
On the Uniform Random Generation of Non deterministic
Automata up to Isomorphism

Pierre-Cyrille Héam Jean-Luc Joly

June 24, 2015

FEMTO-ST, CNRS UMR 6174, Université de Franche-Comté, INRIA
16 route de Gray, 25030 Besançon Cedex, France

Abstract

In this paper we address the problem of the uniform random generation of non deterministic
automata (NFA) up to isomorphism. First, we show how to use a Monte-Carlo approach to
uniformly sample a NFA. Secondly, we show how to use the Metropolis-Hastings Algorithm
to uniformly generate NFAs up to isomorphism. Using labeling techniques, we show that in
practice it is possible to move into the modified Markov Chain efficiently, allowing the random
generation of NFAs up to isomorphism with dozens of states. This general approach is also
applied to several interesting subclasses of NFAs (up to isomorphism), such as NFAs having a
unique initial states and a bounded output degree. Finally, we prove that for these interesting
subclasses of NFAs, moving into the Metropolis Markov chain can be done in polynomial time.
Promising experimental results constitute a practical contribution.

1 Introduction
Finite automata play a central role in the field of formal language theory and are intensively
used to address algorithmic problems from model-checking to text processing. Many automata
based algorithms have been developed and are still being developed, proposing new approaches
and heuristics, even for basic problems like the inclusion problem1. Evaluating new algorithms is
a challenging problem that cannot be addressed only by the theoretical computation of the worst
case complexity. Several other complementary techniques can be used to measure the efficiency
of an algorithm: average complexity, generic case complexity, benchmarking, evaluation on hard
instances, evaluations on random instances. The first two approaches are hard theoretical prob-
lems, particularly for algorithms using heuristics and optimizations. Benchmarks, as well as known
hard instances, are not always available. Nevertheless, in practice, random generation of inputs
is a good way to estimate the efficiency of an algorithm. Designing uniform random generator
for classes of finite automata is a challenging problem that has been addressed mostly for deter-
ministic automata [CP05, BN07, AMR07, CN12] -the interested reader is referred to [Nic14] for a
recent survey. However, the problem of uniform random generation of non deterministic automata
(NFAs) is more complex, particularly for a random generation up to isomorphism: the size of the
automorphism group of a n-state non deterministic automata may vary from 1 to n!. For most
applications, the complexity of the algorithm is related to the structure of the automata, not to
the names of the states: randomly generated NFAs, regardless of the number of isomorphic au-
tomata, may therefore lead to an over representation of some isomorphism classes of automata.
Moreover, as discussed in the conclusion of [Nic14], the random generation of non deterministic
automata has to be done on particular subclasses of automata in order to obtain a better sampler
for the evaluation of algorithm (since most of the NFAs, for the uniform distribution, will accept
all words).

In this paper we address the problem of the uniform generation of some classes of non determin-
istic automata (up to isomorphism) by using Monte-Carlo techniques. We propose this approach

1see http://www.languageinclusion.org/

1



for the class of n-state non deterministic automata as well as for (a priori) more interesting sub-
classes. Determining the most interesting subclasses of NFAs for testing practical applications is
not the purpose of this paper. We would like to point out that Monte Carlo approaches are very
flexible and can be applied quite easily for many classes of NFAs. More precisely:

1. We propose in Section 2 several ergodic Markov Chains whose stationary distributions are
respectively uniform on the set of n-state NFAs, n-state NFAs with a fixed maximal output
degree and n-state NFAs with a fixed maximal output degree for each letter. In addition,
these tools can be adapted for these three classes including automata with a fixed single
initial state. Moving into these Markov chains can be done in time polynomial in n.

2. The main idea of this paper is exposed in Section 3.1, where we show how to modify these
Markov Chains using the Metropolis-Hastings Algorithm in order to obtain stationary distri-
butions that are uniform for the given classes of automata but up to isomorphism. Moving
into these new Markov chains requires computing the sizes of the automorphism group of the
occurring NFAs.

3. The main contributions of this paper are given in Section 3. We show in Section 3.2 that,
for the classes with a bounded output degree, moving into the modified Markov chains can
be done in polynomial time. In Section 3.4 we explain how to use labeling techniques to do
it efficiently in practice for all NFAs. Promising experiments are described in Section 3.5.

The random generation of non deterministic automata is explored in [TV05] using random
graph techniques (without considering the obtained distribution relative to automata or to the
isomorphism classes). In [CHPZ02], the random generation of NFAs is performed using bitstream
generation. In [Nic09, NPR10] NFAs are obtained by the random generation of a regular expression
and by transforming it into an equivalent automaton using Glushkov Algorithm. The use of Markov
chains based techniques to randomly generate finite automata was introduced in [CF11, CF12] for
acyclic automata.

