definition II.1. A singularity is said to be non-degenerate, or quadratic, or of the Morse

type, if, and only if, its corank is zero.

The Morse Lemma19 ensures that if (f, 0) is a non-degenerate singular germ, then f ∼

x2
1+ · · ·+x2

k. The non-degenerate singularity is a dense orbit in Sk. Assume that [(f, 0)] is a

singularity of corank l, a generalization of Morse’s Lemma1 tells us that f ∼ h(x1, . . . , xl) +
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x2
l+1 + · · · + x2

k and leads to an equivalence relation between germs of distinct number of

variables.

Definition II.2. Two function germs f : (Ck, 0) → (C, 0) and g : (Cm, 0) → (C, 0), with

k < m, are said to be stably equivalent if, and only if, f(x1, . . . , xk) + x2
k+1 + · · · + x2

m ∼

g(x1, . . . , xm).

Remark II.1. In terms of the last definition we can compare singularities of functions

which do not have the same number of variables. Adding quadratic terms of full rank in

new variables do not affect the classification of the singular type.

Another important invariant of singular germs is the famous Milnor number19. Let (f, 0)

be a singular germ and consider I∇f = Ok <
∂f

∂x1

(0), . . . ,
∂f

∂xk

(0) > the gradient ideal.

Definition II.3. The Milnor number µ of a singular germ (f, 0) is equal to the dimension

of the local algebra of (f, 0), i.e. the quotient of the algebra Ok by I∇f ,

µ = dimC (Ok�I∇f) .

The critical point 0 of the function f will be isolated if, and only if, its Milnor number is

finite.

Let us now state what, in the sense of Vladimir Arnol’d, a simple singularity is .

Definition II.4. The orbit [(f, 0)] is a simple singularity if, and only if, a sufficiently small

neighborhood of (f, 0) intersects Sk with a finite number of non-equivalent orbits.

Remark II.2. If we consider a representative of a non-degenerate singularity f ∼ x2
1 +

· · ·+ x2
k, a small perturbation of f in Sk, i.e. f + εh with h ∈ Sk, will still have a Hessian

of full rank for ǫ small. Thus f ∼ f + εh, which means that non-degenerate singularity is

the most stable type of singularity. We can rephrase Definition II.4 by saying that [(f, 0)] is

a simple singularity if, and only if, a small perturbation of a representative f will only lead

to a finite number of non-equivalent singularities.

In his classification of simple singularities1, Arnol’d proved that being simple is equivalent

to the following conditions:

• µ < +∞,
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• corank

(
∂2f

∂xi∂xj

(0)

)
≤ 2,

• if corank

(
∂2f

∂xi∂xj

(0)

)
= 2 the cubic term in the degenerate direction of the Hessian

is non-zero,

• if corank = 2 and the cubic term is a cube then µ < 9.

With these conditions Arnol’d obtained the classification of simple singularities into five

different types (Table I).

Type An Dn E6 E7 E8

Normal forms xn+1 xn−1 + xy2 x3 + y4 x3 + xy3 x3 + y5

Milnor number n n 6 7 8

Table I. Simple singularities.

Remark II.3. The functions given in Table I are stably equivalent to the hypersurfaces

given in the introduction. They are also clearly equivalent to the rational double points of

algebraic surfaces.

The classification given by Arnol’d furnishes an algorithm to test if a singularity is simple

or not.

Algorithm II.1. Let (f, 0) be a singularity.

• Compute µ; if µ =∞ the singularity is not isolated (and not simple),

• If not, compute r = corank(Hess(f, 0)).

– if r ≥ 3, the singularity is not simple,

– if r = 1, the singularity is of type Aµ,

– if r = 2, then

∗ if the cubic term in the degenerate directions is non-zero and is not a cube,

then the singularity is of type Dµ,

∗ if the cubic term in the degenerate directions is a cube and µ < 9, then the

singularity is of type Eµ,
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∗ if not, the singularity is not simple.

In the next section we will follow this algorithm to compute the singular type of a given

hyperplane section.

B. Computing singularities of hyperplane sections

Before we prove the first proposition, let us consider two examples in order to explain

how we calculate the singular type of a hyperplane section.

