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CHEBYSHEV’S BIAS AND GENERALIZED
RIEMANN HYPOTHESIS
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ABSTRACT. It is well known that li(z) > w(xz) (i) up to the (very large)
Skewes’ number z1 ~ 1.40 x 10316 [1]. But, according to a Littlewood’s
theorem, there exist infinitely many x that violate the inequality, due to
the specific distribution of non-trivial zeros 7 of the Riemann zeta function
¢(s), encoded by the equation li(z) — w(z) ~ 1;/;6 1+2>, Wyw} (1).
If Riemann hypothesis (RH) holds, (i) may be replaced by the equivalent
statement li[¢(z)] > 7w(z) (ii) due to Robin [2]. A statement similar to (i)
was found by Chebyshev that m(x;4,3) — w(x;4,1) > 0 (iii) holds for any
x < 26861 [3] (the notation 7(z;k,!) means the number of primes up to
z and congruent to ! mod k). The Chebyshev’s bias (iii) is related to the
generalized Riemann hypothesis (GRH) and occurs with a logarithmic den-
sity & 0.9959 [3]. In this paper, we reformulate the Chebyshev’s bias for a
general modulus ¢ as the inequality B(z;q, R) — B(z;q, N) > 0 (iv), where
B(z; k,1) = li[p(k) * ¥(z; k,1)] — ¢(k) * w(z; k,1) is a counting function intro-
duced in Robin’s paper [2] and R( resp. N) is a quadratic residue modulo ¢
(resp. a non-quadratic residue). We investigate numerically the case ¢ = 4
and a few prime moduli p. Then, we proove that (iv) is equivalent to GRH
for the modulus q.

1. INTRODUCTION

In the following, we denote m(x) the prime counting function and 7 (z;q,a) the
number of primes not exceeding x and congruent to a mod ¢. The asymptotic law
for the distribution of primes is the prime number theorem m(x) ~ ; ez Corre-
spondingly, one gets [4 eq. (14), p. 125]

(L.1) (s gra) ~ T

o(q)
that is, one expects the same number of primes in each residue class ¢ mod ¢, if
(a,q) = 1. Chebyshev’s bias is the observation that, contrarily to expectations,
m(x;q, N) > 7(x; ¢, R) most of the times, when N is a non-square modulo ¢, but R
is.
Let us start with the bias

(1.2) 6(xz,4) :=7(x;4,3) — w(x;4,1)

found between the number of primes in the non-quadratic residue class N = 3
mod 4 and the number of primes in the quadratic one R = 3 mod 4. The values
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5(10™,4), n < 1, form the increasing sequence
A091205 = {1, 2, 7, 10, 25, 147, 218, 446, 551, 5960, ...}.
The bias is found to be negative in thin zones of size
{2, 410, 15 358, 41346, 42 233 786, 416 889 978, ...}
spread over the location of primes of maximum negative bias [5]
{26861, 623 681, 12 366 589, 951 867 937, 6 345 026 833, 18 699 356 321...}.

It has been proved that there are are infinitely many sign changes in the Cheby-
shev’s bias ([L2)). This follows from the Littlewood’s oscillation theorem [6] [7]

1/2
(1.3) 5(z,4) = Qs <“’ — log a:> .

log

A useful measure of the Chebyshev’s bias is the logarithmic density [3] [6] []]

(1.4) d(A) = lim L > é

z—oo log T
& acA,alz

for the positive AT and negative A~ regions calculated as d(AT) = 0.9959 and

d(A~) = 0.0041.
In essence, Chebyshev’s bias d(z,4) is similar to the bias
(1.5) d(z) = Li(x) — 7(z).

It is known that 6(z) > 0 up to the (very large) Skewes’ number z; ~ 1.40 x 10316
but, according to Littlewood’s theorem, there also are infinitely many sign changes
of §(z) [7].

The reason why the asymmetry in (Mé is so much pronounced is encoded in the
following approximation of the bias [3], 9]

(1.6) ERS l(\fx (1 +2 ; —sm%”)> :

where a., = cot™!(27) and ~ is the imaginary part of the non-trivial zeros of the
Riemann zeta function ((s). The smallest value of 7 is quite large, v1 ~ 14.134,
and leads to a large asymmetry in ().