1.1 Theoretical Background on NFA
For a general reference on finite automata see [HU79]. In this paper Σ is a fixed finite alphabet of
cardinal |Σ| ≥ 2, and m is an integer satisfying m ≥ 2.

A non-deterministic automaton (NFA) on Σ is a tuple (Q,∆, I, F ) where Q is a finite set of
states, Σ is a finite alphabet, ∆ ⊂ Q × Σ × Q is the set of transitions, F ⊂ Q is the set of final
states and I ⊆ Q is the set of initial states. For any state p and any letter a, we denote by p · a
the set of states q such that (p, a, q) ∈ ∆. The set of transitions ∆ is deterministic if for every
pair (p, a) in Q×Σ there is at most one q ∈ Q such that (p, a, q) ∈ ∆. Two NFAs are depicted on
Fig. 2. A NFA is complete if for every pair (p, a) in Q × Σ there is at least one q ∈ Q such that
(p, a, q) ∈ ∆. A path in a NFA is a sequence of transitions (p0, a0, q0)(p1, a1, q1) . . . (pk, ak, qk) such
that qi = pi+1. The word a0 . . . ak is the label of the path and k its length. If p0 ∈ I and qk ∈ F
the path is successful. A word is accepted by a NFA if it’s the label of a successful path. A NFA
is accessible (resp. co-accessible) if for every state q there exists a path from an initial state to q
(resp. if for every state q there exists a path from q to a final state). A NFA is trim if it is both
accessible and co-accessible A deterministic automaton is a NFA where |I| = 1 and whose set of
transitions is deterministic.

Let A(n) be the class of finite automata whose set of states is {0, . . . , n− 1}. Let N(n) be the
subclass of A(n) of trim finite automata. Let Nm(n) be the class of finite automata in N(n) such
that, for each state p, there is at most m pairs (a, q) such that (p, a, q) is a transition. Let N′m(n)
be the class of finite automata in Nm(n) such that, for each state p and each letter a, there is at
most m states q such that (p, a, q) is a transition. For any class X of finite automata, we denote
by X• the subclass of X of automata whose set of initial states is reduced to {1}. One has

Nm(n) ⊆ N′m(n) ⊆ N(n) ⊆ A(n).

Two NFAs are isomorphic if there exists a bijection between their sets of states preserv-
ing the sets initial states, final states and transitions. More precisely, let A = (Q,Σ,∆, I, F )

2



1 2 3

a

a b
b

(a)

2 1 3

a

a b
b

(b)

Figure 1: Two Isomorphic Automata

and let ϕ be a bijection from Q into a finite set ϕ(Q). We denote by ϕ(A) the automaton
(ϕ(Q),Σ,∆′, ϕ(I), ϕ(F )), with ∆′ = {(ϕ(p), a, ϕ(q)) | (p, a, q) ∈ ∆}. Two automata A1 and A2

are isomorphic if there exists a bijection ϕ such that ϕ(A1) = A2.
Two isomorphic NFAs have the same number of states and are equal, up to the states names.

The relation is isomorphic to is an equivalence relation. For instance, the two automata depicted
on Fig. 2 are isomorphic, with ϕ(1) = 2, ϕ(2) = 1 and ϕ(3) = 3. An automorphism for a NFA
is an isomorphism between this NFA and itself. Given a NFA A = (Q,Σ,∆, I, F ), the set of
automorphisms of A is a finite group denoted Aut(A). For Q′ ⊆ Q, AutQ′(A) denotes the subset
of Aut(A) of automorphisms φ fixing each element of Q′: for each q ∈ Q′, φ(q) = q. Particularly
Aut∅(A) = Aut(A), and AutQ(A) is reduce to the identity. For instance, the automorphism
group of the automaton depicted on Fig. 2(a) has two elements, the identity and the isomorphism
switching 2 and 3.

The size of the automorphism group of a non deterministic n-state automaton may vary from
1 to n!. For instance, any deterministic trim automaton whose states are all final has an automor-
phism group reduce to the identity. The non deterministic n-state automaton with no transition
and where all states are both initial and final has for automorphism group the symmetric group.

The isomorphism problem consists in deciding whether two finite automata are isomorphic. It
is investigated for deterministic automata in [Boo78]. It is naturally closed to the same problem
for directed graph and the following result [Luk82] will be useful in this paper.

Theorem 1 Let m be a fixed positive integer. The isomorphism problem for directed graphs with
degree bounded by m is polynomial.