Example II.1. Let H ∈ P(H∗) be a hyperplane, or a linear form, given by H = 〈Ψ1| =

〈0011|+ 〈1100|. The corresponding hyperplane section X ∩H is tangent to |1111〉. Indeed,

a tangent vector to X at |1111〉 will be of the form |v〉 = α|0111〉 + β|1011〉 + γ|1101〉 +

δ|1110〉 and it is clear that 〈Ψ1|v〉 = 0. The homogeneous form of the linear section X ∩H

corresponds to its restriction to (the cone over) X, that is to

f(w0, w1, x0, x1, y0, y1, z0, z1) = w0x0y1z1 + w1x1y0z0.

In a non-homogeneous form f can be written in the chart corresponding to w1, x1, y1, z1 = 1

as f(w0, x0, y1, z1) = w0x0 + y0z0. In this chart the point |1111〉 has coordinates (0, 0, 0, 0)

and (we can forget about the subscripts) the hyperplane section is a hypersurface of X

defined (locally) by the equation

f(w, x, y, z) = wx+ yz = 0.

This hypersurface has a unique singularity

(
∂f

∂w
(a),

∂f

∂x
(a),

∂f

∂y
(a),

∂f

∂z
(a)

)
= (0, 0, 0, 0) ⇔

a = (0, 0, 0, 0), which corresponds to |1111〉, and the Hessian matrix




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




is of the full rank. One concludes that (X ∩H, |1111〉) is an isolated singularity of type A1

and we denote it by (X ∩H, |1111〉) ∼ A1, or, equivalently, by (X ∩ 〈Ψ1|, |1111〉) ∼ A1.
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Example II.2. Let us consider the hyperplane section defined by H = 〈Ψ2| = 〈0000| +

〈1011| + 〈1101| + 〈1110| ∈ H∗. This section X ∩ H is tangent to |0111〉. It is clear

that a tangent vector to X at |0111〉 will be of the form |v〉 = α|1111〉 + β|0011〉 +

γ|0101〉 + |0110〉 and H|v〉 = 0. The homogeneous linear form corresponding to X ∩ H

is f(w0, w1, x0, x1, y0, y1, z0, z1) = w0x0y0z0 + w1x0y1z1 + w1x1y0z1 + w1x1y1z0. In the chart

w0 = x1 = y1 = z1 = 1 the form becomes a hypersurface defined by

xyz + wx+ wy + wz = 0

and (0, 0, 0, 0) is the only singularity of this hypersurface. Using the software SINGULAR8

one can check that µx=(0,0,0,0)(f) = 4 and the rank of the Hessian




0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0




is 2. Thus, we conclude that (X ∩H, |0111〉) ∼ D4, or, equivalently, (X ∩〈Ψ2|, |0111〉) ∼ D4

(i.e. the unique isolated singularity where the corank equals 2 and µ = 4).

We can now prove our first proposition.

Proposition II.1. Let X ∩ H be a singular hyperplane section of the variety of separable

states for four-qubit systems, i.e. X = P1 × P1 × P1 × P1, with an isolated singularity

x ∈ X ∩H. Then the singularity (X ∩H, x) will be of type A1, A2, A3 or D4 and each type

can be obtained by such a linear section of X.

Proof. To prove Proposition II.1, we compute the singular type of all possible hyperplane

sections of X. As the variety X is G-homogeneous, the singular type of X ∩ H will be

identical for any representative of the G orbit of H . By the duality of the Hilbert space, a

hyperplane H corresponds to a point h ∈ P(H). But the G orbits of P(H) have been classified

by Verstraete et al.26 (with a corrected version provided by Chterental and Djokovic7).

