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Abstract

This paper presents the design of a mesoscale robot for laser phonosurgery. The

proposed design is situated between conventional mechanism and MEMS technology.

A combination of compliant structures and innovative micromotors enables to achieve

two decoupled tilting angle, a high range (up to 45°) and a precise positioning of a

laser beam. The design methodology and the optimization of the compliant structure

are detailed. Preliminary results and tests are described which have induced promising

performances of the mesoscale robot for laser steering.

1 INTRODUCTION

The use of laser in surgery is rapidly increasing during the past two decades. After the

treatment of myopia, hypermetropia, and astigmatism [1, 2, 3], laser surgery can be used to

the treatment of pathological conditions in the larynx [4, 5]. The main advantages of this
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technique are its capabilities to achieve high precision microsurgeries and to improve the

surgeon ergonomy. The research on endoscopic laser scalpel for vocal folds is ongoing over

the world:

• FemtoLAB (Femtosecond Laser Assisted Biophotonics) from University of Texas at

Austin [5, 6], where the proposed system is based on piezotube with limited scanning

range but the endoscope diameter is smaller than 10mm ;

• Memorial Sloan-Kettering Cancer Center of Research Engineering Lab [4] with 17mm

endoscope diameter, 2 Hz rotational velocity, but does not provide a linear control of

the spot;

• the european consortium of µRALP project (www.microralp.eu) which develops a

flexible endoscope with an actuated mirror, a stereo-vision and high speed visual ser-

voing, and an augmented reality man-machine interface for assisted teleoperation [7].

Various challenges have been investigated including the choice of the laser type [6] and

the associated optics, the development of computerized Surgeon-Machine Interface [7], the

design of flexible endoscope, and the mechatronic design of microrobot to steer the high

power beam. There is a difference between the beam steering for imaging systems as Opti-

cal Coherence Tomography (OCT) which is largely investigated [8, 9, 10, 11] and for laser

microsurgery. Indeed a thin metal coating on thin mirror made by silicon is sufficient for

imaging systems whereas the mirror can be destroyed by high power laser. In addition, the

performances of the microrobot have to fit to the requirements of the vocal folds surgery.

Especially, the scanning range and the accuracy of the beam positioning define the quality of

the surgery. There are different techniques to steer the beam [12, 13]: tilt blocks, periscopes,

Risley prisms, metastable adjustable prism, and tilt mirror. The functional requirements

for beam steering system are the maximum steering angle, the resolution, the accuracy, the

spot size on the impact point, the spectral range and the transmitted power.
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In this paper, the mechatronic design of a mesoscale robot for laser phonosurgery is pre-

sented. It is based on an Parallel Kinematic Mechanism (PKM) orientable mirror with two

decoupled tilting angles. This approach is difficult to achieve with MEMS actuator technol-

ogy because it is unconvenient to transmit the electrical signals through a micro-actuator

to supply another micro-actuator. The proposed concept is situated between conventional

mechanism and MEMS technology due the mirror size and thickness useful to reflect an high

power laser. The actuation is based on innovative piezoelectric micromotor developed by

New Scale Technologies (www.newscaletech.com/), Victor, NY, USA. The proposed design

aims to achieve high range tilting mirror in quasi-static conversely to MEMS mirror with

limited range in static and high range in resonant frequency. In addition, a non planar mirror

can be added on the platform for focusing or other beam shaping technique. In section 2, the

design of Squipabot is presented. In section 3, the preliminary tests on Squipabot prototype

is reported. Section 4 concludes this paper.

2 DESIGN OF SQUIPABOT

The concept presented in this paper is a mesoscale robot for high power laser steering. The

robot has to be able to move a thick mirror in two tilting angles (θX around X axis and θY

around Y axis). The entire package of the robot has to be less than 8 mm x10 mm x 12 mm

in order to ensure its integration in the endoscope head. The functioning principle of the

steering beam robot for laser phonosurgery is shown in Fig. 2. The functional requirements

of the concept are summarized in table 1 considering CO2 or Er : Y ag or Thulum laser.

The proposed concept is shown in Fig. 3 and is named SQUIPABOT for SQUIggle based

PArallel roBOT. It can be divided in two parts: the actuator unit and the movable platform.

The actuator unit is based on Squiggle piezomotors (SQL-RV-1.8) from Newscale technology

which is the world’s smallest linear piezo actuator. They can provide a speed about 7mm/s,

a resolution about 0.5 µm, a stall force about 30 g in a volume of 2.8 mm x 2.8 mm x 6 mm.
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The main advantages of this type of motor are its low voltage supply (2.3 VDC), no back-

lash, and the blocking force without applied voltage which are specially relevant in terms of

biocompatibility. According to the design and the maximum velocity of the Squiggle motor,

a maximum angular velocity up to 94°/s can be achieved. The Squiggle motor are already

used in some medical applications as OCT scanning [14] and laser scalpel [4, 15].

Each motor pushes the platform frames which convert the linear motion to rotation one.