1.2 Theoretical Background on Markov Chains
For a general reference on Markov Chains see [DLW08]. Basic probability notions will not be
defined in this paper. The reader is referred for instance to [MU05].

Let Ω be a finite set. A Markov chain on Ω is a sequence X0, . . . , Xt, . . . of random variables on
Ω such that P(Xt+1 = xt+1 | Xt = xt) = P(Xt+1 = xt+1 | Xt = xt, . . . , Xi = xi, . . . , X0 = x0), for
all xi ∈ Ω. A Markov chain is defined by its transition matrix M , which is a function from Ω× Ω
into [0, 1] satisfying M(x, y) = P(Xt+1 = y | Xt = x). The underlying graph of a Markov chain is
the graph whose set of vertices is Ω and there is an edge from x to y if M(x, y) 6= 0. A Markov
chain is irreducible if its underlying graph is strongly connected. It is aperiodic if for all node x,
the gcd of the lengths of all cycles visiting x is 1. Particularly, if for each x, M(x, x) 6= 0, the
Markov chain is aperiodic. A Markov chain is ergodic if it is irreducible and aperiodic. A Markov
chain is symmetric if M(x, y) = M(y, x) for all x, y ∈ Ω. A distribution π on Ω is a stationary
distribution for the Markov Chain if πM = π. It is known that an ergodic Markov chain has
a unique stationary distribution [DLW08, Chapter 1]. Moreover, if the chain is symmetric, this
distribution is the uniform distribution on Ω.

Given an ergodic Markov chain X0, . . . , Xt, . . . with stationary distribution π, it is known that,
whatever is the value of X0, the distribution of Xt converges to π when t→ +∞: max‖M t(x, ·)−
π‖TV →

t→+∞
0, where ‖‖TV designates the total variation distance between two distributions [DLW08,

Chapter 4]. This leads to the Monte-Carlo technique to randomly generate elements of Ω accord-
ing to the distribution π by choosing arbitrarily X0, computing X1, X2, . . ., and returning Xt for
t large enough. The convergence rate is known to be exponential, but computing the constants is
a very difficult problem: choosing the step t to stop is a challenging question depending both on
how close to π we want to be and on the convergence rate of M t(x, ·) to π. For this purpose, the

3



ε-mixing time of an ergodic Markov chain of matrix M and stationary distribution π is defined
by tmix(ε) = min{t | maxx∈Ω‖Pt(x, ·) − π‖TV ≤ ε}. Computing mixing time bounds is a central
question on Markov Chains.

The Metropolis-Hasting Algorithm is based on the Monte-Carlo technique and aims at mod-
ifying the transition matrix of the Markov chain in order to obtain a particular stationary dis-
tribution [DLW08, Chapter 3]. Suppose that M is an ergodic symmetric transition matrix of a
symmetric Markov chain on Ω and ν is a distribution on Ω. The transition matrix Pν for ν is
defined by:

Pν(x, y) =

 min
{

1, ν(y)
ν(x)

}
M(x, y) if x 6= y,

1−
∑
z 6=x min

{
1, ν(z)

ν(x)

}
M(x, z) if x = y.

The chain defined by Pν is called the Metropolis Chain for ν. It is known [DLW08, Chapter 3]
that it is an ergodic Markov chain whose stationary distribution is ν.

2 Random Generation of Non Deterministic Automata using
Markov Chain

In this section, we propose families of symmetric ergodic Markov chains on A(n), N(n), Nm(n)
and N′m(n), as well as on the respective corresponding doted classes of NFAs.

Let A = (Q,Σ,∆, I, F ) be a finite automaton. For any q in Q and any (p, a, q) in Q× Σ×Q,
the automata Chinit(A, q), Chfinal(A, q) and Chtrans.(A, (p, a, q)) are defined as follows:

• If q ∈ I, then Chinit(A, q) = (Q,Σ,∆, I \ {q}, F ) and Chinit(A, q) = (Q,Σ,∆, I ∪ {q}, F )
otherwise.

• If q ∈ F , then Chfinal(A, q) = (Q,Σ,∆, I, F \ {q}), and Chfinal(A, q) = (Q,Σ,∆, I, F ∪ {q})
otherwise.

• If (p, a, q) ∈ ∆, then Chtrans.(A, (p, a, q)) = (Q,Σ,∆\{(p, a, q)}, I, F ), and Chtrans.(A, (p, a, q)) =
(Q,Σ,∆ ∪ {(p, a, q)}, I, F ) otherwise.