Under the assumption that the generalized Riemann hypothesis (GRH) holds
that is, if the Dirichlet L-function with non trivial real character x4

(1.7) L(s,ka) =Y _ %

n>0

has all its non-trivial zeros located on the vertical axis R(s) = 1, then the formula
(T8 also holds for the Chebyshev’s bias §(x,4). The smallest non-trivial zero of
L(s,k4) is at 47 ~ 6.02, a much smaller value than than the one corresponding to
¢(s), so that the bias is also much smaller.

1The bias may also be approached in a different way by relating it to the second order Landau-
Ramanujan constant [10].
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A second factor controls the aforementionned assymmetry of a L-function of real
non-trivial character s, it is the variance [11]

2

For the function ((s) and L(s, x4) one gets V = 0.045 and V=0.155, respectively.

Our main goal. In a groundbreaking paper, Robin reformulated the unconditional
bias ([LH) as a conditional one involving the second Chebyshev function ¢(z) =

D ph<a 108D
(1.9) The equality ¢’ (x) :=li[¢)(z)] — 7(x) > 0 is equivalent to RH.

This statement is given as Corollary 1.2 in [12] and led the second and third author
of the present work to derive a good prime counting function

(1.10) nl@) = 3 plifp(@)'").

Here, we are interested in a similar method to regularize the Chebyshev’s bias
in a conditional way similar to (I9). In [2], Robin introduced the function

(1.11) B(x;q,a) = li[¢(q)¥(z; q,a)] — d(@)m(2;q,a),
that generalizes (I9]) and applies it to the residue class a mod ¢, with 9 (x, ¢, a) the

generalized second Chebyshev’s function. Under GRH he proved that [2] Lemma
2, p. 265]

(1.12) B(z;q,a) = Q4 (L;T) ,
log” x
that is
(1.13) The inequality B(z;¢,a) > 0 is equivalent to GRH.

For the Chebyshev’s bias, we now need a proposition taking into account two
residue classes such that a = N(a non-quadratic residue) and a = R (a quadratic
one).

Proposition 1.1. Let B(z;q,a) be the Robin B-function defined in (LI]), and R
(resp. N) be a quadratic residue modulo ¢ (resp. a non-quadratic residue), then
the statement ¢'(z, q) := B(x;q, R) — B(xz;q,N) > 0, Vz (i), is equivalent to GRH
for the modulus g.

The present paper deals about the numerical justification of proposition [I.1] in
Sec. and its proof in Sec. Bl The calculations are performed with the soft-
ware Magma [I3] available on a 96 MB segment of the cluster at the University of
Franche-Comté.

2. THE REGULARIZED CHEBYSHEV’S BIAS

All over this section, we are interested in the prime champions of the Chebyshev’s
bias 6(z,q) (as defined in ([[2)) or ([Z3]), depending on the context). We separate
the prime champions leading to a positive/negative bias. Thus, the n-th prime
champion satisfies

(2.1) 6 (x,,q) = en, e ==+1.
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FIGURE 1. The normalized regularized bias ¢'(z,4)/+/x versus
the Chebyshev’s bias d(x,4) at the prime champions of §(z,4)
(when 6(x,4) > 0) and at the prime champions of —§(z,4) (when
d(x,4) < 0). The extremal prime champions in the plot are
x = 359327 (with 6 = 105) and = = 951867937 (with § = —48).
The curve is asymmetric around the vertical axis, a fact that re-
flects the asymmetry of the Chebyshev’s bias. As explained in the
text, a violation of GRH would imply a negative value of the regu-
larized bias 6’(z,4). The small dot curve corresponds to the fit of
8 (z,4)/+/x by 2/logx calculated in Sec. 3.

We also introduce a new measure of the overall bias b(q), dedicated to our plots, as
follows

© (g
(2.2 blg) = 3 T,

n
n,e

Indeed, smaller is the bias lower is the value of b(q). Anticipating over the results
presented below, Table [[l summarize the calculations.

TABLE 1. The new bias (22)) (column 2) and the standard loga-
rithmic density (I4) (column 3).

modulus ¢ | bias b(q) | log density d(A™) | first zero

4 0.7926 0.9959 [3] 14.134
11 0.1841 0.9167 [3] 0.2029
13 0.2803 0.9443 [3] 3.119

163 0.0809 0.55 [9] 2477
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Chebyshev’s bias for the modulus ¢ = 4. As explained in the introduction,
our goal in this paper is to reexpress a standard Chebyshev’s bias §(z,q) into
a regularized one 0’(z,q), that is always positive under the condition that GRH
holds. Indeed we do not discover any numerical violation of GRH and we always
obtains a positive §'(x,q). The asymmetry of Chebyshev’s bias arises in the plot
0 vs &', where the fall of the normalized bias % is faster for negative values of §
than for positive ones. Fig. [ clarifies this effect for the historic modulus g = 4.
We restricted our plot to the champions of the bias § and separated positive and
negative champions.