According to Verstraete et al.’s classification, the G-orbits of the four-qubit Hilbert space

consist of 9 families (3 families are parameter free and 6 of them depend on parameters) and

normal forms for each family are known7,26. From each of Verstraete et al.’s normal forms

|Ψ〉 we compute the corresponding hyperplane section X ∩ 〈Ψ|. Then we look at isolated
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singular points of each hyperplane section and we calculate the corresponding singular type

with a formal algebra system following the procedure described in examples II.1, II.2 and

Algorithm II.1. For the normal forms depending on parameters, the singular type of the

hyperplane sections will depend on values of the parameters. The results of our calculations

are given in Tables II and III and provide a proof of the proposition.✷

Verstraete et al.’s notation Hyperplane Singular type of the hyperplane section

L0
7⊕1

〈0000| + 〈1011| + 〈1101| + 〈1110| D4 (a unique singularity )

L0
5⊕3

〈0000| + 〈0101| + 〈1000| + 〈1110| non-isolated

L0
3⊕1

0
3⊕1

〈0000| + 〈0111| non-isolated

Table II. Hyperplanes and the corresponding sections which do not depend on parameters.

Remark II.4. Tables III, IV, V show that the classification of entangled states into 9

families can be refined according to the singular type of the corresponding section. The

singular type of the linear section X ∩ 〈Ψ| is an invariant of the G-orbit of |Ψ〉 and may

be used to distinguish two non-equivalent classes of entanglement. Thus, the values of

the parameters which distinguish the sections indicate how we can decompose further the

classification. However, to fully distinguish non-equivalent sections from their singular type,

it would be necessary to investigate more precisely the non-isolated singular sections.

Remark II.5. It is worthwile to point out that the different isolated singular types we

obtain by this construction (A1, A2, A3 and D4) are exactly the possible degenerations of

the D4-singularity. In particular, any small neighborhood of the singularity of type D4 will

meet, in Sk, the orbits corresponding to the singular types A1, A2 and A3 as shown in the

adjacency diagrams of Arnold’s classification (Corollary 8.7 in Ref1). The fact that D4 is

the “worst-possible” isolated singularity we get from the hyperplane sections of the set of

separable states will be lighted with Proposition III.1.
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Verstraete’s Hyperplane parameters Singular type

notation

La203⊕1
a(〈0000| + 〈1111|) + 〈0011| + 〈0101| + 〈0110| a generic A1

a = 0 non-isolated

La4 a(〈0000| + 〈0101| + 〈1010| + 〈1111|) a generic A3 (a unique singularity)

+i〈0001| + 〈0110| − i〈1011| a = 0 non-isolated

Lab3 a(〈0000| + 〈1111|) + a+b
2 (〈0101| + 〈1010|) a, b generic A2 (a unique singularity)

+a−b
2 (〈0110| + 〈1001|) a = b = 0 non-isolated

+ i√
2
(〈0001| + 〈0010| − 〈0111| − 〈1011|)

La2b2 a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉) a, b generic smooth section

+|0110〉 + |0011〉 a = 0 or b = 0 non-isolated

a = b = 0 non-isolated

Labc2
a+b
2 (〈0000| + 〈1111|) + a−b

2 (〈0011| + 〈1100|) a, b, c generic A1 (a unique singularity)

c(〈1010| + 〈0101|) + 〈0110| a = ±b A1

c = 0 A1

a = ±b = ±c non-isolated

a = c = 0 or b = c = 0 non-isolated

a = b = c = 0 non-isolated

Gabcd
a+d
2 (|0000〉 + |1111〉) + a−d

2 (|0011〉 + |1100〉) a, b, c, d generic smooth section

+ b+c
2 (|0101〉 + |1010〉) + b−c

2 (|0110〉 + |1001〉) see Table IV A1

see Table V non-isolated

Table III. Hyperplanes and the corresponding sections which do depend on parameters.

III. THE CAYLEY 2× 2× 2× 2 HYPERDETERMINANT AND THE

D4-DISCRIMINANT

Another fundamental concept associated with a simple singularity is its discriminant, i.e.

the locus that parametrizes the deformation of the singular germs. In this section, we will

show that the discriminant of the D4-singularity is linked to the dual variety, in the sense

of the projective duality, of the set of separable four-qubit states.
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A. Discriminant of the miniversal deformation of the singularity

Consider a holomorphic germ f : (Ck, 0) → (C, 0) with a simple isolated singularity of

Milnor number µ(f, 0) = n. A miniversal deformation1 of the germ f is given by

f +
∑

λigi,

where (g1, . . . , gn) is a basis of Ok�I∇f .