Let ρ1, ρ2, ρ3 be three real numbers satisfying 0 ≤ ρi ≤ 1 and ρ1 + ρ2 + ρ3 ≤ 1. Let X be a class
of automata whose set of states is Q. We define the transition matrix SX

ρ1,ρ2,ρ3(x, y) on X by:

• If there exists q such that y = Chinit(x, q), then SX
ρ1,ρ2,ρ3(x, y) = ρ1

|Q| .

• If there exists q such that y = Chfinal(x, q), then SX
ρ1,ρ2,ρ3(x, y) = ρ2

|Q| .

• If there exists (p, a, q) ∈ Q×Σ×Q such that y = Chtrans.(x, q), then SX
ρ1,ρ2,ρ3(x, y) = ρ3

|Σ|.|Q|2 .

• If y is different of x and has not one of the above forms, SX
ρ1,ρ2,ρ3(x, y) = 0.

• SX
ρ1,ρ2,ρ3(x, x) = 1−

∑
y 6=x S

X
ρ1,ρ2,ρ3(x, y).

Now for X ∈ {N(n),Nm(n),N′m(n)}, and 0 < ρ < 1 we define the transition matrix SX•

ρ on X•

by SX•

ρ = SX
0,ρ,1−ρ.

Lemma 2 Let m,n be fixed positive integers, with m ≥ 2. If 1 > ρ > 0, ρ1 > 0, ρ2 > 0 and ρ3 > 0,
then SN(n)

ρ1,ρ2,ρ3 , S
Nm(n)
ρ1,ρ2,ρ3 and SN′m(n)

ρ1,ρ2,ρ3 are irreducible, as well as SN(n)•

ρ , SNm(n)•

ρ and SN′m(n)•

ρ .

Proof. Without loss of generality, we assume thatQ = {1, . . . , n}. Let X ∈ {N(n),Nm(n),N′m(n)}
and x ∈ X. We denote by A0 the automaton (Q,Σ, ∅, Q,Q). The automaton A0 is trim and is in
X. We prove there is a path in X from x to A0. Set x = (Q,Σ,∆, I, F ). Since adding initial or
final states to x provides automata that are still in X, there is a path from x to y = (Q,Σ,∆, Q,Q)
(using Chinit and Chfinal). Now, since all states are both initial and final, there is a path from y
to A0 (by deleting all transitions). It follows there is a path in X from x to A0. Since the graph
of the Markov chain is symmetric, there is also a path from A0 to x. Consequently, the Markov
chains are irreducible. The proof for SN(n)•

ρ , SNm(n)•

ρ and SN′m(n)•

ρ are similar. �

4



Lemma 3 Let m,n be two fixed positive integers. If 1 > ρ > 0, ρ1 > 0, ρ2 > 0 and ρ3 > 0, then
S
N(n)
ρ1,ρ2,ρ3 , S

Nm(n)
ρ1,ρ2,ρ3 and SN′m(n)

ρ1,ρ2,ρ3 are aperiodic, as well as SN(n)•

ρ , SNm(n)•

ρ and SN′m(n)•

ρ .

Proof. With the notations of the proof of Lemma 2, there is a path of length nx from any x ∈ X
to A0. Therefore there is a cycle of length 2nx visiting x.

Now, Chinit(A0, 1) /∈ X since 1 is not accessible inA0. It follows that SX(A0,A0) 6= 0. Therefore,
there is also a cycle of length 2nx + 1 visiting x. Since the gcd of 2nx and 2nx + 1 is 1, the chain
is aperiodic. The proof for SN(n)•

ρ , SNm(n)•

ρ and SN′m(n)•

ρ are similar. �

Proposition 4 Let m,n be two fixed positive integers with m ≥ 2. The Markov chains with
matrix SN(n)

ρ1,ρ2,ρ3 , S
Nm(n)
ρ1,ρ2,ρ3 and S

N′m(n)
ρ1,ρ2,ρ3 are ergodic and their stationary distributions are the uniform

distributions.

Proof. By lemma 3 and 2, the chain is ergodic. Since the matrix SN(n)
ρ1,ρ2,ρ3 , S

Nm(n)
ρ1,ρ2,ρ3 and SN′m(n)

ρ1,ρ2,ρ3

are symmetric, their stationary distributions are the uniform distributions (over the respective
family of automata). �

In practice, computing Xt+1 from Xt is done in the following way: the first step consists in
choosing with probabilities ρ1, ρ2 and ρ3 whether we will change either an initial state, a final
state or a transition. In a second step and in each case, all the possible changing operations are
performed with the same probability. If the obtained automaton is in the corresponding class, Xt+1

is set to this value. Otherwise, Xt+1 = Xt. Since verifying that an automaton is in the desired
class (N(n), Nm(n) or N′m(n)), can be performed in time polynomial in n, computing Xt+1 from
Xt can be done in time polynomial in n.