Chebyshev’s bias for a prime modulus p. For a prime modulus p, we define the
bias so as to obtain an averaging over all differences w(x; p, N) — w(x; p, R), where
as above N and R denote a non-quadratic and a quadratic residue, respectively

(23) ) == % (2) ntpa)

a

where ( %) is the Legendre symbol. Correspondingly, we define the regularized bias
as

(2.4) § (z,p) = T}% Z (%) B(z;p,a).

Proposition 2.1. Let p be a selected prime modulus and §'(z,p) as in ([24]) then
the statement §'(z,p) > 0, Vz, is equivalent to GRH for the modulus p.

As mentioned in the introduction, the Chebyshev’s bias is much influenced by
the location of the first non-trivial zero of the function L(s, k), k4 being the real
non-principal character modulo ¢. This is especially true for L(s, k163) with its
smaller non-trivial zero at v ~ 0.2029 [0]. The first negative values occur at
{15073,15077,15083, .. .}.

Fig. Bl represents the Chebyshev’s bias ¢’ for the modulus ¢ = 163 versus the
standard one ¢ (thick dots). Tha asymmetry of the Chebyshev’s bias is revealed at
small values of |§| where the the fit of the regularized bias by the curve 2/logz is
not good (thin dots).

For the modulus ¢ = 13, the imaginary part of the first zero is not especially
small, 71 ~ 3.119, but the variance (L8] is quite high, V(k_13) ~ 0.396. The first
negative values of §(z,13) at primes occur when {2083,2089,10531,...}. Fig. Bl
represents the Chebyshev’s bias ¢’ for the modulus ¢ = 13 versus the standard one
d (thick dots) as compared to the fit by 2/logx (thin dots).

Finally, for the modulus ¢ = 11, the imaginary part of the first zero is quite
small, 71 ~ 0.209, and the variance is high, V(k_11) ~ 0.507. In such a case, as
shown in Fig. [ the approximation of the regularized bias by 2/logz is good in
the whole range of values of x.

3. PROOF OF PROPOSITION [ 1]
For approaching the proposition [Tl we reformulate it in a simpler way as

Proposition 3.1. One introduces the regularized couting function 7'(x;q,l) :=
m(x:q,1) =¥ (z;q,1)/ logz. The statement 7'(x; ¢, N) > 7'(2; ¢, R), Va (ii), is equiv-
alent to GRH for the modulus gq.
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FIGURE 2. The normalized regularized bias ¢'(z,163)/y/x ver-
sus the Chebyshev’s bias d(x,163) at all the prime champions of
|0(z,163)] [from |d(x, 163)| > 74 the bias is 6(z, 163) < 0 negative],
superimposed to the curve at the prime champions of —§(z, 163)
(when 6(z,163) < 0). The extremal prime champions in the plot
are x = 68491 (with § = 74) and = = 174637 (with 6 = —86).
The asymmetry is still clearly visible in the range of small values
of |§] but tends to disappear in the range of high values of |4|. The
small dot curve corresponds to the fit of ¢’'(z,163)/v/z by 2/logx
calculated in Sec. 3.

Proof. First observe that proposition [LT] follows from proposition B.Il This is
straightforward because according to [2, p. 260], the prime number theorem for
arithmetic progressions leads to the approximation

¢(Q)¢($7 q, l) — ‘T'

(3.1) Hfo(a)i(zsa. )] ~ lfr) + SEATL

As a result
8'(x,q) = B(x;q,R) — B(x;q,N)
= li[p(q)¥(z; ¢, R)] — li[p(q)(z; 9, N)| + ¢(q)d(x, )
~ ¢(q)[7' (x;q, N) — 7' (x; ¢, R)].