Definition III.1. The discriminant Σ ⊂ Cn is the subset of values (λ1, . . . , λn) ∈ Cn such

that the miniversal deformation f +
∑

λigi is singular, i.e.

Σ = {(λ1, . . . , λn) ∈ Cn,∆(f +

n∑

i=1

λigi) = 0},

where ∆ is the usual notion of discriminant.

Remark III.1. The discriminant parametrizes all singular deformations of (f, 0). It is

known28 that for hypersurfaces endowed with a simple singularity, the discriminant of the

singularity characterizes its type.

Example III.1. Let (f, 0) be a singularity of type An, i.e. f ∼ xn+1. Then O1�I∇xn+1 =<

1, x, . . . , xn−1 >. Thus, a miniversal deformation of f is

F (x, λ) = xn+1 + λ1x
n−1 + λ2x

n−2 + · · ·+ λn.

The corresponding discriminant is the hypersurface ΣAn
⊂ Cn defined by

∆(xn+1 + λ1x
n−1 + λ2x

n−2 + · · ·+ λn) = 0.

In the case where n = 2, i.e. when f ∼ x3 is a singularity of type A2, then its discriminant is

given by ∆(x3+λ1x+λ2) = 0, i.e. the discriminant is a cubic curve defined by −4λ3
1−27λ

2
2 =

0.

The following example will be useful to prove the main result of the next section.

Example III.2. Consider now a singular germ (f, 0) of type Dn; then f ∼ xn−1 + xy2.

A basis of the local algebra O2�I∇(xn−1+xy2) is (1, x, . . . , xn−2, y) and, hence, a miniversal

deformation is

F (x, y, λ) = xn−1 + xy2 + λ1x
n−2 + . . . λn−2x+ λn−1 + λny.
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Its discriminant is given by

∆(xn−1 + xy2 + λ1x
n−2 + . . . λn−2x+ λn−1 + λny) = 0. (2)

The following lemma proposes an alternative expression of the discriminant of the Dn

singularities.

Lemma 1. The discriminant of the miniversal deformation of f ∼ xn−1 + xy2 is the

hypersurface ΣDn
⊂ Cn defined by

∆(λ1, . . . , λn) = ∆(tn + λ1t
n−1 + · · ·+ λn−1 − (

1

2
λn)

2) = 0. (3)

Proof. Let us denote by Σ ⊂ Cn the locus defined by eq. (3). To prove that equations (2)

and (3) are equivalent, we will show that Σ = ΣDn
.

To this end, let us characterize the hypersurfaces Σ and ΣDn
. Given the definition of the

discriminant, the expression ∆(F (t, λ)) = 0 means there exists t0 such that F (t0) = 0 and
∂F

∂t
(t0) = 0. In other words, (λ1, . . . , λn) ∈ Σ if, and only if, there exists t0 such that





tn0 + λ1t
n−1
0 + · · ·+ λn−1t0 − (

1

2
λn)

2 = 0,

ntn−1
0 + (n− 1)λ1t

n−2
0 + · · ·+ λn−1 = 0.



 (4)

Similarly, (λ1, . . . , λn) ∈ ΣDn
if, and only if, there exists (x0, y0) such that F (x0, y0, λ) =

∂F

∂x
(x0, y0, λ) =

∂F

∂y
(x0, y0, λ) = 0, i.e.





xn−1
0 + x0y

2
0 + λ1x

n−2
0 + · · ·+ λn−2x0 + λn−1 + λny0 = 0,

(n− 1)xn−2
0 + y20 + (n− 2)λ1x

n−3
0 + . . . λn−2 = 0,

2x0y0 + λn = 0.





(5)

Let us assume that λn 6= 0, then if (λ1, . . . , λn) ∈ Σ there exists t0 such that the system (4)

is satisfied. It is obvious that λn 6= 0 implies t0 6= 0 and thus one can check that the system

(5) is also satisfied for (x0, y0) = (t0,−
λn

2t0
). This proves that (λ1, . . . , λn) ∈ ΣDn

. On the

other hand, if (λ1, . . . , λn) ∈ ΣDn
and (x0, y0) is a solution of (5), then necessarily y0 = −

λn

x0
.