We define the lazy Markov chain on A(n) by L
A(n)
ρ1,ρ2,ρ3(x, y) = 1

2S
A(n)
ρ1,ρ2,ρ3(x, y) if x 6= y and

L
A(n)
ρ1,ρ2,ρ3(x, x) = 1

2 + 1
2S

A(n)
ρ1,ρ2,ρ3(x, x). It is known that a symmetric Markov chain and its associated

lazy Markov chain have similar mixing times.

Proposition 5 The ε-mixing time τ(ε) of LA(n)
ρ1,ρ2,ρ3 satisfies τ(ε) ≤ ( 1

ρ1
+ 1
ρ2

)(n lnn+dn ln(ε−1)e)+
2|Σ|2n2

ρ3

(
ln(|Σ|n) + dln(ε−1)e

)
.

It follows that τ(ε) = O(n3) when |Σ| is considered as a constant. At this stage, we are not able
to compute bounds on the mixing times of the other Markov chains. Practical experiments, with
various sizes of alphabets, seems to show that about 90% of the automata generated by the above
lazy Markov Chain (using n3 as mixing bound) are trim. This observation leads us to consider,
for other experiments, to move n3 steps to sample automata. Of course, this is not a proof, just
an empirical estimation.

3 Random Generation of Non Deterministic Automata up to
Isomorphism

In this section we show how to use the Metropolis-Hastings algorithm to uniformly generate NFAs
up to isomorphism and that, for this purpose, it suffices to compute the sizes of the automorphism
groups of involved NFAs. We prove in Section 3.2 that this computation is polynomially equivalent
to testing the isomorphism problem for the involving automata. For the classes Nm(n), Nm(n)•,
N′m(n) and N′m(n)•, we show that it can be done in time polynomial in n (if m is fixed). In
Section 3.4 we show how to practically compute the sizes of automorphism group using labellings
techniques. Finally, experimental results are given in Section 3.5.

3.1 Metropolis-Hastings Algorithm
For a class C of NFAs (closed by isomorphism) and n a positive integer, let C(n) be the elements
of C whose set of states is {1, . . . , n} and let γn be the number of isomorphism classes on C(n).
There are n! possible bijections on {1, . . . , n}. If A ∈ C(n), Let ϕ1 and ϕ2 be two bijections on
{1, . . . , n}. One has ϕ1(A) = ϕ2(A) iff ϕ−1

2 ϕ1(A) = A, iff ϕ−1
2 ϕ1(A) ∈ Aut(A). It follows that the

isomorphism classes of A (in C(n)) has n!
|Aut(A)| elements. This leads to the following result.

5



Proposition 6 Randomly generates an element x of C(n) with probability n!
γn|Aut(x)| provides a

uniform random generator of the isomorphism classes of C(n).

Proof. Let H be an isomorphism class of C(n); H is generated with probability∑
x∈H

n!

γn|Aut(x)|
=
∑
x∈H

n!

γn|H|
=

1

γn|H|
∑
x∈H

1 =
|H|
γn|H|

=
1

γn
.

�
In order to compute Pν it is not necessary to compute γn, since

ν(x)
ν(y) = |Aut(y)|

|Aut(x)| . A direct use
of the Metropolis-Hastings algorithm requires to compute all the neighbors of x and the sizes of
theirs automorphism groups to move from x. Since a n-state automaton has about |Σ|n2 neighbors,
it can be a quite huge computation for each move. However, practical evaluations show that in
most cases the automorphism group of an automaton is quite small and, therefore, the rejection
approach exposed in [CG95] is more tractable. It consists in moving from x to y using S(x, y)

(the non-modified chain) and to accept y with probability min
{

1, ν(y)
ν(x)

}
. If it is not accepted,

repeat the process (moving from x to y using S with probability min
{

1, ν(y)
ν(x)

}
) until acceptance.

In practice, we observe a very small number of rejects.
The problem of computing the size of the automorphism group of a NFA is investigated in the

next session. Assuming it can be done in a reasonable time, an alternative solution to randomly
generate NFAs up to isomorphism may be to use a rejection algorithm: randomly and uniformly
generate a NFA A and keep it with probability |Aut(A)|

n! . This way, each class of isomorphism
is picked up with the same probability. However, as we will observe in the experiments, most of
automata have a very small group of automorphisms, and the number of rejects will be intractable,
even for quite small n’s.

3.2 Counting Automorphisms
This section is dedicated to show how to compute |Aut(A)| by using a polynomial number of calls to
the isomorphism problem. It is an adaptation of a corresponding result for directed graphs [Mat79].