The asymtotic equivalence in (B]) holds up to the error term [2 p. 260] O(
with

R(z) )7

zlogx
R(x) = min (x‘gq 1og2 x,ze” VY 1"“) , a>0,

0y = MaxX, mod q(SUpR(p), p a zero of L(s, K)).
Let us now look at the statement GRH = (7). Following [3, p 178-179], one has

1 _
blwig,0) = o5 > Ea)y(z, k)

k mod ¢q
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FIGURE 3. The normalized regularized bias ¢’(z,13)/\/x versus
the Chebyshev’s bias §(x,13) at the prime champions of §(x,13)
(when §(x,13) > 0), and the curve at the prime champions of
—06(x,13) (when 6(z,13) < 0). The extremal prime champions in
the plot are x = 263881 (with 6 = 123) and x = 905761 (with § =
—40). The small dot curve corresponds to the fit of §'(z,13)/\/z
by 2/logx calculated in Sec. 3.
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FIGURE 4. The normalized regularized bias ¢'(z,11)//x versus
the Chebyshev’s bias d(z,11) at the prime champions of §(z,11)
(when 6(z,11) > 0), and the curve at the prime champions of
—06(x,11) (when 6(z,11) < 0). The extremal prime champions in
the plot are = 638567 (with § = 158) and = = 1867321 (with
d = —32).The small dot curve corresponds to the (very good) fit
of §'(x,11)/+/x by 2/logx calculated in Sec. 3.
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and under GRH
m(x c(q,a T 1
mi@ig,0) = fb%q)) - s(bq(tJ)) 1;{3; T o) oge
where k is the principal character modulo ¢ and
c(ga) = —1+#{1<b<q:b*=a mod q}
for coprimes integers a and ¢. Note that for an odd prime g = p, one has ¢(p,a) =
().

Thus, under GRH
710, N) — (w3, B) = 5o [v/a(c(q, B) — g, N)
(3.2) Y mod o (RN = R(R)(2, 1) + O((255 )

The sum could be taken over all characters because ko(N) = Ro(R). In addition,
we have

(3.3) w<x;q,N>—w<x;q,R>=iq S RN — AR, 8).

x mod q

Using (B.2) and B3) the regularized bias reads
§'(x, q) ~ 7'(2;q, N) —7'(z;9, R)

),

log” x

Z E(a)Y(z, k) + O(

K#KQ

(34) 13;{1[ (Q7R) ( )] +0 (log m) ’
For the modulus ¢ = 4, we have ¢(q,1) = —1+2 = 1 and ¢(q,3) = —1 so that
8 (x,4) = lzo\g/i The same result is obtained for a prime modulus ¢ = p since

c¢(p,N) = —1 and c(p, R) = c(p,1) = (%) =1
This finalizes the proof that under GRH, one has the inequality 7’(x;q, N) >

7' (z;q, R).
If GRH does not hold, then using [2] lemma 2], one has

B(x;q,a) = Q4(2%) for any £ < 6.

Applying this assymptotic result to the residue classes a = R and a = N, there
exist infinitely many values x = z1 and x = z9 satisfying

B(z1;¢,R) < —$§ and B(z2;q,N) > :102 for any & < 6,
so that one obtains
(3.5) B(z1;q, R) — B(za;q, N) < —25 — 25 < 0.
Selecting a pair (z1,2) either
B(z1;9,R) > B(z2;4, R)
so that B(za;¢q, R) — B(x2;¢,N) < 0 and (i) is violated at x2, or
(3.6) B(z1;¢,R) < B(z2;4, R).

In the last case, either B(x1;q, N) > B(x2; ¢, N), so that B(x1;q, R)—B(x1;q,N) <
0 and the inequality (i) is violated at x1, or simultaneously

B(x13¢, N) < B(z;¢, N) and B(z1; ¢, R) < B(x2; ¢, R),
which implies (88) and the violation of (i) at © = x1 = zs.
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To finalize the proof of Bl and simultaneously that of [T one makes use of the

asymptotic equivalence of (i) and (ii), that is if GRH is true = (ii) = (i), and if
GRH is wrong, (i) may be violated and (ii) as well.

Then, proposition2.Ilalso follows as a straigthforward consequence of proposition

1

be

d

4. SUMMARY

We have found that the asymmetry in the prime counting function 7 (x;q,a)
tween the quadratic residues ¢ = R and the non-quadradic residues a = N for the

modulus ¢ can be encoded in the function B(x;q,a) [defined in (LII)] introduced

by

Robin the context of GRH [2], or into the regularized prime counting function

7' (x;q,a), as in Proposition Bl The bias in 7’ reflects the bias in 7 conditionaly
under GRH for the modulus ¢q. Our conjecture has been initiated by detailed
computer calculations presented in Sec. and proved in Sec. Further work
could follow the work about the connection of 7, and thus of 7/, to the sum of
squares function ro(n) [10].
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