One can further show that t0 = x0 is a solution of (4) and, therefore, (λ1, . . . , λn) ∈ Σ. Let us

now consider the case λn = 0. Then (λ1, . . . , λn) ∈ Σ for a given t0 implies (λ1, . . . , λn) ∈ ΣDn

for (x0, y0) = (t0, 0). On the other hand, let us assume (λ1, . . . , λn) ∈ ΣDn
for a given (x0, y0).

The equation 2x0y0 + λn = 0 forces x0 or y0 to be zero. But if x0 = 0 then necessarily also

an−1 = 0 and t0 = 0 is a solution of (4), proving (λ1, . . . , λn) ∈ Σ. If x0 6= 0, then y0 = 0

and t0 = x0 is a solution of (4), proving again (λ1, . . . , λn) ∈ Σ. ✷
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B. Hyperdeterminant of format 2× 2× 2× 2 and D4-discriminant

The hyperdeterminant of format 2×2×2×2 is a SLOCC-invariant polynomial generalizing

the ideas of Cayley for defining a higher dimensional counterpart of the determinant for

multimatrices. From a geometrical perspective, the hyperdeterminant and its generalization

have been studied by Gelfand, Kapranov and Zelevinsky10 in terms of the concept of dual

varieties. The geometric definition is the following one: Let X ⊂ P(V ) be a (smooth)

projective variety, we denote by X∗ the dual variety of X, defined by

X∗ = {H ∈ P(H∗), ∃x ∈ X, TxX ⊂ H}.

For the case X = P1 × P1 × P1 × P1, the dual variety, denoted X∗, is a SLOCC-invariant

hypersurface, whose equation is called the hyperdeterminant of format 2× 2 × 2 × 2. This

invariant polynomial, denoted as ∆4, is an irreducible polynomial (X∗ is irreducible because

X is), its degree is 24, and the corresponding hypersurface is singular21,27 in codimension 1.

By definition, X∗ parametrizes the singular hyperplane sections of X (alternatively, H /∈ X∗

is equivalent to saying that X ∩H is a smooth section).

It would be difficult to quote all the papers in QIT (as well as in theoretical physics)

referring to the concept of hyperdeterminant4,5,12,17,18,20,21, but it is clear that this invariant

polynomial plays a central role in understanding the symmetries involved in the SLOCC

group action.

In the case of four-qubit systems, the ring of polynomials invariant under the group

SLOCC was determined by Luque and Thibon18. It is a finitely-generated ring with four

generators B, L, M and D, of respective degrees 2, 4, 4 and 6 (explicit expressions, with the

same notations, can be found in Ref13). In other words, any SLOCC-invariant polynomial P

over H = C2⊗C2⊗C2⊗C2 belongs to C[B,L,M,D]. In particular, the hyperdeterminant

of format 2 × 2 × 2 × 2 can be expressed as a polynomial in the generators of the ring of

invariants and one gets18

∆4 =
1

256
(S3 − 27T 2),

with S =
1

12
(B2−4(L+M))2−24(BD+2LM) and T =

1

216
((B2−4(L+M))3−3(B2−

48(L + M))(BD + 2LM) + 216D2). In his attempt to give a geometric meaning of the

invariants of Luque and Thibon, Lévay16 introduced some alternatives generators which are

related to the previous ones as I1 =
1
2
B, I2 =

1

6
(B2 +2L− 4M), I3 = D+ 1

2
BL and I4 = L.
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Lévay’s motivation to define this new set of generators was to obtain a more geometrical

and uniform description of those polynomials, as it is shown in his paper16. These news

invariants I1, I2, I3, I4 allow one to get a new expression of ∆4. In particular, Lévay proved

(Eq (56)16) that

∆4 =
1

256
∆(t4 − (4I1)t

3 + (6I2)t
2 − (4I3)t+ I24 ) (6)

(where ∆ is the discriminant of the polynomial in the t variable). This particular finding

leads to the following claim:

Proposition III.1. Let us consider the quotient map Φ : H → C4 defined by

Φ(|Ψ〉) = (Ĩ1(|Ψ〉), Ĩ2(|Ψ〉), Ĩ3(|Ψ〉), Ĩ4(|Ψ〉),

where Ĩ1 = −4I1, Ĩ2 = 6I2, Ĩ3 = −4I3 and Ĩ4 =
i

2
I4. Then, Φ(X̂∗) = ΣD4

.