Let A = (Q,Σ,∆, I, F ) be a NFA and Q′ ⊆ Q. Let σ be an arbitrary bijective function from
Q′ into {1, . . . , |Q′|}, a0 an arbitrary letter in Σ and ` = |Q| + |Q′| + 2. For each state r ∈ Q\Q′
we denote by AQ′r the automaton (Qr,Σ,∆r, I, F ) where Qr = Q ∪ {(p, i) | p ∈ Q and 1 ≤ i ≤ `},
and ∆r = ∆ ∪ {(p, a, (p, 1) | p ∈ Q} ∪ {((p, i), a0, (p, i+ 1)) | p ∈ Q′ and 1 ≤ i < |Q|+ 1 + σ(p)} ∪
{((r, i), a0, (r, i+ 1)) | 1 ≤ i ≤ `} ∪ {((p, i), a0, (p, i+ 1)) | p /∈ Q′ ∪ {r} and 1 < i ≤ |Q|+ 1}. Note
that the size of AQ′r is polynomial in the size of A.

The two next lemma show how to polynomially reduce the problem of counting automorphisms
to the isomorphism problem.

Lemma 7 Let A = (Q,Σ,∆, I, F ) be a NFA and Q′ a non-empty subset of Q. For every q, q′ ∈
Q\Q′, there exists φ ∈ AutQ′(A) such that φ(q) = q′ iff AQ′q and AQ

′

q′ are isomorphic.

Lemma 8 Let A = (Q,Σ,∆, I, F ) be a NFA and Q′ a non-empty subset of Q. For every q ∈ Q′,
there exists an integer d such that |AutQ′\{q}(A)| = d|AutQ′(A)|. Moreover d can be computed
with a polynomial number of isomorphism tests between automata of the form AQ

′\{q}
r .

Lemma 8 provides a way to compute sizes of automorphism groups by testing whether two NFAs
are isomorphic. Indeed, since AutQ(A) is reduced to the identity, and since Aut(A) = Aut∅(A),
one has, by a direct induction using Lemma 8, Aut(A) = d1 . . . d|Q|, where each di can be computed
by a polynomial number of isomorphism tests. Therefore, the problem of counting automorphism
reduces to test whether two automata are isomorphic.

3.3 Isomorphism Problem for Automata with a Bounded Degree
It is proved (not explicitly) in [Boo78] that the isomorphism problem for deterministic automata
is polynomially equivalent to the isomorphism problem for directed finite graphs. We prove (The-
orem 9) a similar result for NFAs, by using an encoding preserving some bounds on the output

6



degree. Therefore, combining Theorem 9 and Lemma 8, it is possible to compute the size of the
automorphism group of an automaton in Nm(n), N′m(n), Nm(n)• and N′m(n)• in time polynomial
in n (assuming that m is a constant).

Theorem 9 Let m be a fixed integer. The isomorphism problem for automata in Nm N′m, Nm(n)•

and N′m(n)• can be solved in polynomial time.

Note that the proof is constructive but the exponents are too huge to provide an efficient
algorithm. It will be possible to work on a finer encoding but we prefer, in practice, to use labeling
techniques described in the next section and that are practically very efficient on graphs (see [Gal14]
for a recent survey).

3.4 Practical Computation using Labelings
For testing graph isomorphism, the most efficient currently used approach is based on label-
ing [Gal14] and it works practically for large graphs. Intuitively, if two n-state automata are
isomorphic, then they have the same number of initial states and of final states. Rather than
testing potential n! possible bijections from the automata to point out an isomorphism, it suffices
to test n1! + n2! + n3! + n4! where n1 is the number of states that are both initial and final, n2

the number of final states (that are not initial), n3 the number of initial states (that are not final),
and n4 is the number of states that are neither initial, nor final. With an optimal distribution, the
number of tests falls from n! to 4(n/4)!. This idea can be generalized by the notion of labeling; the
goal is to point out easily computable criteria that are stable by isomorphism to get a partition
of the set of states and to reduce the search. The approach can be directly adapted for finite au-
tomata. A labeling is a computable function τ from N(n)×{1, . . . , n} into a finite set D, such that
for A1 = (Q,Σ, E1, I1, F1) and A2 = (Q,Σ, E2, I2, F2), if ϕ is an isomorphism from A1 to A2, then,
for every i ∈ {1, . . . , n}, τ(A1, i) = τ(A2, ϕ(i)). The algorithm consists in looking for functions ϕ
preserving τ . If there exists α ∈ D such that |{i | τ(A1, i) = α}| 6= |{i | τ(A2, i) = α}|, then the
two automata are not isomorphic. Otherwise, all possible bijections preserving the labeling are
tested. In the worst case, there are n! possibilities (the labeling doesn’t provide any refinement),
but in practice, it works very well. The algorithm is depicted in Figure 2. Note that if τ1 and
τ2 are two labellings, then τ = (τ1, τ2) is a labeling to, allowing the combination of labeling. In
our work, we use the following labellings: the labeling testing whether a state is initial, the one
testing whether a state is final, the one testing whether a state is both initial and final, the one
returning, for each letter a, the number of outgoing transitions labeled by a, the similar one with
ongoing transitions, the one returning the minimal word (in the lexical order) from the state to
a final state and the one returning the minimal word (in the lexical order) from an initial state
to the given state. Using these labellings the practical computation of the sizes of automorphism
groups can be done quite efficiently.