A preload on the motors is obtained by adding a linear spring in counter part of the platform.

The steering angle α is a double of the mechanical angle θx,y. Compliant joints are chosen

to avoid complex assembly and backlash. The design of the movable platform is detailed in

the following section.

2.1 The movable platform

The objective is to achieve two tilting angles whether ± 15° bidirectional or at least 30°

unidirectional. In order to avoid a troublesome assembly and the backlashes due to conven-

tional joint [16], compliant structures are used. In addition, the two tilting angles have to

be decoupled for ensuring a simplest kinematic model and a precise control. A sketch of

the movable platform is shown in Fig. 4 with two load points where to apply the equivalent

force generated by the pushing motor.

The CAD model of the platform is integrated in Comsol Multiphysics software (see Fig.

5) for Finite Element Modeling (FEM) in order to optimize its characteristics and to study

the dynamic behaviour of the platform. The effects of two parameters have been identified

and studied in the following. Three undesirable displacements are identified and measured

on the center of the mirror:

• the vertical displacement Dv;

• the perpendicular displacement to the rotation axis Dpe;
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• the parallel displacement to the rotation axis Dpa.

The objective is to minimize Dv and Dpe since the parallel displacement to the rotation axis

does not affect the error on the screen situated at 20mm (see Fig. 2). First, let us investigate

the effect of Dv and Dpe on the screen error. The screen is plan placed at working distance

where the laser beam is observed.

2.1.1 Error on the screen

Let us calculate the error in function of Dv and Dpe:

Error = k(Dv +Dpe tan θx,y) (1)

where k =
tan θx,y(tan(β + 2θx,y) + tan β)

tan θx,y + tan β
; (2)

The effects of Dpe and Dv on the screen error were studied for different steering angles

up to 45°. It can be seen in Fig. 6 that for Dv=5 µm and Dpe=25 µm, the error on the

screen is less than 10 µm. The results are obtained with Von Mises stress (0.6 Gpa) less than

the ultimate tensile strength of silicon (7 Gpa) and the applied force (Fz inner and Fz outer <

500µN) is less than the 0.3 N of micromotor stall force.

The design is able to fulfill the functional requirement (see Table 1) in terms of resolution.

The effect of the micro-motor vibration to the resolution obtained on the screen is also

investigated. It can be calculated that 1µm of vibration induces 10 µm of error on the screen

for a pushing point situated at 3.3 mm from the rotation center.

2.1.2 Platform thickness

Fig. 7 shows the effect of the platform thickness Tp on the vertical displacement Dv and on

the perpendicular displacement to the rotation axis Dpe. It is shown that Dpe is increasing
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with the thickness of the platform. In order to minimize Dpe and to maintain Dv to a

reasonable value, Tp is fixed about of 100 µm.

2.1.3 Spring width

The effect of the spring width on Dv and Dpe is also studied. It is calculated that by

increasing the spring width, Dv increases too. In order to minimize the unwanted motion

and to ensure a robustness of the platform, a spring width about 8 µm is chosen.

2.1.4 Dynamic behavior

For the previously defined dimensions (8 µm spring width and 100 µm platform thickness),

the resonant frequency of the inner platform is 70.26 Hz and the resonant frequency of outer

platform is 42.71 Hz. Angles about 1.34° and 2.20° are achievable considering the maximum

velocity of the piezomotors and the resonant frequencies of the platform.

2.2 Kinematic model

A kinematic model of Squipabot with decoupled two rotations is proposed by following the

modeling of parallel robot proposed by [17]. The objective is to determine the position of

the the normal vector to the mirror in function of the displacement of its actuators. The

robot kinematic is equivalent to four limbs parallel robot with two decoupled tilting angles

are expected and the scanning angle is unidirectional with a range from 0° up to 45°.

In Fig. 9, two coordinate frames are defined: XBYBZB attached to the center of fixed base

and XPYPZP attached to the center of moving platform. The homogenous transformation

TBP from the moving platform frame to the base frame is derived in Eq. 5 according to the

fact that the two tilting angles are decoupled.

TBP = RθY .RθX/D (3)
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=



cosθY 0 sinθY 0

0 1 0 0

−sinθY 0 cosθY 0

0 0 0 1





1 0 0 Dpa

0 cosθX sinθX Dpe

0 −sinθX cosθX Dv

0 0 1


(4)

=



cosθY sinθY sinθX cosθXsinθY Dpa

0 cosθX −sinθX Dpe

−sinθY cosθY sinθX cosθXcosθY Dv

0 0 1


(5)

The angles θx and θy are calculated through Eq. 6.

θx = atan(
dm1

Lx
); θy = atan(

dm2

Ly
) (6)

The undesirable displacements (Dpa, Dpe, and Dv) previously listed can be integrated on

the homogenous transformation to provide an accurate model. It will enable a more efficient

model control based.

The contact between the platform and the motor screw is not a punctual contact due

to the form of the screw head. Considering a screw head like a cap, Fig. 10 sketches the

evolution of the contact and the induced angle deviation is derived in Eq. 7.