Proof. According to Lévay’s equation for the hyperdeterminant ∆4, it is clear that our choice

of Φ implies that the equation of Φ(X̂∗) ⊂ C4 is

1

256
∆(t4 + λ1t

3 + λ2t
2 + λ3t− (

1

2
λ4)

2) = 0,

where (λ1, λ2, λ3, λ4) are coordoninates on C4. But Lemma 1 implies that this zero locus is

the discriminant of the D4 simple singularity, i.e. the hypersurface ΣD4
. ✷

Remark III.2. Propositions II.1 and III.1 prove Theorem 1.

Remark III.3. The quartic t4 − (4I1)t
3 + (6I2)t

2 − (4I3)t + I24 of Eq (6) appears also in

the conclusion of a previous paper involving the first two authors13. When we evaluate this

quartic on the Gabcd state, i.e. when we consider the quartic Q(t) = t4 − (4I1(Gabcbd))t
3 +

(6I2(Gabcd))t
2− (4I3(Gabcd))t+ I4(Gabcd)

2, one obtains Q(t) = (t− a2)(t− b2)(t− c2)(t− d2).

The state Gabcd will cancel ∆4 if and only if the quartic Q has (at least) a repeated root, i.e.

there is (at least) a relation (among the parameters) of type m = ±n with m ∈ {a, b, c, d}

and n ∈ {a, b, c, d} \m. Obviously this condition is satisfied by all values of the parameters

{a, b, c, d} of Tables IV and V because the corresponding states belong to the dual of X

(and thus vanish ∆4). However the relations between the hyperplane sections of Tables IV

and V and the number of repeated roots of the quartic Q is probably worth to be further

investigate.
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Remark III.4. Proposition III.1 establishes a connexion between two types of discriminant.

As pointed out earlier, the dual variety of X is a discriminant in the sense that it parametrizes

the singular hyperplane sections of X. The D4-discriminant parametrizes the singular defor-

mation of the germ x3+xy. The most singular deformation of x3+xy2+λ1x
2+λ2x+λ3+λ4y

is obtained for (λ1, λ2, λ3, λ4) = (0, 0, 0, 0) . The preimage via the quotient map of (0, 0, 0, 0)

is given by the zero-locus of (all) invariant polynomials

Φ−1(0, 0, 0, 0) = {|Ψ〉, Ĩ1(|Ψ〉) = Ĩ2(|Ψ〉) = Ĩ3(|Ψ〉) = Ĩ4(|Ψ〉) = 0}.

This set does not depend on our choice of Φ and, after projectivization, it corresponds to

a well-known variety N ⊂ P(H), the nullcone, which was already invoked to describe the

entanglement classes of a four-qubit system2,13. As first pointed out in Ref2, the nullcone

admits a stratification into 9 distinguished classes of orbits which relate to the 9 families of

Verstraete et al.’s classification. To emphasize the connexion with the D4 singular type, let

us point out that H = 〈Ψ2| = 〈0000|+ 〈1011|+ 〈1101|+ 〈1110| (the hyperplane of Example

II.2) is a smooth point of N and this characterizes the hyperplanes of X with a D4-singular

point. This correspondence can diagrammatically be sketched as:

X ∩H ∼ D4 ←→ H ∈ Nsmooth ⊂ X∗
y Φ

x3 + xy2 ←→ (0, 0, 0, 0) ∈ ΣD4
⊂ C4.