3.5 Experiments
The experiments have been done on a personal computer with processor IntelCore i3-4150 CPU
3.50GHz x 4, 7,7 Gio of memory and running on a 64 bits Ubuntu 14.04 OS. The implementation
is a non optimized prototype written in Python.

The first experimentation consists in measuring the time required to move into the Metropolis
chains for N(n) and Nm(m). Results are reported in Table 1. The labellings used are those
described in Section 3.4. These preliminary results show that using a 2 or 3-letter alphabet does
not seem to have a significant influence. For each generation, the n3-th elements of the walk
is returned, with an arbitrary start. Moreover, bounding or not the degree does not seem to be
relevant for the computation time. Note that we do not use any optimization: several computations
on labellings may be reused when moving into the chain. Moreover, Python is not an efficient
programming language (compared to C or Java). In practice, for directed graphs, the isomorphism
problem is tractable for large graphs (see for instance [FPSV09]). Note that the number of moves
(n3) is the major factor for the increasing computation time (relatively to n): the average time for
moving a single step is multiplied by about (only) 10 from n = 20 to n = 90.

7



Input: A1,A2 in N(n), τ a labelling.
Output: 1 if A1 and A2 are isomorphic, 0 otherwise.

D := {d1, . . . , dk} is the image of τ .
For α in D

D1
α := {i | τ(A1, i) = α}

D2
α := {i | τ(A2, i) = α}

If |D1
α| 6= |D2

α|
Then Return 0

EndIf
EndFor
For ϕd1 in the set of bijections from D1

d1
into D2

d1
. . .

For ϕdk in the set of bijections from D1
dk

into D2
dk

ϕ is the bijection such that ϕ|D1
j

= ϕdj
If ϕ(A1) = ϕ(A2), Then Return 1

EndFor
. . .

EndFor
Return 0

Figure 2: Testing isomorphism using labellings

n 10 20 50 70 90
|A| = 2 0.02 0.43 32.5 166.1 569.9
|A| = 3 0.02 0.56 47.1 248.4 848.1

n 10 20 50 70 90
m = 2, |A| = 2 0.2 0.43 32.5 166.1 566.8
m = 2, |A| = 3 0.2 0.57 47.0 246.7 847.2
m = 3, |A| = 2 0.2 0.43 33.0 167.8 561.9
m = 3, |A| = 3 0.2 0.57 47.2 248.6 851.3

Table 1: Average Time (s) to Sample a NFA in N(n) (left) and in N′m(n) (right).

8



σ = 1.5, n = 5 8 11 14 17 20
s 1.5 4.3 4.7 3.8 3.1 2.7

σ = 2, n = 5 8 11 14 17 20
s 1.3 3.0 4.8 5.1 4.5 4.0

σ = 3, n = 5 8 11 14 17 20
s 2.8 4.8 4.7 3.8 3.4 3.0

N′2(n)•, n = 5 8 11 14 17 20
s 3.7 6.1 7.9 10.0 11.5 13.9

Table 2: Average sizes of deterministic and minimal automata corresponding to automata sampling
using [TV05] and in N′2(n)•.

In the second experience, we also generate automata with n states by returning the n3-th
element of the walk in the Metropolis Chain. We use the algorithm to estimate the sizes of the
automorphism group. By generating 1000 automata on a 2-letter alphabet, with 5, 7, 10, 15, 20
and 50 states, for each case, all the automata have a trivial automorphism group but one or two
automata that have an automorphism group of size 2.