δ = arctan
∆

L
− arctan

∆ − h

L−R
(7)

For 30° titling angle, the angle deviation is about 3.3° where L = 3300µm, ∆=1908µm,

h = 100µm and R = 550µm. This angle deviation has to be taken into account to improve

the accuracy of the robot in open loop control.

This section is focused on the design and a kinematic modeling of the decoupled two

tilting angles. The characteristics of the movable platform were defined and its fabrication
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is discussed in the following.

2.3 Fabrication

The fabrication of the movable platform is achieved on SOI (Silicon On Insulator) wafer with

100 µm of device layer, 1 µm of BOX (Burried OXide), and 400 µm of handle layer. The

process flowchart is depicted in Fig. 11 where the three main etching processes are:

• Deep Reactive Ion Etching (DRIE) of the device layer (Fig. 11(a)),

• DRIE of the handle layer (Fig. 11(b)),

• etching of the BOX by Freon Reactive Ion Etching (RIE) (Fig. 11(c)) followed by

Cr/Au sputtering.

A first fabrication batch was performed and the results are shown in Fig. 13.

3 PRELIMINARY TESTS

A preliminary tests were conducted to validate the concept. Squipabot is assembled (see Fig.

13) and tested on a setup composed of an external laser source, a camera, and a screen as

shown on Fig. 14. A maximum steering angle up to 45° can be completed without damage.

A repeating sequence was also performed to test the spring fatigue then the platform is still

working after a number of tests.

3.1 Performance evaluation

The Squipabot is tested with a different trajectories (square and circle). The position of the

spot is acquired by a camera and it is processed by using OpenCV (http://opencv.org/)

and CVLink (http://www.lab.cnrs.fr/openblockslib/cvLink.html) libraries. An open

loop control is used due to the absence of position sensor in this design. The result of path
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following is shown in Fig. 16. It can be observed that the accuracy is smaller than 100µm.

A high level control based on fast visual servoing as presented in [18] can be implemented

to improve the accuracy.
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4 CONCLUSIONS

This paper presents a mesoscale robot for laser phonosurgery named Squipabot. The design

proposes the combination of the conventional mechanism to MEMS technology in order to

achieve a decoupled tilting angles, a high scanning range, and a precise positioning. The

word’s smallest piezo motor is integrated in the actuator unit of 8 mm x 10 mm x 12 mm.

The use of inner and outer frame enables to decouple the two tilting angles is proposed on

a movable platform made by silicon. It induces a simple kinematic model and a precise

control in the future by integrating the unwanted displacements Dv and Dpe. The design of

the movable platform is detailed and the prototype fabrication is achieved. A performance

evaluation in open loop is proposed. The complete packaging of Squipabot and its integration

to the flexible endoscope have been recently achieved (see 1 - c). The proposed design can be

scaled down but the actuator unit has to be changed. Optimization of the spring topology in

order to remove the unwanted motion and increase the robustness of the platform is ongoing.

The performance improvement will be achieved by closed loop control with high speed visual

servoing.
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a) b)

c)

Figure 1: a) A view of the developed concept in µRALP project, b) The endoscope from
Liebniz Universitt Hanover [19], and c) Squipabot inside the endoscope tip.
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Maximum streering angle ±15°
Resolution 100 µm
Accuracy 100 µm
Spot size 300 µm

Working distance 40mm
Spectral range 2-11 µm [20]
Throughput 90 %

Table 1: Functional requirements of the beam steering system for laser phonosurgery.
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Figure 2: Functioning principle of the steering laser beam robot for phonosurgery.
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Figure 3: The concept of Squipabot for beam steering with dimension about 8 mm x 10 mm
x 12 mm.
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Figure 4: A sketch of the movable platform with inner and outer frame.
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Figure 5: FEM simulation achieved on Comsol® Multiphysics software.
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Figure 9: Kinematic model of the parallel mesorobot with four limbs and decoupled two
rotations.
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Figure 10: a) Sketch of the contact evolution between the platform and the screw head: L
is the distance between the pushing point the center of the mirror, ∆ is the displacement of
the motor, R is the radius of the screw, h is the height of the cap, θ replaces θX or θY , and
δ is the deviation angle, and b) the screw head.
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Figure 11: The flowchart of the micromachining: (a) front side DRIE etching, (b) back side
DRIE etching , and (c) removal of BOX layer by Freon RIE etching followed by Cr/Au
sputtering.
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Figure 12: SEM images of the fabricated platform: (a) zoom on the spring, and (b) global
view of the platform.
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a) b)

c)

Figure 13: Parts of Squipabot: a) the fabricated platform, b) the actuator unit, and c) the
assembly of Squipabot.
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Figure 14: Preliminary tests on the first version of Squipabot with in plane displacement of
the spot.
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Figure 15: Spot positions on the screen during the test.
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Figure 16: Path following result in open loop control with Squipabot: in red - the reference
trajectory and in blue - the achieved trajectory.
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