IV. CONCLUSION

We have introduced a new construction that assigns to any quantum state |Ψ〉 a com-

plex hypersurface defined by the hyperplane section X ∩ 〈Ψ| of the set X of all separable

states. This hypersurface may have singular points, which can be studied using the theory

of singularity. Because the variety of separable states is G-homogeneous, this construction

is G-invariant and two states |Ψ1〉 and |Ψ2〉 which do not define equivalent (singular) hy-

perplane sections will not be SLOCC equivalent. For four qubits, this construction allowed

us to realize the singularity of type D4 as a specific hyperplane section and we also proved

that no “higher” isolated singularities can be obtained by this construction.

The D4 singularity is obtained only when we consider the section X ∩〈Ψ|, where |Ψ〉 is a

point of an orbit of maximal dimension of the nullcone13 (i.e. a smooth point of the nullcone).
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This is emphasized when we rephrase the notion of Cayley 2× 2× 2× 2 hyperdeterminant,

i.e. the dual equation of the set of separable states, in terms of the discriminant of a D4-

singularity. The stratification of the discriminant ΣD4
in terms of mutiplicities induces a

stratification of the dual variety X∗ — a variety that is of great relevance in the study of

entanglement of four qubits, as pointed out by Miyake20,21.

Although the correspondence between four qubits and simple Lie algebra of type D4 is

now clear from the action of the SLOCC group, the correspondence established in this paper

between four qubits and a simple singularity of type D4 is rather surprising and points out

to a novel relationship between simple Lie algebra and simple singularity of type D4.
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Appendix A: Hyperplane sections of type Gabcd

In this appendix, we will give the different values of the parameters a, b, c, d of the hyper-

planes of type Gabcd which lead either to hyperplane sections with only A1 singular points

(Table IV) or hyperplane sections with non-isolated singularities (Table V).

{a = a, b = b, c = a, d = d}, {a = a, b = b, c = c, d = b},

{a = a, b = b, c = c, d = c}, {a = a, b = b, c = c, d = −b},

{a = a, b = b, c = c, d = −c}, {a = a, b = b, c = −a, d = d},

{a = a, b = c, c = c, d = d}, {a = a, b = −a, c = c, d = d},

{a = a, b = −c, c = c, d = d}, {a = b, b = b, c = c, d = d},

{a = c, b = 0, c = c, d = d}, {a = d, b = b, c = c, d = d},

{a = −c, b = 0, c = c, d = d}, {a = −d, b = b, c = c, d = d}

Table IV. Hyperplane sections of type Gabcd with only A1 singularities.
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{a = 0, b = 0, c = 0, d = d}, {a = 0, b = 0, c = c, d = 0},

{a = 0, b = b, c = 0, d = 0}, {a = a, b = 0, c = 0, d = 0},

{a = a, b = d, c = d, d = d}, {a = a, b = −c, c = c, d = −c},

{a = a, b = −d, c = d, d = d}, {a = a, b = −d, c = −d, d = d},

{a = b, b = b, c = 0, d = b}, {a = b, b = b, c = 0, d = −b},

{a = c, b = 0, c = c, d = c}, {a = c, b = 0, c = c, d = −c},

{a = c, b = c, c = c, d = d}, {a = c, b = −c, c = c, d = d},

{a = d, b = b, c = d, d = d}, {a = d, b = d, c = c, d = d},

{a = d, b = d, c = d, d = d}, {a = d, b = −d, c = d, d = d},

{a = −b, b = b, c = 0, d = b}, {a = −b, b = b, c = 0, d = −b},

{a = −b, b = b, c = c, d = −b}, {a = −c, b = 0, c = c, d = c},

{a = −c, b = 0, c = c, d = −c}, {a = −c, b = b, c = c, d = −c},

{a = −c, b = c, c = c, d = d}, {a = −c, b = c, c = c, d = −c},

{a = −c, b = −c, c = c, d = d}, {a = −c, b = −c, c = c, d = −c},

{a = −d, b = b, c = d, d = d}, {a = −d, b = b, c = −d, d = d},

{a = −d, b = d, c = c, d = d}, {a = −d, b = d, c = d, d = d},

{a = −d, b = d, c = −d, d = d}, {a = −d, b = −d, c = c, d = d},

{a = −d, b = −d, c = d, d = d}, {a = −d, b = −d, c = −d, d = d}

Table V. Hyperplane sections of type Gabcd with non-isolated singularities.
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