For the last experience, we propose to compare our generation for N′2(n)• with the generator
proposed in [TV05] with a density of a-transitions of 2 and 3. The parameter of the algorithm is a
probability pf for final states and a density σ on a-transitions: the set of states of the automaton
is {1, . . . , n}, only 1 is the initial state, each state is final with a probability pf and for each p and
each a, (p, a, q) is a transition with a probability σ

n . Therefore for each state and each letter, the
expected number of outgoing transitions labeled by this letter is σ. We run this algorithm with
pf = 0.2 and σ ∈ {1.5, 2, 3}. For each size, we compute the average size s of the corresponding
minimal automata. We use a two letter alphabet and the average sizes (number of states) are
obtained by sampling 1000 automata for each case. Results are reported in Table 2.

One can observe that the generator provides quite different automata. With the Markov chain
approach the sizes of the related minimal automata are greater, even if there is no blow-up in both
cases.

4 Conclusion
In this paper we proposed a Markov Chain approach to randomly generate non deterministic
automata (up to isomorphism) for several classes of NFAs. We showed that moving into these
Markov chains can be done quite quickly in practice and, in some interesting cases, in polynomial
time. Experiments have been performed whithin a non optimized prototype and, following known
experimental results on group isomorphism, they allow us to think that the approach can be used
on much larger automata. Implementing such techniques using an efficient programming language
is a challenging perspective. Moreover, the proposed approach is very flexible and can be applied
to various classes of NFAs. An interesting research direction is to design particular subclasses of
NFAs that look like NFAs occurring in practical applications, even if this last notion is hard to
define. We think that the classes N′m(n)• and Nm(n)• constitute first attempts in this direction.
Theoretically -as often for Monte-Carlo approach-, computing mixing and strong stationary times
are crucial and difficult questions we plan to investigate more deeply.

References
[AMR07] Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and generation with

a string automata representation. Theor. Comput. Sci., 387(2):93–102, 2007.

[BN07] F. Bassino and C. Nicaud. Enumeration and random generation of accessible automata.
Theor. Comput. Sci., 381(1-3):86–104, 2007.

[Boo78] Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are
polynomially equivalent problems. SIAM J. Comput., 7(3):273–279, 1978.

9



[CF11] V. Carnino and S. De Felice. Random generation of deterministic acyclic automata using
markov chains. In CIAA 2011, volume 6807 of Lecture Notes in Computer Science, pages
65–75, 2011.

[CF12] Vincent Carnino and Sven De Felice. Sampling different kinds of acyclic automata using
markov chains. Theor. Comput. Sci., 450:31–42, 2012.

[CG95] S. Chib and E. Greenberg. Understanding the metropolis-hastings al- gorithm. Ameri-
can Statistician, 49:327–335, 1995.

[CHPZ02] Jean-Marc Champarnaud, Georges Hansel, Thomas Paranthoën, and Djelloul Ziadi.
Nfas bitstream-based random generation. In Fourth International Workshop on De-
scriptional Complexity of Formal Systems - DCFS 2002, pages 81–94, 2002.

[CN12] A. Carayol and C. Nicaud. Distribution of the number of accessible states in a random
deterministic automaton. In STACS 2012, volume 14 of LIPIcs, pages 194–205, 2012.

[CP05] J.-M. Champarnaud and Th. Paranthoën. Random generation of dfas. Theor. Comput.
Sci., 330(2):221–235, 2005.

[DLW08] Yuval Peres D.A. Levin and Elizabeth L. Wilmer. Markov Chain and Mixing Times.
American Mathematical Society, 2008. http://pages.uoregon.edu/dlevin/MARKOV/
markovmixing.pdf.

[FPSV09] Pasquale Foggia, Gennaro Percannella, Carlo Sansone, and Mario Vento. Benchmarking
graph-based clustering algorithms. Image Vision Comput., 27(7):979–988, 2009.

[Gal14] Joseph A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of
Combinatorics, 17, 2014.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[Mat79] Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process.
Lett., 8(3):131–132, 1979.

[MU05] M. Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University
Press, 2005.

[Nic09] Cyril Nicaud. On the average size of glushkov’s automata. In Language and Automata
Theory and Applications, Third International Conference, LATA 2009,, Lecture Notes
in Computer Science, pages 626–637, 2009.

[Nic14] Cyril Nicaud. Random deterministic automata. In Erzsébet Csuhaj-Varjú, Martin
Dietzfelbinger, and Zoltán Ésik, editors, MFCS’14, volume 8634 of Lecture Notes in
Computer Science, pages 5–23. Springer, 2014.

[NPR10] Cyril Nicaud, Carine Pivoteau, and Benoît Razet. Average analysis of glushkov au-
tomata under a bst-like model. In IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2010, LIPIcs, pages 388–
399, 2010.

[TV05] Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical automata
constructions. In Geoff Sutcliffe and Andrei Voronkov, editors, LPAR’05,, volume 3835
of Lecture Notes in Computer Science, pages 396–411. Springer, 2005.

10


